
Project: Sugar Swap Protocol
Website: Sugar Swap
Platform: zkSync era Network
Language: Solidity
Date: April 26th, 2023

https://sugarswap.exchange/sugar-daddy

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….11

Technical Quick Stats …..……………………………………………………………………… 12

Code Quality ……………………………………………………………………………………. 13

Documentation ………………………………………………………………………………….. 13

Use of Dependencies …………………………………………………………………………… 13

AS-IS overview ………………………………………………………………………………….. 14

Severity Definitions ……………………………………………………………………………... 24

Audit Findings …………………………………………………………………………………… 25

Conclusion ………………………………………………………………………………………. 30

Our Methodology ………………………………………………………………………………... 31

Disclaimers ………………………………………………………………………………………. 33

Appendix

● Code Flow Diagram ……………………………………………………………………... 34

● Slither Results Log ………………………………………………………………………. 48

● Solidity static analysis ….……………………………………………………………….. 55

● Solhint Linter …………………………………………………………………….……….. 72

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by SugarSwap to perform the Security audit of the Sugar
Swap Protocol smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on April 26th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● SugarSwap is a decentralized exchange (DEX) that is specifically designed to cater

to the needs of crypto-native users who want to trade, earn rewards, and participate

in gaming activities.

● As a DEX, SugarSwap operates on the zkSync era network, which offers faster

transaction times and lower fees compared to the Ethereum mainnet.

● SugarSwap Contracts handle multiple contracts, and all contracts have different

functions.

○ SyrupBar: SyrupBar used for SUGAR staking.

○ MasterChef: MasterChef is the master of Sugar, which will be transferred to a

governance smart contract once distributed.

○ SugarStakingToken: SugarStakingToken is the place where sugar's live to

create xSUGAR. This contract handles swapping to and from xSUGAR,

SugarSwap's staking token.

○ Multicall: Aggregate results from multiple read-only function calls.

● Sugar Swap Contracts have functions like add a new pair and LPs, withdraw,

deposit, convert, mint, burn, leave, swap, skim, enter, etc.

Audit scope

Name Code Review and Security Analysis Report for
Sugar Swap Protocol Smart Contracts

Platform zkSync era Network / Solidity

File 1 Greeter.sol

File 1 MD5 Hash C60AF4A99CE474FCC4797277C4F95E88

File 2 MasterChef.sol

File 2 MD5 Hash 3181D61377A7B522A69239AB890DB0ED

File 3 NFTController.sol

File 3 MD5 Hash 6AAE550160948A4C6E4028309D9CC9DA

File 4 SmartChef.sol

File 4 MD5 Hash 9DC1FE3609527A0398A2FB4563F306EC

File 5 SwapMining.sol

File 5 MD5 Hash AB50C6C5A21D581F67D19ECC45103176

File 6 SyrupBar.sol

File 6 MD5 Hash 690BF6A147D29EB0300E4CEAE99DE9F3

File 7 SugarswapFactory.sol

File 7 MD5 Hash 1A6FCC03EB60E423A55F62A488D88851

File 8 SugarswapPair.sol

File 8 MD5 Hash 0B300D596064EB7DF2886FBA7A058B54

File 9 SugarswapRouter.sol

File 9 MD5 Hash 7685E7074F58D33B6DD8B535361AF48C

File 10 SugarToken.sol

File 10 MD5 Hash 13920529702545E1CABF7BE3021BEC7F

File 11 SugarStakingToken.sol

File 11 MD5 Hash 8ABF25872B916B11159F17A869279B36

File 12 IDO.sol

File 12 MD5 Hash 9300A16BA156F1AC011E0B574C54C58B

File 13 LakeOfSugar.sol

File 13 MD5 Hash A547B3F3732D52D549FFB51A9494F5C9

File 14 Multicall.sol

File 14 MD5 Hash B31A5401C236F10109672BC3D903C9DA

File 15 WETH9.sol

File 15 MD5 Hash 93741B992586D0B856AE852DDB678B38

File 16 ERC20.sol

File 16 MD5 Hash 3E9E55F05CF95A414E0CE704EF99E6F1

File 17 Oracle.sol

File 17 MD5 Hash D7FF8878125A049FBF8B4D86DC5F0EB5

Audit Date April 26th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Greeter.sol
● Set a greeting string memory.

