@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Selfient
Platform: Polygon
Language: Solidity
DEICK August 26th, 2023

Table of contents

(oo 13 o (o o 4
Project BaCKgroUNG ... e 4
AUAIE S0P . e 5
Claimed Smart Contract Featureso e .6
AUAIt SUMMIAIY .ottt 8
Technical QUICK SEats ..o 9
Code QUAIIRY ... e 10
DOoCUMENTAtION ... e 10
L LT o) D= o= o [T o [10
ASIS OVEIVIEW ..o e 11
Severity DefinitioNS ... 15
AUIt FINAINGS .. e 16
@7 0] o T3 1017 o 19
(@ 0] 1Y/ =1 1 T To [o] 0T) 20
DISCIAIMEIS ... 22
Appendix
® Code FIOW Diagram ... 23
o Shther RESUIS LOG .. .uuiiii e 28
e Solidity staticanalysis ..o, 34
® SOININt LiNter .o e 40

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Selfient team to perform the Security audit of the
Selfient smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on August 26th, 2023.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Selfient is a contract that can be divided into multiples, each with unique

functionalities:

@)

LinearAgreement: The Smart Employment Agreement is being
implemented for linear agreements.

MilestoneAgreement: The Smart Employment Agreement is being
implemented for milestone agreements.

MockUSDC: The Smart contract is used for minting tokens.

SelfientAdmin: The Smart contract performs administrative functions for
manager contract functionality, including allowing ERC20 payment tokens
listing, registering SEA contracts, and distributing fees.

SelfientManager: The Smart contract is utilized for managing agreement

creation, funding, withdrawals, and funds distribution.

e The smart contracts have functions like deposit and withdraw funds, update

agreements, mint, burn, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Selfient Smart Contracts

Platform Polygon / Solidity

File 1 LinearAgreement.sol

File 1 MD5 Hash

11AF972143B0036584DC0D3B412E03D6

File 2

MilestoneAgreement.sol

File 2 MD5 Hash

2CB691864059F695092A30F506C3CA1D

File 3

MockUSDC.sol

File 3 MD5 Hash

B8OFOFBFB1CD9C95A35B9294DDDAB6GE3

File 4

SelfientAdmin.sol

File 4 MD5 Hash

3064DE859D2CA46C3A37B1069329535A

File 5

SelfientManager.sol

File 5 MD5 Hash

3CBDACC49A4C50C32E5A05A35C2612F2

Audit Date

August 26th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 LinearAgreement.sol

The Selfient Manager has control over the following

functions:
e Create a new and terminated agreement.

e Deposit funds.
e Withdraw funds.
Other Specifications:

e Implementation of the Smart Employment
Agreement for linear agreements.

e |[nitial deposits are made by the hirer and can be
withdrawn by the talent in linear increments based
on the time passed since the beginning of the

agreement.

YES, This is valid.

File 2 MilestoneAgreement.sol
The Selfient Manager has control over the following
functions:

e Create a new and terminated agreement.

e Deposit funds.

e Withdraw funds.

Other Specifications:

e Implementation of the Smart Employment
Agreement for milestone agreements.

e Milestones are initially defined by the hirer, with
funds deposited per milestone,and can be

withdrawn by the talent on a per-milestone basis.

YES, This is valid.

File 3 MockUSDC.sol

e Name: MockUSDC
e Symbol: MUSDC

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Decimals: 6
e Total Supply: 40 Quadrillion

File 4 SelfientAdmin.sol YES, This is valid.
The Selfient Manager has control over the following
functions:
e Set the token address.
e Set the revoke token address.
e Set the agreement fees.
e Set the fee wallet address.
e Set the Hirer Agreement Fee address.
Other Specifications:
e Performs administrative functions to facilitate the
manager contract functionality including allowlisting
ERC20 payment tokens, registering SEA contracts,

and distributing fees

File 5 SelfientManager.sol YES, This is valid.
The Selfient Manager has control over the following
functions:

e Set the Grants ‘role’ to "account’.

o Revokes ‘role’ from “account’.

Other Specifications:

e The Smart contract is utilized for managing
agreement creation, funding, withdrawals, and

funds distribution.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 1 very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code

Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Selfient are part of its logical algorithm. A library is a different type of smart
contract that contains reusable code. Once deployed on the blockchain (only once), it is
assigned a specific address and its properties / methods can be reused many times by

other contracts in the Selfient Protocol.

