
Project: Secure Stash Token
Platform: Binance Smart Chain
Website: https://securestash.in
Language: Solidity
Date: October 14th, 2023

https://securestash.in

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Secure Stash team to perform the Security audit of
the Secure Stash Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on October 14th, 2023 .

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Secure Stash (SST) is a BEP-20 token on Binance Smart Chain, used as collateral

for Collateralized Low Volatile Tokens (C.L.V.T.), a low-volatile token

● The Secure Stash contract inherits ERC20, Ownable, ReentrancyGuard standard

smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Secure Stash Token Smart Contract

Platform BSC

File SecureStash.sol

Github commit hash 1b3499cc7410645b2edd5ec61dc8e8985b7d6202

Updated Github commit hash d3b6e5ce2a5bff69fc7756b96fc0ad65c5e47dfb

Deployed Smart Contract 0x7D09efbf003682BA0FDd9EA59c22abF9E34328bd

Audit Date October 14th, 2023

Revised Audit Date October 17th, 2023

Contract Deployment Date October 18th, 2023

https://github.com/SecureStash/contract/blob/main/Token%20Contract/Secure%20Stash%20Token
https://bscscan.com/address/0x7D09efbf003682BA0FDd9EA59c22abF9E34328bd#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Secure Stash

● Symbol: SST

● Decimals: 18

● Maximum Supply: 100 million SST tokens

● 0.5% tax applied only on DEX trades.

● Tokens Release: 30 days

YES, This is valid.

Allocation:
● Early Bird: 2.5%

● Private Sale: 17.5%

● Public Sale: 10%

● Volatile Control: 50%

● Exchange Listing: 10%

● Ecosystem Development: 5%

● Team: 4%

● Reserves: 1%

YES, This is valid.

Other Specifications:
● Tokens sold will receive an initial 4% allocation

during the Token Generation Event (TGE).

● The remaining tokens will be vested over a

48-month period and distributed periodically.

● Similarly, other allocations will also begin with a

4% initial distribution, followed by monthly

vesting for 48 months.

● This means that out of 48 million SST tokens, up

to 1 million tokens will be released each month

over the course of 48 months from the

commencement date.

YES, This is valid.

● New tokens, even though minted by the owner,

are sent directly to the ecosystem wallet and not

the owner's wallet.

Ownership control:
● Activate a sale.

● Allocate tokens for sale.

● Stop sale.

● Add/Remove address is whitelisted.

● Set the tax rates.

● Add/Remove a DEX address.

● Mint a new token.

● Withdraw other vested tokens.

● Update fund allocation address.

● Locked allocation address.

YES, This is valid.

Audit Summary

According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make
them fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and 2 very low level issues.
We confirm that all issues are fixed in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0.5%

Sell Tax 0.5%

Can Buy Passed

Can Sell Passed

Max Tax Passed

Modify Tax Passed

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? Not Detected

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Whitelist? Passed

Whitelist Check Passed

Can Mint? Passed

Is it Proxy? Not Detected

Can Take Ownership? Passed

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Secure Stash Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Secure Stash Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Secure Stash Token smart contract code in the form of a github web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official project URL: https://securestash.in which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://github.com/
https://securestash.in

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed Fixed
2 onlyWhenSaleActive modifier Passed No Issue
3 onlyWhitelisted modifier Passed No Issue
4 activateSale write access only Owner No Issue
5 allocateTokensForSale write access only Owner Fixed
6 stopSale external access only Owner No Issue
7 addToWhitelist external access only Owner No Issue
8 removeFromWhitelist external access only Owner No Issue
9 setTaxRates external access only Owner No Issue
10 addDex write access only Owner No Issue
11 removeDex write access only Owner No Issue
12 _updateCirculatingSupply write Passed No Issue
13 transfer write Passed No Issue
14 lockAllocationAddress write access only Owner No Issue
15 updateFundAllocationAddress write access only Owner Fixed
16 mint write access only Owner No Issue
17 burn write Passed No Issue
18 _updateUserSale internal Passed No Issue
19 buySale write access only When

Sale Active
No Issue

20 withdrawSaleVestedTokens write Passed No Issue
21 withdrawOtherVestedTokens write access only Owner No Issue
22 getOtherAllocationTypeAddress read Passed No Issue
23 getOtherAllocationTypeBalances read Passed No Issue
24 getTotalSupply read Passed No Issue
25 getCirculatingSupply read Passed No Issue
26 getTotalBurns read Passed No Issue
27 onlyOwner modifier Passed No Issue
28 owner read Passed No Issue
29 _checkOwner internal Passed No Issue
30 renounceOwnership write access only Owner No Issue
31 transferOwnership write access only Owner No Issue
32 _transferOwnership internal Passed No Issue
33 totalSupply read Passed No Issue
34 balanceOf read Passed No Issue
35 name read Passed No Issue
36 symbol read Passed No Issue
37 decimals read Passed No Issue
38 transfer write Passed No Issue
39 allowance read Passed No Issue
40 approve write Passed No Issue
41 transferFrom write Passed No Issue

42 _transfer internal Passed No Issue
43 _update internal Passed No Issue
44 _mint internal Passed No Issue
45 _burn internal Passed No Issue
46 _approve internal Passed No Issue
47 _approve internal Passed No Issue
48 _spendAllowance internal Passed No Issue
49 nonReentrant modifier Passed No Issue
50 _nonReentrantBefore write Passed No Issue
51 _nonReentrantAfter write Passed No Issue
52 _reentrancyGuardEntered internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) The last withdrawal time:

In the constructor, lastWithdrawal time is already set with launchTime. In the

withdrawOtherVestedTokens function, if a condition is applied to check

lastWithdrawal[address(this)] time, which is not required.