YES, This is valid.

File 2 MasterChef.sol
● Bonus multiplier: 1

● The SUGAR token max total supply 28,382,400.

● NFT Boost Rate: 1%

● MasterChef is the master of Sugar.

Owner has control over following functions:
● Set a multiplier number.

● Add a new lp to the pool.

● Update the given pool's SUGAR allocation point.

● Changes cake token reward per second.

● Set a NftBoost rate value.

● Update trademining contract address.

Other Specifications:
● MasterChef is the master of Sugar, which is

ownable and has tremendous power. It will be

transferred to a governance smart contract once

SUGAR it is sufficiently distributed and the

community can govern itself.

YES, This is valid.

File 3 NFTController.sol
Owner has control over following functions:

● Set a Whitelisted address value.

● Set a Default Boost rate value.

● Set a Boost rate value.

YES, This is valid.

File 4 Oracle.sol YES, This is valid.

● Cycle: 1800

● Oracle can update token addresses.

File 5 SmartChef.sol
Owner has control over following functions:

● :Set a stop reward time.

● Withdraw DepositFee to buy back and burn.

● Withdraw emergency reward.

● Rescues random funds stuck.

● Rescues random BNB funds stuck.

YES, This is valid.

File 6 SwapMining.sol
Owner has control over following functions:

● Add a Pair address.

● Update a Pair address.

● Set the number of sugar produced by each

second.

● Only tokens in the whitelist can be mined MDX.

● Remove whitelisted addresses.

● Set a halving period.

● Set a router address.

● Set an oracle address.

● Add a Blacklist address

● Remove a Blacklist address.

YES, This is valid.

File 7 SyrupBar.sol
● Name: SugarSwapBar Token

● Symbol: SYRUP

● SyrupBar used for SUGAR staking.

Owner has control over following functions:
● Creates `_amount` token to `_to` by the owner

(MasterChef).

YES, This is valid.

● Burn Token By The Owner.

● Safe cake transfer.

File 8 Factory.sol
Owner has control over following functions:

● Set a fee address.

● Set a Fee to the setter address.

YES, This is valid.

File 9 Pair.sol
● Minimum Liquidity: 1000

Owner has control over following functions:
● Initialize once by the factory at time of deployment

by the owner.

YES, This is valid.

File 10 Router.sol
Owner has control over following functions:

● Set a swap mining address.

YES, This is valid.

File 11 ERC20.sol
● Decimals: 18

Owner has control over following functions:
● Owner can create `amount` tokens and assign

them to Owner, increasing the total supply.

YES, This is valid.

File 12 SugarToken.sol
● Name: SugarSwap Token

● Symbol: SUGAR

● Decimals: 18

● SugarToken with Governance.

Owner has control over following functions:
● Owner can create `amount` tokens and assign

them to Owner, increasing the total supply.

YES, This is valid.

File 13 SugarStakingToken.sol
● Name: Sugar Staking Token

● Symbol: xSUGAR

YES, This is valid.

● Decimals: 18

Other Specifications:
● SugarStakingToken is the place where sugar's live

to create xSUGAR.

● This contract handles swapping to and from

xSUGAR, SugarSwap's staking token.

Owner has control over following functions:
● Set a delay to withdraw time.

● Update admin address by the previous admin.

File 14 IDO.sol
Owner has control over following functions:

● Set an offering amount.

● Set a raising amount.

● Set a deposit limit per wallet.

● User addresses included in the whitelist.

● Final amount withdrawal.

YES, This is valid.

File 15 LakeOfSugar.sol
Owner has control over following functions:

● Add an auth address.

● Revoke an auth address.

● Set a Bridge address.

● Set a developer address.

● Set a developer cut amount.

YES, This is valid.

File 16 Multicall.sol
● Multicall - Aggregate results from multiple

read-only function calls.

YES, This is valid.

File 17 WETH9.sol
● Name: Wrapped Ether

● Symbol: WETH

● Decimals: 18

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Sugar Swap Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Sugar Swap Protocol.

