
Project: Selfient
Platform: Polygon
Language: Solidity
Date: August 26th, 2023

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Claimed Smart Contract Features …………………………………………………………….. .6

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… .9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 15

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 34

● Solhint Linter …………………………………………………………………….……….. 40

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Selfient team to perform the Security audit of the
Selfient smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on August 26th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Selfient is a contract that can be divided into multiples, each with unique

functionalities:

○ LinearAgreement: The Smart Employment Agreement is being

implemented for linear agreements.

○ MilestoneAgreement: The Smart Employment Agreement is being

implemented for milestone agreements.

○ MockUSDC: The Smart contract is used for minting tokens.

○ SelfientAdmin: The Smart contract performs administrative functions for

manager contract functionality, including allowing ERC20 payment tokens

listing, registering SEA contracts, and distributing fees.

○ SelfientManager: The Smart contract is utilized for managing agreement

creation, funding, withdrawals, and funds distribution.

● The smart contracts have functions like deposit and withdraw funds, update

agreements, mint, burn, etc.

Audit scope

Name Code Review and Security Analysis Report for
Selfient Smart Contracts

Platform Polygon / Solidity

File 1 LinearAgreement.sol

File 1 MD5 Hash 11AF972143B0036584DC0D3B412E03D6

File 2 MilestoneAgreement.sol

File 2 MD5 Hash 2CB691864059F695092A30F506C3CA1D

File 3 MockUSDC.sol

File 3 MD5 Hash B80F9FBFB1CD9C95A35B9294DDDAB6E3

File 4 SelfientAdmin.sol

File 4 MD5 Hash 3064DE859D2CA46C3A37B1069329535A

File 5 SelfientManager.sol

File 5 MD5 Hash 3CBDACC49A4C50C32E5A05A35C2612F2

Audit Date August 26th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 LinearAgreement.sol
The Selfient Manager has control over the following
functions:

● Create a new and terminated agreement.

● Deposit funds.

● Withdraw funds.

Other Specifications:
● Implementation of the Smart Employment

Agreement for linear agreements.

● Initial deposits are made by the hirer and can be

withdrawn by the talent in linear increments based

on the time passed since the beginning of the

agreement.

YES, This is valid.

File 2 MilestoneAgreement.sol
The Selfient Manager has control over the following
functions:

● Create a new and terminated agreement.

● Deposit funds.

● Withdraw funds.

Other Specifications:
● Implementation of the Smart Employment

Agreement for milestone agreements.

● Milestones are initially defined by the hirer, with

funds deposited per milestone,and can be

withdrawn by the talent on a per-milestone basis.

YES, This is valid.

File 3 MockUSDC.sol

● Name: MockUSDC

● Symbol: MUSDC

YES, This is valid.

● Decimals: 6

● Total Supply: 40 Quadrillion

File 4 SelfientAdmin.sol
The Selfient Manager has control over the following
functions:

● Set the token address.

● Set the revoke token address.

● Set the agreement fees.

● Set the fee wallet address.

● Set the Hirer Agreement Fee address.

Other Specifications:
● Performs administrative functions to facilitate the

manager contract functionality including allowlisting

ERC20 payment tokens, registering SEA contracts,

and distributing fees

YES, This is valid.

File 5 SelfientManager.sol
The Selfient Manager has control over the following
functions:

● Set the Grants `role` to `account`.

● Revokes `role` from `account`.

Other Specifications:

● The Smart contract is utilized for managing

agreement creation, funding, withdrawals, and

funds distribution.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 1 very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Selfient are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties / methods can be reused many times by

other contracts in the Selfient Protocol.

The Selfient team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Selfient smart contract code in the form of a file. The hash of that code is

mentioned above in the table.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview
LinearAgreement.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 createAgreement external access only Role No Issue
3 terminateAgreement external access only Role No Issue
4 depositFunds external access only Role No Issue
5 withdrawFunds external access only Role No Issue
6 agreementStatus external Passed No Issue
7 claimableValue read Passed No Issue
8 getTrimmedAgreementFields external Passed No Issue
9 earlyWithdrawFunds external access only Role No Issue
10 transferFunds internal Passed No Issue
11 withdrawFundsInternal internal Passed No Issue
12 onlyRole modifier Passed No Issue
13 supportsInterface read Passed No Issue
14 hasRole read Passed No Issue
15 _checkRole internal Passed No Issue
16 _checkRole internal Passed No Issue
17 getRoleAdmin read Passed No Issue
18 grantRole write access only Role No Issue
19 revokeRole write access only Role No Issue
20 renounceRole write Passed No Issue
21 _setRoleAdmin internal Passed No Issue
22 _grantRole internal Passed No Issue
23 _revokeRole internal Passed No Issue