The Selfient team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Selfient smart contract code in the form of a file. The hash of that code is

mentioned above in the table.

As mentioned above, code parts are well commented on. And the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

LinearAgreement.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | createAgreement external | access only Role No Issue
3 | terminateAgreement external | access only Role No Issue
4 | depositFunds external | access only Role No Issue
5 | withdrawFunds external | access only Role No Issue
6 | agreementStatus external Passed No Issue
7 | claimableValue read Passed No Issue
8 [getTrimmedAgreementFields external Passed No Issue
9 [earlyWithdrawFunds external | access only Role No Issue
10 | transferFunds internal Passed No Issue
11 | withdrawFundslinternal internal Passed No Issue
12 | onlyRole modifier Passed No Issue
13 | supportsinterface read Passed No Issue
14 | hasRole read Passed No Issue
15 | checkRole internal Passed No Issue
16 | checkRole internal Passed No Issue
17 | getRoleAdmin read Passed No Issue
18 | grantRole write access only Role No Issue
19 | revokeRole write access only Role No Issue
20 | renounceRole write Passed No Issue
21 | setRoleAdmin internal Passed No Issue
22 | grantRole internal Passed No Issue
23 | revokeRole internal Passed No Issue

MilestoneAgreement.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | createAgreement external | access only Role No Issue
3 | depositFunds external | access only Role No Issue
4 | claimableValue read Passed No Issue
5 | withdrawFunds write access only Role No Issue
6 | withdrawFundsinternal internal Passed No Issue
7 | terminateAgreement write Passed No Issue
8 | agreementStatus external Passed No Issue
9 [earlyWithdrawFunds external | access only Role No Issue
10 | getTrimmedAgreementFields external Passed No Issue
11 | transferFunds internal Passed No Issue
12 | recreateMessage internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

13 | verifySignature internal Passed No Issue
14 | isAgreementTerminated internal Passed No Issue
15 | computeMerkleRoot internal Passed No Issue
16 | hashMilestone internal Passed No Issue
17 | hashPair write Passed No Issue
18 | efficientHash write Passed No Issue
19 | onlyRole write Passed No Issue
20 | supportsinterface read Passed No Issue
21 | hasRole read Passed No Issue
22 | checkRole internal Passed No Issue
23 | checkRole internal Passed No Issue
24 | getRoleAdmin read Passed No Issue
25 | grantRole write access only Role No Issue
26 | revokeRole write access only Role No Issue
27 | renounceRole write Passed No Issue
28 | setRoleAdmin internal Passed No Issue
29 | grantRole internal Passed No Issue
30 | revokeRole internal Passed No Issue
MockUSDC.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | mint write Passed No Issue
3 | name read Passed No Issue
4 | symbol read Passed No Issue
5 | decimals read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 | allowance read Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | transfer internal Passed No Issue
15 [update internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | approve internal Passed No Issue
20 | spendAllowance internal Passed No Issue
21 | burn write Passed No Issue
22 | burnFrom write Passed No Issue
23 | onlyOwner modifier Passed No Issue
24 | owner read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

25 | checkOwner internal Passed No Issue
26 | renounceOwnership write access only No Issue
Owner
27 | transferOwnership write access only No Issue
Owner

28 | transferOwnership internal Passed No Issue

SelfientAdmin.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | allowToken external | access only Role No Issue
3 | revokeToken external [access only Role No Issue
4 | validateToken read Passed No Issue
5 | registerSEA external | access only Role No Issue
6 | setAgreementFee external [access only Role No Issue
7 | setFeewallet external | access only Role No Issue
8 [setHirerAgreementFee external | access only Role No Issue
9 | distributeAgreementFee internal Passed No Issue
10 | onlyRole write Passed No Issue
11 | supportsinterface read Passed No Issue
12 | hasRole read Passed No Issue
13 | checkRole internal Passed No Issue
14 | checkRole internal Passed No Issue
15 | getRoleAdmin read Passed No Issue
16 | grantRole write access only Role No Issue
17 | revokeRole write access only Role No Issue
18 | renounceRole write Passed No Issue
19 | setRoleAdmin internal Passed No Issue
20 | grantRole internal Passed No Issue
21 | revokeRole internal Passed No Issue

SelfientManager.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getAgreement external Passed No Issue
3 | createAgreement external Passed No Issue
4 | depositFunds external Passed No Issue
5 | earlyWithdrawFunds external Passed No Issue
6 | withdrawFunds external Passed No Issue
7 | terminateAgreement external Passed No Issue
8 | transferFunds internal Passed No Issue
9 [verifySignature internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