The Sugar Swap team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Sugar Swap Protocol smart contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website:

https://defillama.com/protocol/sugar-swap which provided rich information about the

project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://defillama.com/protocol/sugar-swap

AS-IS overview

Greeter.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 greet read Passed No Issue
3 setGreeting write Passed No Issue

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 getBoost read Passed No Issue
7 getSlots read Passed No Issue
8 getTokenIds read Passed No Issue
9 updateMultiplier write access only Owner No Issue
10 poolLength external Passed No Issue
11 nonDuplicatedLP modifier Passed No Issue
12 add write Critical operation

lacks event log
Refer Audit
Findings

13 set write Critical operation
lacks event log

Refer Audit
Findings

14 depositNFT write Passed No Issue
15 withdrawNFT write Passed No Issue
16 getMultiplier read Passed No Issue
17 pendingCake external Passed No Issue
18 massUpdatePools write Passed No Issue
19 updatePool write Critical operation

lacks event log
Refer Audit
Findings

20 deposit write Passed No Issue
21 withdraw write Passed No Issue
22 emergencyWithdraw write Passed No Issue
23 safeCakeTransfer internal Passed No Issue
24 setCakePerSecond external access only Owner No Issue
25 setNftController write access only Owner No Issue
26 setNftBoostRate write access only Owner No Issue
27 setDevaddr write Passed No Issue
28 setReserveaddr write Passed No Issue

29 setMiningaddr external access only Owner No Issue

NFTController.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 getBoostRate external Passed No Issue
7 setWhitelist external access only Owner No Issue
8 setDefaultBoostRate external access only Owner No Issue
9 setBoostRate external access only Owner No Issue

Oracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 update external Passed No Issue
3 computeAmountOut write Passed No Issue
4 consult external Passed No Issue

SmartChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 stopReward write access only Owner No Issue
7 getMultiplier read Passed No Issue
8 pendingReward external Passed No Issue
9 updatePool write Passed No Issue
10 massUpdatePools write Passed No Issue
11 deposit write Passed No Issue
12 withdraw write Passed No Issue
13 emergencyWithdraw write Passed No Issue

14 emergencyRewardWithdr
aw

write access only Owner No Issue

15 withdrawDepositFee write access only Owner No Issue
16 inCaseTokensGetStuck external access only Owner No Issue
17 inCaseBNBGetStuck external access only Owner No Issue

SwapMining.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 poolLength read Passed No Issue
7 addPair write Critical operation

lacks event log
Refer Audit
Findings

8 setPair write Critical operation
lacks event log

Refer Audit
Findings

9 setSugarswapPerSecond write access only Owner No Issue
10 addWhitelist write access only Owner No Issue
11 delWhitelist write access only Owner No Issue
12 getWhitelistLength read Passed No Issue
13 isWhitelist read Passed No Issue
14 getWhitelist read Passed No Issue
15 setHalvingPeriod write access only Owner No Issue
16 setRouter write access only Owner No Issue
17 setOracle write access only Owner No Issue
18 phase read Passed No Issue
19 phase read Passed No Issue
20 reward read Passed No Issue
21 reward read Passed No Issue
22 getSugarReward read Passed No Issue
23 massMintPools write Passed No Issue
24 mint write Critical operation

lacks event log
Refer Audit
Findings

25 onlyRouter modifier Passed No Issue
26 swap write access only Router No Issue
27 getQuantity read Passed No Issue
28 takerWithdraw write Critical operation

lacks event log
Refer Audit
Findings

29 getUserReward read Passed No Issue
30 getTotalUserReward read Passed No Issue
31 getPoolInfo read Passed No Issue

32 ownerWithdraw write Critical operation
lacks event log

Refer Audit
Findings

33 addBlacklist external access only Owner No Issue
34 removeBlacklist external access only Owner No Issue
35 safeSugarTransfer internal Passed No Issue

