
Project: AlphasElephantCoin
Website: https://alphaselephant.net
Platform: Ethereum
Language: Solidity
Date: October 10th, 2023

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Business Risk Analysis …..……………………………………………………………………. 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 24

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the AlphasElephantCoin team to perform the Security
audit of the ALPHAS token smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on October 10th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The AlphasElephantCoin Token is a standard smart contract that allows users to

update marketing and charity wallet addresses, set buy and sell limits, and more.

Audit scope

Name Code Review and Security Analysis Report for
AlphasElephantCoin (ALPHAS) Token Smart
Contract

Platform Ethereum

File Alphas.sol

Github commit hash 5ff3d843f29079ee35e21e9fd753283d114c3576

Audit Date October 10th, 2023

https://github.com/EtherAuthority/Smart-Contracts-Library/blob/main/ALPHAS/Alphas.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: AlphasElephantCoin

● Symbol: ALPHAS

● Decimals: 18

● Total supply: 1 Trillion

YES, This is valid.

Ownership Control:

● Set the market maker pair address.

● Set the charity wallet address.

● Set the lottery wallet address.

● Set the marketing wallet address

● Set the developer wallet address.

● Set the burn tax percentage.

● Set the percentage values.

● Withdraw ERC20 tokens that are

potentially stuck in the contract.

● The current owner can transfer ownership.

● Owners can renounce ownership.

YES, This is valid. We advise to
renounce ownership once the
ownership functions are not
needed. This is to make the smart
contract 100% decentralized.

Audit Summary

According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make
them fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and few very low level issues.
These issues are acknowledged by the project team

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 7%

Sell Tax 9%

Cannot Buy Passed

Cannot Sell Passed

Modify Tax Passed

Fee Check Passed

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? Passed

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check Passed

Can Mint? No

Is it Proxy? Not Detected

Can Take Ownership? Not Detected

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in ALPHAS Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the ALPHAS Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an ALPHAS Token smart contract code in the form of a github.com web

link.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 transferFrom write Passed No Issue
15 allowance read Passed No Issue
16 approve write Passed No Issue
17 _approve internal Passed No Issue
18 _spendAllowance internal Passed No Issue
19 _burnTokens internal Passed No Issue
20 _transferTokens internal Passed No Issue
21 TransferEx write access only Owner No Issue
22 setAutomatedMarketMakerPair write access only Owner No Issue
23 _setAutomatedMarketMakerPair write Passed No Issue
24 setExcludedFromFee external access only Owner No Issue
25 setMarketingWallet external access only Owner No Issue
26 setCharityWallet external access only Owner No Issue
27 setLotteryWallet external access only Owner No Issue
28 setDevWallet external access only Owner No Issue
29 updateShares internal Passed No Issue
30 setBurnTaxPercentage external access only Owner No Issue
31 setMarketingPercentage external access only Owner No Issue
32 setDevPercentage external access only Owner No Issue
33 setCharityPercentage external access only Owner No Issue
34 setLotteryPercentage external access only Owner No Issue
35 setTaxThreshold external access only Owner No Issue
36 setMaxAmount external access only Owner No Issue
37 updateFees internal Passed No Issue
38 updateMaxLimit internal Passed No Issue
39 recoverTokensFromContract external access only Owner No Issue
40 recoverETHfromContract external access only Owner No Issue
41 swapTokensForEth write Passed No Issue
42 swapTokens internal Passed No Issue

43 addLiquidity write Passed No Issue
44 _transfer internal Passed No Issue
45 _calculateTax internal Passed No Issue
46 fallback external Passed No Issue
47 receive external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Consider renouncing ownership:

Once all the administrative functions are over, then we advise to renounce the ownership

of the contract. This will make it fully decentralized. Fully decentralized contracts increase

the trust in the users.

Status: Acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Alphas.sol
● TransferEx: The owner can transfer the amount.

● setAutomatedMarketMakerPair: The market maker pair address can be set by the

owner.

● setExcludedFromFee: An excluded address can be set by the owner.