10 | recreateMessage internal Passed No Issue
11 | incrementAgreementCounter internal Passed No Issue
12 | getAgreementContract internal Passed No Issue
13 | retrieveAgreement internal Passed No Issue
14 | allowToken external | access only Role No Issue
15 | revokeToken external | access only Role No Issue
16 | validateToken read Passed No Issue
17 | reqgisterSEA external | access only Role No Issue
18 | setAgreementFee external | access only Role No Issue
19 | setFeewallet external | access only Role No Issue
20 | setHirerAgreementFee external [access only Role No Issue
21 | distributeAgreementFee internal Passed No Issue
22 | onlyRole write Passed No Issue
23 | supportsinterface read Passed No Issue
24 | hasRole read Passed No Issue
25 | checkRole internal Passed No Issue
26 | checkRole internal Passed No Issue
27 | getRoleAdmin read Passed No Issue
28 | grantRole write access only Role No Issue
29 | revokeRole write access only Role No Issue
30 [renounceRole write Passed No Issue
31 | setRoleAdmin internal Passed No Issue
32 | grantRole internal Passed No Issue
33 | revokeRole internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) Unused constant and import SelfientManager.sol

Constant variable:
SelfientManager AccessControl, ISelfientManager, SelfientAdmin {
SafeERC20 IERC20;
ECDSA ;

SELFIENT_MANAGER = ("SELFIENT_MANAGER");

agreementCounter = 0;

agreementTypeById;

The SELFIENT_MANAGER constant is defined but never used.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

import:

SelfientManager AccessControl, ISelfientManager, SelfientAdmin {
SafeERC20 IERC20;

The ISelfientAdmin interface is imported but never used.

Resolution: We suggest If not needed, please remove it.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

LinearAgreement.sol

createAgreement: Selfient Manager can create a new agreement.
terminateAgreement: Selfient Manager can terminate agreement.
depositFunds: Selfient Managers can deposit funds.
withdrawFunds: Selfient Managers can withdraw funds.

earlyWithdrawFunds: Selfient Managers can early withdraw funds.

MilestoneAgreement.sol

createAgreement: Selfient Manager can create a new agreement.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

depositFunds: Selfient Managers can deposit funds.
withdrawFunds: Selfient Managers can withdraw funds.
terminateAgreement: Selfient Manager can terminate agreement.

earlyWithdrawFunds: Selfient Managers can early withdraw funds.

SelfientAdmin.sol

allowToken: Selfient admin can set token address.

revokeToken: Selfient admin can set revoke token address.

registerSEA: Selfient admin can register SEA address.

setAgreementFee: Agreement fee can be set by the Selfient admin.
setFeewallet: Fee wallet address can be set by the Selfient admin.
setHirerAgreementFee: Hirer Agreement Fee address can be set by the Selfient

admin.

AccessControl.sol

grantRole: Grants ‘role’ to "account™ can be set by the owner.

revokeRole: Revokes “role’ from “account’ by the owner.

Ownable.sol

renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests
based on given objects as files. We had observed 1 Informational severity issue in the
smart contracts. but that is not a critical one. So, the smart contracts are ready for the

mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Selfient Protocol

LinearAgreement Diagram

© SelfientManager

AccessControl
ISelfisntManager
SelfientAdmin

WSafeERC20 for IERC20
MECDSA for bytes32

© bytes32 SELFIENT_MANAGER

® Strings © UIt256 agreementCourter
O wint256=>intd agreementTypeByld

®59m”‘”"’a’/ O bytes16_SYMBOLS ERCT21Etrors
O U@ _ADDRESS_LENGTH © _constructor_()
© QcheckZeroAdd P TTT—
] Savigeeed

© QfoHexstring() © depostunds()
© earlyWithdrawFunds()
| @ withdrawFunds()

- © terminate Agreement()
s © transferFunds{)
A © QuerifySignature() N
© QrecreateMessage{)
. /| © _ncremertAgreementCounter() |, N
© Q_getAgreementContract(y N AN
© Q_retrieveAgreement()