SyrupBar.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mint write access only Owner No Issue
21 burn write access only Owner No Issue
22 safeCakeTransfer write access only Owner No Issue
23 delegates external Passed No Issue
24 delegate external Passed No Issue
25 delegateBySig external Passed No Issue
26 getCurrentVotes external Passed No Issue
27 getPriorVotes external Passed No Issue
28 _delegate internal Passed No Issue
29 _moveDelegates internal Passed No Issue
30 _writeCheckpoint internal Passed No Issue
31 safe32 internal Passed No Issue
32 getChainId internal Passed No Issue

SugarswapFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue
3 expectPairFor read Passed No Issue
4 createPair external Passed No Issue
5 setFeeTo external Passed No Issue
6 setFeeToSetter external Passed No Issue

SugarswapPair.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _mint internal Passed No Issue
3 _burn internal Passed No Issue
4 _approve write Passed No Issue
5 _transfer write Passed No Issue
6 approve external Passed No Issue
7 transfer external Passed No Issue
8 transferFrom external Passed No Issue
9 permit external Passed No Issue
10 lock modifier Passed No Issue
11 getReserves read Passed No Issue
12 _safeTransfer write Passed No Issue
13 initialize external Passed No Issue
14 _update write Passed No Issue
15 _mintFee write Passed No Issue
16 mint external lock No Issue
17 burn external lock No Issue
18 swap external lock No Issue
19 skim external lock No Issue
20 sync external lock No Issue

SugarswapRouter.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue

5 transferOwnership write access only Owner No Issue
6 ensure modifier Passed No Issue
7 setSwapMining write access only Owner No Issue
8 receive external Passed No Issue
9 _addLiquidity internal Passed No Issue
10 addLiquidity external Passed No Issue
11 addLiquidityETH external Passed No Issue
12 removeLiquidity write Passed No Issue
13 removeLiquidityETH write Passed No Issue
14 removeLiquidityWithPermit external Passed No Issue
15 removeLiquidityETHWithPer

mit
external Passed No Issue

16 removeLiquidityETHSupporti
ngFeeOnTransferTokens

write Passed No Issue

17 removeLiquidityETHWithPer
mitSupportingFeeOnTransfe
rTokens

external Passed No Issue

18 _swap internal Passed No Issue
19 swapExactTokensForTokens external Passed No Issue
20 swapTokensForExactTokens external Passed No Issue
21 swapExactETHForTokens external Passed No Issue
22 swapTokensForExactETH external Passed No Issue
23 swapExactTokensForETH external Passed No Issue
24 swapETHForExactTokens external Passed No Issue
25 _swapSupportingFeeOnTran

sferTokens
internal Passed No Issue

26 swapExactTokensForTokens
SupportingFeeOnTransferTo
kens

external Passed No Issue

27 swapExactETHForTokensSu
pportingFeeOnTransferToke
ns

external Passed No Issue

28 quote write Passed No Issue
29 getAmountOut write Passed No Issue
30 getAmountIn write Passed No Issue
31 getAmountsOut read Passed No Issue
32 getAmountsIn read Passed No Issue

ERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue

6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 owner read Passed No Issue
21 onlyOwner modifier Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue

SugarToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mintFor write access only Owner No Issue
21 mint write access only Owner No Issue
22 delegates external Passed No Issue
23 delegate external Passed No Issue

24 delegateBySig external Passed No Issue
25 getCurrentVotes external Passed No Issue
26 getPriorVotes external Passed No Issue
27 _delegate internal Passed No Issue
28 _moveDelegates internal Passed No Issue
29 _writeCheckpoint internal Passed No Issue
30 safe32 internal Passed No Issue
31 getChainId internal Passed No Issue

SugarStakingToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 stakedTime read Passed No Issue
21 canWithdraw read Passed No Issue
22 setDelayToWithdraw external Passed No Issue
23 enter write Critical operation

lacks event log
Refer Audit
Findings

24 leave write Critical operation
lacks event log

Refer Audit
Findings

25 SUGARBalance external Passed No Issue
26 xSUGARForSUGAR external Passed No Issue
27 SUGARForxSUGAR external Passed No Issue
28 burn write Passed No Issue
29 mint write Passed No Issue
30 transferFrom write Passed No Issue
31 transfer write Passed No Issue