MilestoneAgreement.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 createAgreement external access only Role No Issue
3 depositFunds external access only Role No Issue
4 claimableValue read Passed No Issue
5 withdrawFunds write access only Role No Issue
6 withdrawFundsInternal internal Passed No Issue
7 terminateAgreement write Passed No Issue
8 agreementStatus external Passed No Issue
9 earlyWithdrawFunds external access only Role No Issue
10 getTrimmedAgreementFields external Passed No Issue
11 transferFunds internal Passed No Issue
12 recreateMessage internal Passed No Issue

13 verifySignature internal Passed No Issue
14 isAgreementTerminated internal Passed No Issue
15 computeMerkleRoot internal Passed No Issue
16 hashMilestone internal Passed No Issue
17 _hashPair write Passed No Issue
18 _efficientHash write Passed No Issue
19 onlyRole write Passed No Issue
20 supportsInterface read Passed No Issue
21 hasRole read Passed No Issue
22 _checkRole internal Passed No Issue
23 _checkRole internal Passed No Issue
24 getRoleAdmin read Passed No Issue
25 grantRole write access only Role No Issue
26 revokeRole write access only Role No Issue
27 renounceRole write Passed No Issue
28 _setRoleAdmin internal Passed No Issue
29 _grantRole internal Passed No Issue
30 _revokeRole internal Passed No Issue

MockUSDC.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 mint write Passed No Issue
3 name read Passed No Issue
4 symbol read Passed No Issue
5 decimals read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 _transfer internal Passed No Issue
15 _update internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _approve internal Passed No Issue
20 _spendAllowance internal Passed No Issue
21 burn write Passed No Issue
22 burnFrom write Passed No Issue
23 onlyOwner modifier Passed No Issue
24 owner read Passed No Issue

25 _checkOwner internal Passed No Issue
26 renounceOwnership write access only

Owner
No Issue

27 transferOwnership write access only
Owner

No Issue

28 _transferOwnership internal Passed No Issue

SelfientAdmin.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 allowToken external access only Role No Issue
3 revokeToken external access only Role No Issue
4 validateToken read Passed No Issue
5 registerSEA external access only Role No Issue
6 setAgreementFee external access only Role No Issue
7 setFeewallet external access only Role No Issue
8 setHirerAgreementFee external access only Role No Issue
9 distributeAgreementFee internal Passed No Issue
10 onlyRole write Passed No Issue
11 supportsInterface read Passed No Issue
12 hasRole read Passed No Issue
13 _checkRole internal Passed No Issue
14 _checkRole internal Passed No Issue
15 getRoleAdmin read Passed No Issue
16 grantRole write access only Role No Issue
17 revokeRole write access only Role No Issue
18 renounceRole write Passed No Issue
19 _setRoleAdmin internal Passed No Issue
20 _grantRole internal Passed No Issue
21 _revokeRole internal Passed No Issue

SelfientManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getAgreement external Passed No Issue
3 createAgreement external Passed No Issue
4 depositFunds external Passed No Issue
5 earlyWithdrawFunds external Passed No Issue
6 withdrawFunds external Passed No Issue
7 terminateAgreement external Passed No Issue
8 transferFunds internal Passed No Issue
9 verifySignature internal Passed No Issue

10 recreateMessage internal Passed No Issue
11 _incrementAgreementCounter internal Passed No Issue
12 _getAgreementContract internal Passed No Issue
13 _retrieveAgreement internal Passed No Issue
14 allowToken external access only Role No Issue
15 revokeToken external access only Role No Issue
16 validateToken read Passed No Issue
17 registerSEA external access only Role No Issue
18 setAgreementFee external access only Role No Issue
19 setFeewallet external access only Role No Issue
20 setHirerAgreementFee external access only Role No Issue
21 distributeAgreementFee internal Passed No Issue
22 onlyRole write Passed No Issue
23 supportsInterface read Passed No Issue
24 hasRole read Passed No Issue
25 _checkRole internal Passed No Issue
26 _checkRole internal Passed No Issue
27 getRoleAdmin read Passed No Issue
28 grantRole write access only Role No Issue
29 revokeRole write access only Role No Issue
30 renounceRole write Passed No Issue
31 _setRoleAdmin internal Passed No Issue
32 _grantRole internal Passed No Issue
33 _revokeRole internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) Unused constant and import SelfientManager.sol
Constant variable:

The SELFIENT_MANAGER constant is defined but never used.

import:

The ISelfientAdmin interface is imported but never used.

Resolution:We suggest If not needed, please remove it.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

LinearAgreement.sol
● createAgreement: Selfient Manager can create a new agreement.

