@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: AlphasElephantCoin
Website: hitps://alphaselephant.net
Platform: Ethereum

Language: Solidity

Date: October 10th, 2023

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
BUSINESS RISK ANAIYSIS .. niniii i 8
Code QUAIIRY ...eee e 9
DOCUMENTALION ... e 9
0 LY o) D T=T o= o [T T [T 9
ASHIS OVEIVIBW ..o e 10
Severity DefinitioNS ... 12
AUt FINAINGS ..o 13
@70 o T 1017 T o 15
(@ 18] g1/ 1= 1 ToTo (o] (oo VPP 16
DISCIAIMEIS ... e 18
Appendix
o Code FIOW Diagram ... 19
o Slither RESUIS LOG ...uviiiiiiii e 20
e Solidity staticanalysis ..., 22
® SOININt LNl .. 24

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the AlphasElephantCoin team to perform the Security
audit of the ALPHAS token smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on October 10th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e The AlphasElephantCoin Token is a standard smart contract that allows users to

update marketing and charity wallet addresses, set buy and sell limits, and more.

Audit scope

Name Code Review and Security Analysis Report for
AlphasElephantCoin (ALPHAS) Token Smart
Contract

Platform Ethereum

File Alphas.sol

Github commit hash 5ff3d843f29079ee35e21e9fd753283d114c3576

Audit Date October 10th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/EtherAuthority/Smart-Contracts-Library/blob/main/ALPHAS/Alphas.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:

Name: AlphasElephantCoin
Symbol: ALPHAS
Decimals: 18

Total supply: 1 Trillion

YES, This is valid.

Ownership Control:

Set the market maker pair address.

Set the charity wallet address.
Set the lottery wallet address.
Set the marketing wallet address
Set the developer wallet address.
Set the burn tax percentage.

Set the percentage values.
Withdraw ERC20 tokens that are

potentially stuck in the contract.

The current owner can transfer ownership.

Owners can renounce ownership.

YES, This is valid. We advise to
renounce ownership once the
ownership functions are not
needed. This is to make the smart

contract 100% decentralized.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make
them fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and few very low level issues.

These issues are acknowledged by the project team

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Business Risk Analysis

Category Result
Buy Tax 7%
Sell Tax 9%
Cannot Buy Passed
Cannot Sell Passed
Modify Tax Passed
Fee Check Passed
Is Honeypot Not Detected

Trading Cooldown

Not Detected

Can Pause Trade?

No

Pause Transfer?

Not Detected

Max Tax? Passed

Is it Anti-whale? Not Detected
Is Anti-bot? Not Detected
Is it a Blacklist? Not Detected
Blacklist Check Passed
Can Mint? No

Is it Proxy? Not Detected

Can Take Ownership?

Not Detected

Hidden Owner?

Not Detected

Self Destruction?

Not Detected

oo 00O Q00O OCCQOCOOCOOCOOYOQCVYQYOYTY Q@00

Auditor Confidence

High

Overall Audit Result: PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in ALPHAS Token are part of its logical algorithm. A library is a different type
of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many
times by other contracts in the ALPHAS Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an ALPHAS Token smart contract code in the form of a github.com web
link.

As mentioned above, code parts are not well commented on. but the logic is
straightforward. So it is easy to quickly understand the programming flow as well as
complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyOwner modifier Passed No Issue
3 | owner read Passed No Issue
4 checkOwner internal Passed No Issue
5 | renounceOwnership write access only Owner No Issue
6 | transferOwnership write access only Owner No Issue
7 transferOwnership internal Passed No Issue
8 [name read Passed No Issue
9 | symbol read Passed No Issue
10 | decimals read Passed No Issue
11 | totalSupply read Passed No Issue
12 | balanceOf read Passed No Issue
13 | transfer write Passed No Issue
14 | transferFrom write Passed No Issue
15 | allowance read Passed No Issue
16 | approve write Passed No Issue
17 | approve internal Passed No Issue
18 | spendAllowance internal Passed No Issue
19 | burnTokens internal Passed No Issue
20 | transferTokens internal Passed No Issue
21 | TransferEx write access only Owner No Issue
22 | setAutomatedMarketMakerPair write access only Owner No Issue
23 | setAutomatedMarketMakerPair write Passed No Issue
24 | setExcludedFromFee external | access only Owner No Issue
25 | setMarketingWallet external | access only Owner No Issue
26 | setCharityWallet external | access only Owner No Issue
27 | setLotteryWallet external | access only Owner No Issue
28 [setDevWallet external | access only Owner No Issue
29 | updateShares internal Passed No Issue
30 | setBurnTaxPercentage external | access only Owner No Issue
31 | setMarketingPercentage external | access only Owner No Issue
32 | setDevPercentage external | access only Owner No Issue
33 | setCharityPercentage external | access only Owner No Issue
34 | setLotteryPercentage external | access only Owner No Issue
35 | setTaxThreshold external | access only Owner No Issue
36 | setMaxAmount external | access only Owner No Issue
37 | updateFees internal Passed No Issue
38 | updateMaxLimit internal Passed No Issue
39 [recoverTokensFromContract external | access only Owner No Issue
40 | recoverETHfromContract external | access only Owner No Issue
41 | swapTokensForEth write Passed No Issue
42 | swapTokens internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