32 _initDelegates internal Passed No Issue
33 delegates external Passed No Issue
34 delegate external Passed No Issue
35 delegateBySig external Passed No Issue
36 getCurrentVotes external Passed No Issue
37 getPriorVotes external Passed No Issue
38 _delegate internal Passed No Issue
39 _moveDelegates internal Passed No Issue
40 _writeCheckpoint internal Passed No Issue
41 safe32 internal Passed No Issue
42 getChainId internal Passed No Issue
43 setAdmin write Passed No Issue

IDO.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 onlyAdmin modifier Passed No Issue
4 setOfferingAmount write access only Admin No Issue
5 setRaisingAmount write access only Admin No Issue
6 setDepositLimitPerWallet write access only Admin No Issue
7 deposit write Passed No Issue
8 harvest write Passed No Issue
9 hasHarvest external Passed No Issue
10 getUserAllocation read Passed No Issue
11 getOfferingAmount read Passed No Issue
12 getRefundingAmount read Passed No Issue
13 isWhitelisted read Passed No Issue
14 getAddressListLength external Passed No Issue
15 includeToWhiteList write access only Admin No Issue
16 finalWithdraw write access only Admin No Issue
17 setLiquidityIsCreated write access only Admin No Issue

LakeOfSugar.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue

6 onlyAuth external Passed No Issue
7 revokeAuth external access only Owner No Issue
8 addAuth external access only Owner No Issue
9 setAnyAuth external access only Owner No Issue
10 setBridge external access only Owner No Issue
11 setDevCut external access only Owner No Issue
12 setDevAddr external access only Owner No Issue
13 bridgeFor read Passed No Issue
14 onlyEOA modifier Passed No Issue
15 convert write access only Auth No Issue
16 convertMultiple external access only Auth No Issue
17 _convert internal Passed No Issue
18 _convertStep internal Passed No Issue
19 _swap internal Passed No Issue
20 _toSUGAR internal Passed No Issue
21 getAmountOut internal Passed No Issue

Multicall.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 aggregate write Passed No Issue
3 getEthBalance read Passed No Issue
4 getBlockHash read Passed No Issue
5 getLastBlockHash read Passed No Issue
6 getCurrentBlockTimesta

mp
read Passed No Issue

7 getCurrentBlockDifficulty read Passed No Issue
8 getCurrentBlockGasLimit read Passed No Issue
9 getCurrentBlockCoinbase read Passed No Issue

WETH9.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 deposit write Passed No Issue
3 withdraw write Passed No Issue
4 totalSupply read Passed No Issue
5 approve write Passed No Issue
6 transfer write Passed No Issue
7 transferFrom write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for:

MasterChef.sol
● add

● set

● updatePool

SugarStakingToken.sol
● enter.

● leave

SwapMining.sol
● addPair

● setPair

● mint

● ownerWithdraw

● takerWithdraw

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Use the latest solidity version: - NFTController.sol, SwapMining.sol, xSUGAR.sol,
WETH9.sol, LakeOfSugar.sol, IDO.sol, Ownable.sol, EnumerableSet.sol, Context.sol,
IERC721.sol
Using the latest solidity will prevent any compiler-level bugs.

.

Resolution: We suggest using the latest solidity version.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

MasterChef.sol

● updateMultiplier: Multiplier number can be updated by the owner.

● add: Add a new lp to the pool by the owner.

● set: Update the given pool's SUGAR allocation point by the owner.

● setCakePerSecond: Changes cake token reward per second by the owner.

● setNftController: NftController address can be set by the owner.

● setNftBoostRate: NftBoost rate can be set by the owner.

● setDevaddr: Update dev address by the previous dev address.

● setReserveaddr: Update reserve address by the previous reserve address.

● setMiningaddr: Update trademining contract address can be set by the owner.

NFTController.sol

● setWhitelist: Whitelisted address values can be set by the owner.

● setDefaultBoostRate: Default Boost rate value can be set by the owner.

● setBoostRate: Boost rate value can be set by the owner.

SmartChef.sol

● stopReward: Stop reward time can be set by the owner.

● emergencyRewardWithdraw: Withdraw emergency reward by the owner.