Resolution: We advise removing the if condition (lastWithdrawal[address(this)] == 0) from

the withdrawOtherVestedTokens function.

Status: Fixed

Very Low / Informational / Best practices:

(1) Compilation Error:

No arguments passed to the base constructor. Specify the arguments or mark

"SecureStash" as abstract.

Latest version of the Ownable contract from OpenZeppelin needs a param for initialization.

Resolution: We advise to check the latest OpenZeppelin’s ownable contract and supply

owner parameter for initialization.

Status: Fixed

(2) Critical operation lacks event log:

There are some events which need to be logged.

Events are:

1. updateFundAllocationAddress

2. allocateTokensForSale

Resolution:We suggest adding proper logs for the listed events.

Status: Fixed

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

SecureStash.sol

● activateSale: Activate a sale by the owner.

● allocateTokensForSale: Allocate tokens for sale by the owner.

● stopSale: Stop sale by the owner.

● addToWhitelist: The address is whitelisted by the owner.

● removeFromWhitelist: Remove address from whitelist by the owner.

● setTaxRates: Tax rates can be set by the owner.

● addDex: Add a DEX address provided by the owner.

● removeDex: Remove a DEX address from the owner.

● lockAllocationAddress: An allocation address can be locked by the owner.

● updateFundAllocationAddress: The fund allocation address can be updated by the

owner.

● mint: Mint a new token by the owner.

● withdrawOtherVestedTokens: Withdraw other vested tokens by the owner.

Ownable.sol

● renounceOwnership: Leaves the contract without owner. It will not be possible to

call `onlyOwner` functions that can only be called by the current owner.

● transferOwnership: Transfers ownership of the contract to a new account can only

be called by the current owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github web link. And we have used all

possible tests based on given objects as files. We had observed 1 low and 2 informational

issues in the smart contract. We confirm that all issues are fixed in the revised smart

contract code. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://github.com/

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Secure Stash Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> SecureStash.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

SecureStash.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

SecureStash.sol

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:44
global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:45
global import of path
@openzeppelin/contracts/security/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:46
global import of path @openzeppelin/contracts/access/Ownable.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:47
Contract has 20 states declarations but allowed no more than 15
Pos: 1:49
Explicitly mark visibility of state
Pos: 5:50
Explicitly mark visibility of state
Pos: 5:52
Explicitly mark visibility of state
Pos: 5:54
Explicitly mark visibility of state
Pos: 5:56
Variable name must be in mixedCase
Pos: 5:57
Explicitly mark visibility of state
Pos: 5:58
Explicitly mark visibility of state
Pos: 5:59
Explicitly mark visibility of state
Pos: 5:60
Explicitly mark visibility of state
Pos: 5:61
Constant name must be in capitalized SNAKE_CASE
Pos: 5:63
Constant name must be in capitalized SNAKE_CASE
Pos: 5:64
Constant name must be in capitalized SNAKE_CASE
Pos: 5:65
Constant name must be in capitalized SNAKE_CASE

Pos: 5:66
Constant name must be in capitalized SNAKE_CASE
Pos: 5:67
Constant name must be in capitalized SNAKE_CASE
Pos: 5:68
Explicitly mark visibility of state
Pos: 5:69
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:118
Avoid making time-based decisions in your business logic
Pos: 23:121
Error message for require is too long
Pos: 9:155
Error message for require is too long
Pos: 9:157
Avoid making time-based decisions in your business logic
Pos: 38:165
Error message for require is too long
Pos: 9:177
Error message for require is too long
Pos: 9:238
Error message for require is too long
Pos: 9:239
Error message for require is too long
Pos: 13:306
Error message for require is too long
Pos: 9:310
Avoid making time-based decisions in your business logic
Pos: 31:332
Error message for require is too long
Pos: 9:339
Error message for require is too long
Pos: 13:356
Error message for require is too long
Pos: 9:364
Error message for require is too long
Pos: 9:365
Error message for require is too long
Pos: 9:366
Avoid making time-based decisions in your business logic
Pos: 31:377
Error message for require is too long
Pos: 9:387
Error message for require is too long
Pos: 13:402
Error message for require is too long
Pos: 13:404
Variable name must be in mixedCase
Pos: 67:416
Variable name must be in mixedCase
Pos: 92:416
Variable name must be in mixedCase
Pos: 117:416
Variable name must be in mixedCase
Pos: 147:416
Variable name must be in mixedCase
Pos: 161:416
Variable name must be in mixedCase

Pos: 68:425
Variable name must be in mixedCase
Pos: 93:425
Variable name must be in mixedCase
Pos: 118:425
Variable name must be in mixedCase
Pos: 148:425
Variable name must be in mixedCase
Pos: 162:425

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