43 | addLiquidity write Passed No Issue
44 | transfer internal Passed No Issue
45 | calculateTax internal Passed No Issue
46 | fallback external Passed No Issue
47 | receive external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Consider renouncing ownership:

Once all the administrative functions are over, then we advise to renounce the ownership
of the contract. This will make it fully decentralized. Fully decentralized contracts increase

the trust in the users.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Alphas.sol

TransferEx: The owner can transfer the amount.

setAutomatedMarketMakerPair: The market maker pair address can be set by the
owner.

setExcludedFromFee: An excluded address can be set by the owner.
setMarketingWallet: The marketing wallet address can be set by the owner.
setCharityWallet: The charity wallet address can be set by the owner.
setLotteryWallet: The lottery wallet address can be set by the owner.

setDevWallet: The developer wallet address can be set by the owner.
setBurnTaxPercentage: The burn tax percentage can be set by the owner.
setMarketingPercentage: The marketing percentage can be set by the owner.
setDevPercentage: The developer percentage can be set by the owner.
setCharityPercentage: The charge percentage can be set by the owner.
setLotteryPercentage: The lottery percentage can be set by the owner.
setTaxThreshold: The tax threshold value can be set by the owner.
recoverTokensFromContract: Withdraw ERC20 tokens that are potentially stuck in
contract by the owner.

recoverETHfromContract: Withdraw ether tokens that are potentially stuck in a

contract by the owner.

Ownable.sol

renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
transferOwnership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of github.com web links. And we have used all
possible tests based on given objects as files. We had not observed any issues in the

smart contracts. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - AlphasElephantCoin Token

(©) ALPHas

@ IERC20

Ownable

O string _name

string _symbol

uintd _decimals

uint256 _totalSupply

Uint256 maxAmount

uint256 maxiWallet
address==uirt256 _balances
mapping address==uint256 _allowances
hool automatecMarketMakerPairs
ss==bool _isExcludedFromFes
uint256 launchTime

bool updateFeesActive

bool updateMaxLimitActive

address marketingvWallet

address deviVallet

address charityWallet

address lotteryWallet

address DEAD

uint256 buyFee

uint256 sellFee

uint256 marketingPercent

uint256 devPercent

uint256 charityPercent

uint256 lotteryPercent

uint256 burnPercent

uint256 marketingShare

uint256 devShare

uint25E chartyShare

uint256 lotteryShare

uint256 _taxThreshold
IUniswap''2Router02 uniswap''2Router
© address _uniswapPair

O bool swapping

< bool swapEnabled

Q000000 OOOCOQOOODCOOOOOODOOODGOCODODO
@

@ IUniswapV2Router0?

IRouter0?

@ IUniswapV 2Factory|
@ QhbalanceOf()
@ transfer() -
@ Quallowance() g 32:::;;?0
@ approve()

@ transferFromi)

@ IV 2Pair

@ Qfactory()
@ QgetReserves()
@ sync()

@ &_ constructor__ ()

@ Gname()

@ Qsymbol()

@ Qdecimals()

@ QotalSupply()

@ QhalanceOf()

@ transfer()

@ transferFrom()

@ Quallowance()

@ approvel)

< _approve()

< _spendallowance()

< _burnTokens()

< _fransferTokens()
TransferEx()
setAutomatedark etMakerPair()
_setAutomatedMarketMakerPair()
setExcludedFromFee()
setMarketingvVallet ()
setCharityVWallet()
setlotteryWallst()
setDevivallet()
updateShares()
setBurnTaxPercentage()
setMarketingPercentage()
setDevPercentage()
setCharityPercentage()
setlotteryPercentage()
setTaxThreshold()
sethaxAmount()
updateFees()
updateMaxLimit()
recoverTokensFromContract()
recoverETHfromContract()
swapTokensForEth()