● withdrawDepositFee: Withdraw DepositFee to buy back and burn by the owner.

● inCaseTokensGetStuck: Rescues random funds stuck by the owner.

● inCaseBNBGetStuck: Rescues random BNB funds stuck by the owner.

SwapMining.sol

● addPair: Add a Pair address by the owner.

● setPair: Update a Pair address by the owner.

● setSugarswapPerSecond: Set the number of sugar produced by each second by

the owner.

● addWhitelist: Only tokens in the whitelist can be mined MDX by the owner.

● delWhitelist: Remove whitelisted addresses by the owner.

● setHalvingPeriod: Halving Period can be set by the owner.

● setRouter: Router address can be set by the owner.

● setOracle: Oracle address can be set by the owner.

● swap: Swap mining by the router owner.

● ownerWithdraw: Withdraw tokens by the owner.

● addBlacklist: Add a Blacklist address by the owner.

● removeBlacklist: Remove a Blacklist address by the owner.

SyrupBar.sol

● mint: Creates `_amount` token to `_to` by the owner (MasterChef).

● burn: burn token by the owner.

● safeCakeTransfer: Safe cake transfer by the owner.

Factory.sol

● setFeeTo: Fees to address can be set by the owner.

● setFeeToSetter: Fee to setter address can be set by the owner.

Pair.sol

● initialize: Initialize once by the factory at time of deployment by the owner.

Router.sol

● setSwapMining: Swap mining address can be set by the owner.

ERC20.sol

● mint: Owner can create `amount` tokens and assign them to Owner, increasing the

total supply.

SugarToken.sol

● mintFor: Owner can create `amount` tokens and assign them to Owner, increasing

the total supply.

● mint: Owner can create `amount` tokens and assign them to Owner, increasing the

total supply.

xSUGAR.sol

● setDelayToWithdraw: Delay to withdraw time can be set by the owner.

● setAdmin: Update admin address by the previous admin.

IDO.sol

● setOfferingAmount: Offering amount can be set by the admin.

● setRaisingAmount: Raising amount can be set by the admin.

● setDepositLimitPerWallet: Deposit limit per wallet can be set by the admin.

● includeToWhiteList: User addresses included in whitelist by the admin.

● finalWithdraw: Final withdrawal by the admin.

LakeOfSugar.sol

● addAuth: Add an auth address by the owner.

● revokeAuth: Revoke an auth address by the owner.

● setAnyAuth: Setting anyAuth to true allows anyone to call functions protected by

only Auth.

● setBridge: Bridge address can be set by the owner.

● setDevCut: Developer cut amount can be set by the owner.

● setDevAddr: Developer address can be set by the owner.

● convert: The onlyEOA modifier prevents this being done with a flash loan.

● convertMultiple: The onlyEOA modifier prevents this being done with a flash loan

multiple.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Sugar Swap Protocol

Greeter Diagram

Multicall Diagram

WETH9 Diagram

MasterChef Diagram

NFTController Diagram

SmartChef Diagram

SwapMining Diagram

SyrupBar Diagram

SugarswapFactory Diagram

SugarswapPair Diagram

SugarswapRouter Diagram

SugarToken Diagram

SugarStakingToken Diagram

IDO Diagram

LakeOfSugar Diagram

ERC20 Diagram

Slither Results Log

Slither log >> Greeter.sol

Slither log >> MasterChef.sol

Slither log >> NFTController.sol

Slither log >> Oracle.sol

Slither log >> SmartChef.sol

Slither log >> SwapMining.sol

Slither log >> SyrupBar.sol

Slither log >> SugarswapFactory.sol

Slither log >> SugarswapPair.sol

Slither log >> SugarswapRouter.sol

Slither log >> SugarToken.sol

Slither log >> SugarStakingToken.sol

Slither log >> IDO.sol

Slither log >> LakeOfSugar.sol

Slither log >> Multicall.sol

Slither log >> WETH9.sol

Slither log >> ERC20.sol

Solidity Static Analysis

Greeter.sol

MasterChef.sol

NFTController.sol

Oracle.sol

SmartChef.sol

SwapMining.sol

SyrupBar.sol

Factory.sol

Pair.sol

Router.sol

SugarToken.sol

SugarStakingToken.sol

IDO.sol

LakeOfSugar.sol

Multicall.sol

WETH9.sol

ERC20.sol

Solhint Linter

Greeter.sol

Greeter.sol:2:1: Error: Compiler version >0.6.6 does not satisfy the
r semver requirement