/ .
! / “for bytes32 ™
/ y \

@ LinzarAgreement /’ / © SelfientAdmin \\
AccessControl N / ISelfientAdmin N
ISmartEmploymentAgreement / / AccessControl \
INSofeERC20 for JERC20 / / MSafeERC20 for IERC20 \ |
@sgya/w@m © bytes32 SELFIENT_MAMAGER i | O byles32 SELFIENT_ADMIN \} @ ISelfientianager
° seifierthianager ' | © Wint256 PERCENTAGE PRECISION F——
o © Uini256=>Agreement agreements ; O address fesWallet ECDSA
R X qﬁ bo , O Uint16 globalAgresmentFee eq)
X qs““’ 256 totalClaimed ' for IERG20 © address=>boal tokenAllowList e © createAgreement()
= q:‘“ 0 P re—) 0O UintoSB=>SmartEmploymentAreement agreementContracts . q"’) © depostFunds()
i) G ; O address=>HirerAgreementF es hirerFess EEE © earlyWithdrawFunds()
< Qumod() © createAgreemert() / I B Q_jhrowError() o et
< Qmin() ® terminate Agreement() | © _ construetor_() LU AE)
< Qsgr() © QgepositFunds() ! | © alowToken() Ol DR)
: Q 1) ! | © revokeToken() @ QagreementTypeByld()
© QagreementStatus() | © QualdateToken()
© QclamableValue() ! \ © registerSEA()
© QgefTrmmedAgreementFields() \ © setAgreementFee()
© QearlyiNihdrawFunds() | \ © sefFeewalet()
© transferFunds() ! \ © setHirerAgreementFee()
© withdrawFundsinternal() ! \ < distributeAgreementFee()
T ™ | \ ¥

| | .

| \ | ’
| \for IERC20 | “for IERC20
| \
| \ |
| \ |
| \ . © ERC20
| \ 1
| \ \ Context
| N | \ \ IERC20
| v] \ / IERC20Metadata
\ < [IERC20E
vt ! @ AccessControl N rrers
4 @ ISeffientadmin
[,‘;””'E’d ol O int256 _totalSupply
ercres © alowToken D strng _name
(@) sareercz0 Do O string _symbol
® createAgreement() . ’E‘I’:; T“ :”% o el
validateToken! __constructor_(
o temnstegreenent) mAderess for address O bytes3? DEFAULT ADMIN ROLE DT o=
o ;'f’lf;av‘:gu:;’so © safeTransfer() e © setAgreementFee() @ Qsymbol()
o ° © Qecimat
fe by o Sarempprone 5 oo o coamAetrest) 2 Qioasary
® agreementStatus() gsafelncreaseAllcwance() © QgetRoleAdmin() @ QPERCENTAGE_PRECISION() @ QhalanceOf()
O safeDecreaseAllowance{) O ° ;\glubalAgreamemFae() ° Icr:nsfer()
] 5 _calo) etumn() © Qeewalet)) © Qalowance()
: &fj’;g,mdo lelds() T Zrenuunceﬁufe() © QokenalowList) © approve()
e e — I o o © QagresmentContracts() o transferfrom()
| o m";‘ min() © QhirerFees() ® increaseAllowance()
| Oféiohe‘;ig | @ decreaseAtowance()
‘ _ () . © _transfer()
i / | © _update()
' \ < Zpint)
N \ A @ Zoum()
I \ @ _approve()
© _spendAllowanee()
T

| | y

| \ /

for address \

i | . |
@ Address @mccesscamrot L @fERCEDMe!adaia
© QjsContract() © ERC16S © Context
© sendValus() © QhasRole() JERC20
Rty © QgetRoleAdming IERC165 oa N e
© functionCallWithValue() g S oy © Qsupportsinterface{) © Q_msgData() @ Qsymbol()
revokeRole()

oq ¢ M © Qecimals()
& QerifyCallResutt() e Y

@ rerezo

@ IERC165 © QiotalSupply()
© QbalanceOf()

© transfer
@ Qsupportsinterface() ° qa\luwa{zvcﬁ()
© approve()

© transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o

(@) satenvain

@ seentibrary @) rercrztemars (@) 12rc1100Emors
Favazmormres | e e

@ vereronr

© Qadd()

© Q)

@) stings

< Querify()
°

O bytest6_SYMBOLS
O urts_ADDRESS_LENGTH

© Qostring)

© QoHexSiring()

© QprocessProof()

© QprocessProofCaldata()
© QmutProofverify()

© QmultProofVerifyCaldata()
© QprocesstitProof()

°

Q_hashpair()
= Qefficiertrash()

MilestoneAgreement Diagram

@ wiesonongemet

‘AccessControl

© untas:

© _constructor

© withdrawFunds

INSIfERG20 for [ERG20

© bytes32 SELFIENT MANAGER
© Seffeniianager ssifientiianager
© int256=>Agreement agreements

~bool ferminatedAgreements
© Unt25G=>UINt256 totalClaimedt

© createAgreemert()
© terninateAgreement(
© Qetepositrunds()

© ureanseement InSareERC20 for IERC20
‘AccessCantrol NECDSA for s3?
ISmarEmploymenAgreement R

© Selflertilanager seifientiianager

r_0) © QclamableValue{)

© withdrawFunds

© withdrawFundsinternal})
© terminate Agreemert()
S0 © Qagreemertstatus()

© carlynithdrawFunds()

°
© Qeiaimable Value()

© QgetTrimmedAgreementFielis()

gef
© QearlyNithdrawFunds()
© transferFunds()

© withdrawFundsiternal()

© Qrecreatellessage()
© QuerifySignature()
o

© QcomputelerkieRoot()
© Qnashiiestone()

B Q_hashPair()

B QefficiertHash()

for IERC20

‘forigRo20

@ setemanaze

‘AccessControl
ISeffienthtanager
Seffientacmin

mSafeERC20 for [ERC20
MECOSA for bytes3Z

© bytes32 SELFENT_MANAGER
© uint356 agreemenCounter
o 8 agreementTypeByld

© _constructor_0)
© Qgetagreement)
~ = | @ createagieementy

© depostunds()
© earyNncrawFuncs()
© wihcrawFunds()
© terminateAgreemert()
© transferfunds()

© Quecreatehiessage()

© _incrementagreementCounter()
© @ _getagreementCortract()

© QretrieveAgreemert()

(©) seifientagmin

ISelientadmin
AccessGontrol

© uint258 PERCH
© address fecallet

forIERC20 | © adar

nSafeER G20 for [ERC20

© bytes32 SELFENT_ADMIN

ENTAGE_PRECISION

© Uint16 globalAgreemertFee
ool tokenAlowList

© Unt256=>ISmartEmployment Agreement agreementContracts
o hirerFees,

© _constructor_()
© alowToken()

© revoleToken()

© QualdateToken()

© setrirerAgreementFes()

© distributeAgreementFee()

- for[ERC20 "~

(©) eron

© Qlamable\Value()

© earlyiihcrawFunds()
© agreementstatus()

© Qagreemerts()

@) sareerczo

mAddress for address

Context

IERC20
IERC20Metadata

O string _symbol

S o forbytess?

© recesscon

IERC20Error:

Gon
O U258 _totalSupply R
O string_name

© safeTransfer()
© safeTransferFrom()

© safeapprove(

© safeicreaseAllowance()
© safeDecreaseAlowance()
B _calOptionalRetun()

© QotalClsimed() /

, for address

/

@) adoress

@ erczaat

© QisCortract) rerc20
© sendValueQ)

© Qname()
© functionCall o)

© Qdecimals()

0
© funclionCallAhValue(
L

__constructor_()
© Qotalsupply()
© Qalanceoi()

© transferFrom()

© increaseAllowance()
© decreaseAllowance()
© transfer()

text
IAccess Control
c165

© bytes32 DEFAULT_ADIMN_ROLE

© Qsupportsinterface()
© QhasRole()
© Q_checkRole()

© ransfer()
© Qalowancs() © Q@etRoleAdnin()
© approve() © grartRole()

© _setRoleAdning
© ZoraniRole()
© TrevolkeRole()

| lfor bytesaz

@) isementranager
ISelrentAdmin

© Qgetagreemert(
© createAgreemert()

@ isetrenaamin

@) ecosa

© alowToken0)
© revokeToken()
© valteToken()
© registersEAD)

°

© QuryRecover()
© Qrecover()

B Q_throwError)

s
B3
2

© setFeewalet()
© setrirerAgreementFee()

© QPERCENTAGE_PRECISION)
© Qglobalagreemerree()

© Qreenalet()

© QokenallowList(y

© QagreementContracts()

© QhirerFees()

(@) 14ccesscontol|

@

ERC165

© Qnasole()

© conon
@ Q_msgSender()
© Q_msgData()

IERC165

© QgetRoleAdning

© Qsupportsiterface()

© grartRole()
© revokeRole()

@ rercee

© QotalSupply()
© Qdecimals()

© approve()
© transferFrom()

© renounceRole()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ sercr21€mors