= swapTokens()

B addliguicity ()

< _transfer()

© Q_calculateTax()

He0 O 0000000 C0OCQROONO®

@ swapExactTokensForETHSupportingFeeCnTransferTokens()

@ @swapExactETHForTokensSupportingFeeOnTransferTokens()
@ swapExactTokensForTokensSupportingFeeOnTransferTokens()
@ swapExactTokensForTokens()

|

© Ownable

Context

O address _owner

@ _ constructor__()
@ Sowner()

< 4 _checkOwner()

@ renounceCwnership)
@ transferOwnership()
< _transferOwnership()

|

© Context

< 8,_msgSender()
< Q_msgData()

@ u;ouferoi

Q. factory()

QUWETH()

& addLiquidityETH()
addLiguidity()
remowveLiguidityETH()

@ swapExactETHF orTokens()
Q get AmountsOut()

O get Amountsing)

[N N NN NN

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

lith

AS

er Log >> Alphas.sol

r

S

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ALPHAS .updateMaxL imit{) (Alphas.sol#) uses timestamp for comparisons
Dangerous comparisons:
- updateMaxLimitActive && block.timestamp <= launchTime + 1200 (Alphas.sol#62
- block.timestamp <= launchTime + (Alphas.sol#627
- block.timestamp > launchTime + & block.timestamp == launchTime + 12
- block.timestamp = launchTime + 12 . block.timestamp == launchTime + 1
- block.timestamp = launchTime + 18 Alphas.sol#647)
ALPHAS. transfer(address,address,uint256) (Alphas.sol#737-816) uses timestamp for comparisons
Dangerous comparisons:
- launchTime == 8 && recipient == _uniswapPair {Alphas.sol#744)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

ALPHAS . addL iguidity(uint256,uint256) Iulphas sol#7 35) is never used and should be removed
Context. msgData() (Alphas.sol#19-21) ever used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version®.8.19 (Alphas.sol#2) necessitates a wersion too recent to be trusted. Consider deploying with 8.6.12/0.7.
6

solc-8.8.19 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Low lev Al call in ALPHAS.swapTokens() (Alphas.sol#695- :

{success,None) = marketingWallet.call{gas B,v : marketingAmount}() (Alphas.sol#715
(successi1,None) devWallet.call{gas: 35 e: devAmount}() ({Alphas.sol#716)
{success2,None) charitywWallet.call{gas e: charityAmount}{) (Alphas.sol#717
- {success3,None) lotterywWallet.call{gas: e: lotteryAmount}() (Alphas.sol#718)
Reference: https: ffglthub com/crytic/slither/wiki/De etector-Documentation#low-level-calls

ALPHAS (Alphas.sol#266-826) should inherit from IERC20 (Alphas.sol#187-132)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-inheritance

Function IRouter®1.WETH() (Alphas.sol#2 is not in mixedCase

Function ALPHAS 'aHSTQIEflajjIQSS[] uint256) {Alphas.sol#479-494) is not in mixedCase

Parameter ALPHAS.Tran | re nt2 input (Alphas.sol#488) is not in mixedCase

Parameter ALPHAS ar 2 int2 amount (Alphas.sol#481) is not in mixedCase

Parameter HLPHHD recov Ar'oknnsFlowCDntractlajj|ass uint256)._tokenAddress ({Alphas.sol#656) is not in mixedCase
Constant ALPHAS. name ({Alphas.sol#268) 1is not in UPPER_CASE_WITH_UNDERSCORES

Constant ALPHAS. symbol (Alphas.sol#269) _is not in UPPER_CASE_WITH_UNDERSCORES

Constant ALPHAS. decimals (Alphas.sols) is not in UPPER_CASE_WITH_UNDERSCORES

Variable ALPHAS. balances (Alphas.sol#2 is not in mixedCase

Variable A AS. isExcludedFromFee Iulphas sol#280) is not in mixedCase

variable A AS. taxThreshold (Alphas.sol#306) is not in mixedCase

Variable A AS. uniswapPair (Alphas.sol#3089) is not in mixedCase

Reference: https /fgithub.com/erytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Variable IRouter®81.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amountADesired (Alphas.sol#212
) is too similar to IRouter@il. adlequljltvlajjIQSS address u1nt;5t,u1nt;5t uint256 u1nt;5t,ajj|nss uint256).amountBhesired {Alp
has.sol#213)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar

ALPHAS .updateShares() (Alphas.sol#535-544) uses literals with too many digits:

- rralkﬁtu.gclmlQ = delkﬁtlngpﬁlcant * 16 / totalTaxPercent lephas.sol#ESQ
ALPHAS .update res({) (Alphas.sol#535-544) uses literals with too many dlglt

g (devPercent * 1) / totalTaxPercent (Alphas.sol#548)
ALPHAS .upda (Alphas .sol#5 4| uses Lliterals with too many dlglts
re = (charityPercent * 1 0) / totalTaxPercent (Alphas.sol#541)

ALPHAS .updateSh () {Alphas.sol#535-544) terals with too many digits:

- lotte e (lott cent * 1f / totalTaxPercent (Alphas.sol#542)
ALPHAS .setBurnTaxPercentage(uint256) (Alphas.sol#546-549) uses literals with too many digits:

- require{boel,string){marketingPercent + devPercent + charityPercent + lotteryPercent + burnPercent
entage cannot exceed 10 {Alphas.sol#547)
ALPHAS .setMarketingPerc age{uint2 (Alphas.sol#551-555) uses literals with too many digits:

- reguire(bool,string)(marketingPercent + d rcent + charityPercent + lotteryPercent + burnPercent
entage cannot exceed 1 (Alphas.sol#552)
ALPHAS .setDevPercentage(uint256) (Alphas. 531“5577561} uses literals with too many digits:

- require(bool,string)({marketingPercent + devPercent + charityPercent + lotteryPercent + burnPercent
entage cannot exceed 18¢ (Alphas.sol#558)
ALPHAS.setChar ityPercentage(uint256) (Alphas.sol#56 37) uses literals with too many digits:

- reguire(bool,string -delkétlngPé|CAnt + devPercent + charityPercent + lotteryPercent + burnPercent
entage cannot exceed 100%) (Alphas.sol#564)
ALPHAS .setlLotteryPercentage(uint256) Iulphas sol#569-573) uses literals with too many digits:

- require({bool, st|1ngllwd|k9t1| rcen /Percent + charityPercent + lotteryPercent + burnPercent
entage cannot exceed 18¢ (Alphas. sol+
ALPHAS .updateMaxL imit() IHlphas sol#) uses literals with too many digits:

- maxAmount = Itotalcuppluln * 2 / (Alphas.sol#62
ALPHAS .updateMaxLimit() (Alphas.sol#623 literals with t digits:

- maxwWallet = (totalSupply() ° / 0 (Alphas.sol#62
ALPHAS .updateMaxLimit{) (Alphas.sol#62 literals with i y digits:

- maxAmount = (totalSuppl 3 / ee
ALPHAS .updateMaxL imit() (Alphas.sol# 25 literals wlth to any digits:

- maxwallet = (totalsSupply() ° / @ (Alphas.sol#634)
ALPHAS .updateMaxLimit({) (Alphas.sol#6 rals with te y digits:

- maxAmount = (totalSupply() {Alphas.sols
ALPHAS .updateMaxL imi (Alphas. 162) iterals with te any digits:

- maxwallet = S y(: (Alphas.sols)
ALPHAS. recover DkﬂusF\DnCDntlactladjlnss u1nt456; (Alphas.sol#655-670) uses literals with too many digits:

- _tokenAmount = _tokenBalance * percent / 18 {Alphas.sol#666)
ALPHAS.swapTokens() (Alphas. sol¢r0=—7“) uses literals with too many digits:

- marketingAmount = . alanca * Walkntlngcha|nl /1 Alphas.sol#705)
ALPHAS . swapTokens() iAlphas.sol*.QS 7 igi

devAmount = (newBalance * j ;
ALPHAS.swapTokens() (Alphas.sol#695- 2 iterals with too many digits:
(0 (Alphas.sol#707)

ALPHAS .swapTokens () (Alphas.sol#695-720) 2 iterals with too many digits

- lotteryAmount W nce otteryShare) /4 {Alphas.sol#

1o)
ALPHAS. ca ateTax(uint256,uint256) (Alphas.sol#818-820) uses literals with too many digits:

ALPHAS.slitherConstructorvariable .sols too many digits:
- _totalSupply = 1 * 10 ** uint256(-chﬁalsl Iulphas 501*4a1|
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
ALPHAS.swapEnabled (Alphas.sol#312) should be constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-constant
Alphas.sol analyzed (8 contracts with 84 detectors), 65 result(s) found

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program
is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

Alphas.sol

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the blocktimestamp, to a certain

degree, to change the outcome of a transaction in the mined block.

more

Pos: 586:32:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the blocktimestamp, to a certain
degree, to change the outcome of a transaction in the mined block.

more

Pos: 586:32:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via specifying
the called contract's interface.

more

Pos: 718:22:

Gas costs:

Gas requirement of function ALPHAS. TransferEx is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 479:4:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend
on storage values, have to be used carefully. Due to the block gas limit, transactions
can only consume a certain amount of gas. The number of iterations in a loop can
grow beyond the block gas limit which can cause the complete contract to be stalled
at a certain point. Additionally, using unbounded loops incurs in a lot of avoidable
gas costs. Carefully test how many items at maximum you can pass to such

functions to make it successful.

more

Pos: 485:12:

Similar variable names:

ALPHAS. _transfer(address,address,uint256) : Variables have very similar names
"burnTax" and "buyTax". Note: Modifiers are currently not considered by this static

analysis.

Pos: 795:59:

No return:

IRouter01.getAmountsin(uint256,address[]): Defines a return type but never
explicitly returns a value.
Pos: 233:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or
a failing external component.

more

Pos: 739:8:

Data truncated:

Division of integer values yields an integer value again. That meanseg. 10/100=0
instead of 0.1 since the result is an integer again. This does not hold for division of
(only) literal values since those yield rational constants.

Pos: 819:15:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming
errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

Alphas.sol

Compiler version 0.8.19 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:46

Error message for require is too long

Pos: 9:88

Function name must be in mixedCase

Pos: 5:199

Contract has 28 states declarations but allowed no more than 15
Pos: 1:265

Constant name must be in capitalized SNAKE CASE
Pos: 5:267

Constant name must be in capitalized SNAKE CASE
Pos: 5:268

Constant name must be in capitalized SNAKE CASE
Pos: 5:269

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:330

Error message for require is too long

Pos: 9:419

Error message for require is too long

Pos: 9:420

Error message for require 1is too long

Pos: 9:444

Error message for require is too long

Pos: 9:446

Error message for require is too long

Pos: 9:464

Function name must be in mixedCase

Pos: 5:478

Error message for require is too long

Pos: 17:486

Error message for require is too long

Pos: 9:499

Error message for require is too long

Pos: 9:515

Error message for require is too long

Pos: 9:520

Error message for require is too long

Pos: 9:525

Error message require is too long

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pos: 9:530

Error message

Pos: 9:54¢6

Error message

Pos: 9:551

Error message

Pos: 9:557

Error message

Pos: 9:563

Error message

Pos: 9:569
Avoid making
Pos: 33:585
Avoid making
Pos: 16:587
Avoid making
Pos: 21:592
Avoid making
Pos: 65:592
Avoid making
Pos: 21:597
Avoid making
Pos: 66:597
Avoid making
Pos: 21:601
Avoid making
Pos: 66:601
Avoid making
Pos: 21:605
Avoid making
Pos: 67:605
Avoid making
Pos: 17:615
Avoid making
Pos: 37:624
Avoid making
Pos: 16:626
Avoid making
Pos: 21:631
Avoid making
Pos: 66:631
Avoid making
Pos: 21:636
Avoid making
Pos: 66:636
Avoid making
Pos: 17:646

for require
for require
for require
for require

for require

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

too long

too long

too long

is too long

is too long

decisions in your

decisions in your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions your

decisions in your

Error message for require is too long

Pos: 9:658

Avoid making time-based decisions in your

Pos: 13:690

Avoid making time-based decisions in your

Pos: 13:732

Error message for require is too long

Pos: 9:737

Error message

Pos: 9:738

Error message

Pos: 9:739

for require is too long

for require is too long

business

business

business

business

business

business

business

business

business

business

business

business

business

business

business

business

business

business

business

business

This is a private and confidential document. No part of this document should

be disclosed to third party without prior written permi

Email: audit@EtherAuthority.io

ion of EtherAuthority.

Avoid making time-based decisions in your business logic

Pos: 30:744
Error message for require is too long
Pos: 21:791

Error meusdge for require is too lonc

empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