MasterChef.sol

MasterChef.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
MasterChef.sol:12:8: Error: Use double quotes for string literals
MasterChef.sol:75:29: Error: Constant name must be in capitalized
SNAKE_CASE
MasterChef.sol:78:20: Error: Variable name must be in mixedCase
MasterChef.sol:90:29: Error: Constant name must be in capitalized
SNAKE_CASE: Error: Avoid to make time-based decisions in your
business logic
MasterChef.sol:305:35: Error: Avoid to make time-based decisions in
your business logic
MasterChef.sol:308:65: Error: Avoid to make time-based decisions in
your business logic
MasterChef.sol:331:31: Error: Avoid to make time-based decisions in
your business logic

NFTController.sol

NFTController.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
NFTController.sol:13:26: Error: Code contains empty blocks

Oracle.sol

Oracle.sol:3:1: Error: Compiler version >=0.6.6 does not satisfy the
r semver requirement
Oracle.sol:12:5: Error: Contract name must be in CamelCase
Oracle.sol:18:5: Error: Contract name must be in CamelCase
Oracle.sol:36:25: Error: Use double quotes for string literals
Oracle.sol:71:23: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:125:39: Error: Use double quotes for string literals
Oracle.sol:127:33: Error: Avoid to make time-based decisions in your

business logic
Oracle.sol:148:28: Error: Avoid to make time-based decisions in your
business logic

SmartChef.sol

SmartChef.sol:1:1: Error: Compiler version >=0.6.0 does not satisfy
the r semver requirement
SmartChef.sol:146:26: Error: Use double quotes for string literals
SmartChef.sol:192:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
SmartChef.sol:292:1: Error: Compiler version ^0.6.2 does not satisfy
the r semver requirement
SmartChef.sol:419:49: Error: Use double quotes for string literals
SmartChef.sol:429:37: Error: Use double quotes for string literals
SmartChef.sol:454:1: Error: Compiler version ^0.6.0 does not satisfy
the r semver requirement
SmartChef.sol:545:53: Error: Use double quotes for string literals
SmartChef.sol:552:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
SmartChef.sol:567:28: Error: Code contains empty blocks
SmartChef.sol:581:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
SmartChef.sol:621:41: Error: Use double quotes for string literals
SmartChef.sol:649:41: Error: Use double quotes for string literals
SmartChef.sol:657:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
SmartChef.sol:774:65: Error: Avoid to make time-based decisions in
your business logic
SmartChef.sol:777:31: Error: Avoid to make time-based decisions in
your business logic
SmartChef.sol:846:65: Error: Use double quotes for string literals
SmartChef.sol:852:36: Error: Use double quotes for string literals
SmartChef.sol:877:28: Error: Avoid using low level calls.

SwapMining.sol

SwapMining.sol:3:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
SwapMining.sol:12:8: Error: Use double quotes for string literals
SwapMining.sol:97:34: Error: Avoid to make time-based decisions in
your business logic
SwapMining.sol:227:31: Error: Avoid to make time-based decisions in
your business logic
SwapMining.sol:272:31: Error: Avoid to make time-based decisions in
your business logic
SwapMining.sol:310:39: Error: Avoid to make time-based decisions in
your business logic

SyrupBar.sol

SyrupBar.sol:3:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirement
SyrupBar.sol:149:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:291:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

Factory.sol

Factory.sol:3:1: Error: Compiler version >=0.5.16 does not satisfy
the r semver requirement
Factory.sol:34:39: Error: Use double quotes for string literals
Factory.sol:35:56: Error: Use double quotes for string literals
Factory.sol:38:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Factory.sol:49:44: Error: Use double quotes for string literals
Factory.sol:54:44: Error: Use double quotes for string literals