● terminateAgreement: Selfient Manager can terminate agreement.

● depositFunds: Selfient Managers can deposit funds.

● withdrawFunds: Selfient Managers can withdraw funds.

● earlyWithdrawFunds: Selfient Managers can early withdraw funds.

MilestoneAgreement.sol
● createAgreement: Selfient Manager can create a new agreement.

● depositFunds: Selfient Managers can deposit funds.

● withdrawFunds: Selfient Managers can withdraw funds.

● terminateAgreement: Selfient Manager can terminate agreement.

● earlyWithdrawFunds: Selfient Managers can early withdraw funds.

SelfientAdmin.sol
● allowToken: Selfient admin can set token address.

● revokeToken: Selfient admin can set revoke token address.

● registerSEA: Selfient admin can register SEA address.

● setAgreementFee: Agreement fee can be set by the Selfient admin.

● setFeewallet: Fee wallet address can be set by the Selfient admin.

● setHirerAgreementFee: Hirer Agreement Fee address can be set by the Selfient

admin.

AccessControl.sol
● grantRole: Grants `role` to `account` can be set by the owner.

● revokeRole: Revokes `role` from `account` by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed 1 Informational severity issue in the

smart contracts. but that is not a critical one. So, the smart contracts are ready for the
mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Selfient Protocol

LinearAgreement Diagram

MilestoneAgreement Diagram

MockUSDC Diagram

SelfientAdmin Diagram

SelfientManager Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> LinearAgreement.sol

Slither log >> MilestoneAgreement.sol

Slither log >> MockUSDC.sol

Slither log >> SelfientAdmin.sol

Slither log >> SelfientManager.sol

Solidity Static Analysis

LinearAgreement.sol

MilestoneAgreement.sol

MockUSDC.sol

SelfientAdmin.sol

SelfientManager.sol

Solhint Linter

LinearAgreement.sol

Compiler version 0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:13
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:14
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:15
global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:16
global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:18
global import of path SelfientLibrary.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:19
global import of path SelfientManager.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:21
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:52
Avoid making time-based decisions in your business logic
Pos: 7:82
Avoid making time-based decisions in your business logic
Pos: 9:163
Avoid making time-based decisions in your business logic
Pos: 41:163
Avoid making time-based decisions in your business logic
Pos: 7:184
Avoid making time-based decisions in your business logic
Pos: 7:185
Avoid making time-based decisions in your business logic
Pos: 11:193
Avoid making time-based decisions in your business logic

Pos: 16:196
Avoid making time-based decisions in your business logic
Pos: 9:199
Avoid making time-based decisions in your business logic
Pos: 14:203
Avoid making time-based decisions in your business logic
Pos: 42:261

MilestoneAgreement.sol

Compiler version 0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:13
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:14
global import of path @openzeppelin/contracts/utils/Address.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:15
global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:16
global import of path
@openzeppelin/contracts/utils/cryptography/ECDSA.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:17
global import of path
@openzeppelin/contracts/utils/cryptography/MerkleProof.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:18
global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:20
global import of path SelfientLibrary.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:21
global import of path SelfientManager.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:22
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 3:57
Avoid making time-based decisions in your business logic
Pos: 25:106
Avoid making time-based decisions in your business logic
Pos: 42:182
Avoid making time-based decisions in your business logic
Pos: 9:198
Avoid making time-based decisions in your business logic
Pos: 9:254
Avoid making time-based decisions in your business logic
Pos: 41:254
Avoid making time-based decisions in your business logic
Pos: 9:281
Avoid making time-based decisions in your business logic
Pos: 41:281
Avoid making time-based decisions in your business logic
Pos: 9:285
Avoid making time-based decisions in your business logic
Pos: 7:415
Avoid making time-based decisions in your business logic
Pos: 7:416
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 5:493

MockUSDC.sol

Compiler version 0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:13
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:14
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:15
global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:16
global import of path
@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:17
global import of path @openzeppelin/contracts/access/Ownable.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)

Pos: 1:18
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:21

SelfientAdmin.sol

Compiler version 0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:13
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:14
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:15
global import of path @openzeppelin/contracts/utils/Address.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:16
global import of path ISelfientAdmin.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:18
global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:19
global import of path SelfientLibrary.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:20
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:54

SelfientManager.sol

Compiler version 0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.

Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:13
global import of path @openzeppelin/contracts/utils/Address.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:14
global import of path
@openzeppelin/contracts/utils/cryptography/ECDSA.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:15
global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:17
global import of path ISelfientManager.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:18
global import of path ISelfientAdmin.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:19
global import of path SelfientAdmin.sol is not allowed. Specify names
to import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:21
global import of path LinearAgreement.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:22
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:46

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