● setMarketingWallet: The marketing wallet address can be set by the owner.

● setCharityWallet: The charity wallet address can be set by the owner.

● setLotteryWallet: The lottery wallet address can be set by the owner.

● setDevWallet: The developer wallet address can be set by the owner.

● setBurnTaxPercentage: The burn tax percentage can be set by the owner.

● setMarketingPercentage: The marketing percentage can be set by the owner.

● setDevPercentage: The developer percentage can be set by the owner.

● setCharityPercentage: The charge percentage can be set by the owner.

● setLotteryPercentage: The lottery percentage can be set by the owner.

● setTaxThreshold: The tax threshold value can be set by the owner.

● recoverTokensFromContract: Withdraw ERC20 tokens that are potentially stuck in

contract by the owner.

● recoverETHfromContract: Withdraw ether tokens that are potentially stuck in a

contract by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of github.com web links. And we have used all

possible tests based on given objects as files. We had not observed any issues in the

smart contracts. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - AlphasElephantCoin Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> Alphas.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

Alphas.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

Alphas.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:46
Error message for require is too long
Pos: 9:88
Function name must be in mixedCase
Pos: 5:199
Contract has 28 states declarations but allowed no more than 15
Pos: 1:265
Constant name must be in capitalized SNAKE_CASE
Pos: 5:267
Constant name must be in capitalized SNAKE_CASE
Pos: 5:268
Constant name must be in capitalized SNAKE_CASE
Pos: 5:269
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:330
Error message for require is too long
Pos: 9:419
Error message for require is too long
Pos: 9:420
Error message for require is too long
Pos: 9:444
Error message for require is too long
Pos: 9:446
Error message for require is too long
Pos: 9:464
Function name must be in mixedCase
Pos: 5:478
Error message for require is too long
Pos: 17:486
Error message for require is too long
Pos: 9:499
Error message for require is too long
Pos: 9:515
Error message for require is too long
Pos: 9:520
Error message for require is too long
Pos: 9:525
Error message for require is too long

Pos: 9:530
Error message for require is too long
Pos: 9:546
Error message for require is too long
Pos: 9:551
Error message for require is too long
Pos: 9:557
Error message for require is too long
Pos: 9:563
Error message for require is too long
Pos: 9:569
Avoid making time-based decisions in your business logic
Pos: 33:585
Avoid making time-based decisions in your business logic
Pos: 16:587
Avoid making time-based decisions in your business logic
Pos: 21:592
Avoid making time-based decisions in your business logic
Pos: 65:592
Avoid making time-based decisions in your business logic
Pos: 21:597
Avoid making time-based decisions in your business logic
Pos: 66:597
Avoid making time-based decisions in your business logic
Pos: 21:601
Avoid making time-based decisions in your business logic
Pos: 66:601
Avoid making time-based decisions in your business logic
Pos: 21:605
Avoid making time-based decisions in your business logic
Pos: 67:605
Avoid making time-based decisions in your business logic
Pos: 17:615
Avoid making time-based decisions in your business logic
Pos: 37:624
Avoid making time-based decisions in your business logic
Pos: 16:626
Avoid making time-based decisions in your business logic
Pos: 21:631
Avoid making time-based decisions in your business logic
Pos: 66:631
Avoid making time-based decisions in your business logic
Pos: 21:636
Avoid making time-based decisions in your business logic
Pos: 66:636
Avoid making time-based decisions in your business logic
Pos: 17:646
Error message for require is too long
Pos: 9:658
Avoid making time-based decisions in your business logic
Pos: 13:690
Avoid making time-based decisions in your business logic
Pos: 13:732
Error message for require is too long
Pos: 9:737
Error message for require is too long
Pos: 9:738
Error message for require is too long
Pos: 9:739

Avoid making time-based decisions in your business logic
Pos: 30:744
Error message for require is too long
Pos: 21:791
Error message for require is too long
Pos: 21:803
Code contains empty blocks
Pos: 32:823

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