Pair.sol

Pair.sol:3:1: Error: Compiler version >=0.6.6 does not satisfy the r
semver requirement
Pair.sol:37:36: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:42:29: Error: Variable name must be in mixedCase
Pair.sol:52:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Pair.sol:59:33: Error: Use double quotes for string literals
Pair.sol:108:29: Error: Avoid to make time-based decisions in your
business logic
Pair.sol:317:49: Error: Use double quotes for string literals
Pair.sol:326:49: Error: Use double quotes for string literals
Pair.sol:330:104: Error: Use double quotes for string literals

Router.sol

Router.sol:3:1: Error: Compiler version >=0.6.6 does not satisfy the
r semver requirement
Router.sol:5:8: Error: Use double quotes for string literals
Router.sol:199:39: Error: Variable name must be in mixedCase
Router.sol:203:29: Error: Avoid to make time-based decisions in your
business logic
Router.sol:203:46: Error: Use double quotes for string literals
Router.sol:211:35: Error: Variable name must be in mixedCase
Router.sol:500:34: Error: Use double quotes for string literals

Router.sol:502:42: Error: Use double quotes for string literals
Router.sol:547:13: Error: Use double quotes for string literals
Router.sol:562:34: Error: Use double quotes for string literals
Router.sol:570:13: Error: Use double quotes for string literals
Router.sol:585:48: Error: Use double quotes for string literals
Router.sol:591:44: Error: Use double quotes for string literals

SugarToken.sol

SugarToken.sol:3:1: Error: Compiler version >0.6.6 does not satisfy
the r semver requirement
SugarToken.sol:8:30: Error: Use double quotes for string literals
SugarToken.sol:8:49: Error: Use double quotes for string literals
SugarToken.sol:123:17: Error: Avoid to make time-based decisions in
your business logic
SugarToken.sol:245:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

XSUGER.sol

xSUGAR.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
xSUGAR.sol:536:94: Error: Code contains empty blocks
xSUGAR.sol:722:57: Error: Avoid to make time-based decisions in your
business logic
xSUGAR.sol:751:35: Error: Avoid to make time-based decisions in your
business logic
xSUGAR.sol:783:5: Error: Function name must be in mixedCase
xSUGAR.sol:796:5: Error: Function name must be in mixedCase
xSUGAR.sol:945:17: Error: Avoid to make time-based decisions in your
business logic
xSUGAR.sol:1067:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

IDO.sol

IDO.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
IDO.sol:686:43: Error: Use double quotes for string literals
IDO.sol:691:14: Error: Avoid to make time-based decisions in your
business logic
IDO.sol:691:45: Error: Avoid to make time-based decisions in your
business logic
IDO.sol:701:70: Error: Use double quotes for string literals
IDO.sol:705:19: Error: Avoid to make time-based decisions in your
business logic
IDO.sol:711:14: Error: Avoid to make time-based decisions in your
business logic
IDO.sol:771:60: Error: Use double quotes for string literals

IDO.sol:772:69: Error: Use double quotes for string literals

LakeOfSugar.sol

LakeOfSugar.sol:4:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
LakeOfSugar.sol:568:5: Error: Function name must be in mixedCase
LakeOfSugar.sol:585:5: Error: Function name must be in mixedCase
LakeOfSugar.sol:726:31: Error: Avoid to use tx.origin
LakeOfSugar.sol:916:31: Error: Use double quotes for string literals
LakeOfSugar.sol:917:50: Error: Use double quotes for string literals

Multicall.sol

Multicall.sol:3:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
Multicall.sol:17:48: Error: Avoid using low level calls.
Multicall.sol:33:21: Error: Avoid to make time-based decisions in
your business logic

WETH9.sol

WETH9.sol:16:1: Error: Compiler version =0.6.12 does not satisfy the
r semver requirement
WETH9.sol:42:28: Error: Avoid using low level calls.

ERC20.sol

ERC20.sol:3:1: Error: Compiler version >=0.4.0 does not satisfy the r
semver requirement
ERC20.sol:297:38: Error: Use double quotes for string literals
ERC20.sol:298:40: Error: Use double quotes for string literals
ERC20.sol:315:60: Error: Use double quotes for string literals

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