@ rercr1ssemors

MockUSDC Diagram

(©) mockuspe

ERC20

(&) sareerc20

nAddress for address

ERC20Burnable

< safeTransfer()
< safeTransferFrom()

Ownable

@ mint()

@ _ constructor__()

7
Vi

.Y
N

< safelpprove()

< safelncreasefllowance()
< safeDecreaseAllowance()
m _callOptionalReturni)

for address
|
@ ' -
Safelath /
(@) strings | |(©)ercaoBumabie| | (B) Address

< Qadd()
< Qsubl) O bytes16 _SYMBOLS ! Context | < QisContract()
< aumuf) O uint8 _ADDRESS_LENGTH / ERC20 | < sendvalue()
Ko — | | < functionCall
& ém':ffo © QoString() [@ burn() | & f::ct:::c:ugmwﬁlue()
&) < QtoHexString() | @ burnFrom() \ .

Qmin() , | B _functionCallvith'/alue()
< Qegrt() | [|

1

@ C;wnable

Context

O address _owner

@ _ _constructor__()
@ Qowner()

< Q,_checkOwner()

@ renounceXwnership()
@ transferOwnership()

< _transferOwnership()

7
%
¥

©“ ERC20

Context

IERC20
IERC20Metadata
IERCZ0Errors

O uint256 _totalSupply
O string _name
O string _symbol

| & _transfer()

@ _ constructor__()
@ QotalSupply()

@ Qbalancedf()

@ transfer()

© Quallowance()

@ approvel)

@ transferFrom()

@ increaselllowancel)
@ decreasebllowance()

A9 _update()
I:’ & _mint()
;’: < _burn()
© _approve()
& _spendallowance() N
I;'r Ir 1 .‘.\\.
/ [| \
| | \
(@ 1erczonetadata
(ERC20 @ rerczoemors
@ Qname() .'I
@ Qeymbol() .'I
@ Qdecimals()

|
@) rercz0

@ Qsymbol()
@ Qname()

@ transfer()

@ approvel)

@ QiotalSupply()
@ Quecimals()

@ QgetOwner()
@ QbalanceOf()
@ Qallowance()

@ transferFrom()

@ AccessControl

Context
fAccessControl
ERC165

O bytes32 DEFAULT _ADMN_ROLE

@ Qsupportsinterface()
@ QhasRole()

< Q_checkRole()

@ QgetRoleAdming)

@ granmRole()

@ revokeRole()

@ renounceRole()

© _setRoleAdmin()

' _gramRole()

< _revokeRole()

| A\
@ Context

< Q_msgSender()
& Q_msgData()

!

@ IAccessControl|

@ QhasRole()

@ QgetRoleAdming)
@ grantRole()

@ revokeRole()

@ renounceRole)

\ II
(©) Erciss

IERC165

@ Qsupportsinterface()

(T IéRC‘FGﬁ

@ Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ SelfientLibrary

< QcheckZeroAddress()

@ IERC20

o QtotalSupply()
@ Qhbalancedf()
@ transfer()
@ Qallowance()
@ approvel()
@ transferFrom()

SelfientAdmin Diagram

(©) sefentaamin

@ ISmanEmploymentidgreement|

@ createAgresment()

@ terminate Agreemert()

@ depositFunds()

@ withdrawFunds()

© QclaimableValue()

@ earlyWithdrawFunds()

© agreementStatus()

© Qagreements()

© QgetTrimmedAgreementFields()
o QotalClaimed()

ISelfientAdmin
AccessControl

iNSafeERC20 for IERC20

bytes32 SELFIENT _ADMIN
uirt256 PERCENTAGE_PRECISION
address feeWVallet

uint1 & globalAgreementFee
address=>hool tokenAllowList

uim256=>ISmartEmploymentAgreement agreementContracts

address=>Hirer AgreementFee hirerFees

eeeee@eee®|COOOOOO

__constructor__()
allowToken()
revokeToken()
QualidateToken()
registerSEA()
setAgreementFee()
setFeewallet()
setHirerAgreementFee()
< distributeAgreementFee()
T

(@ 1setieniadmin

@ Strings

O bytes16 _SYMBOLS
O uintd _ADDRESS_LENGTH

> QtoStringl)
© QoHexString()

@ gllowToken()

@ revokeToken()

@ validateToken()

@ registerSEA()

@ setAgreementFee()

@ setFeewallet()

@ getHirerAgreementFee()
@ QPERCENTAGE_PRECISION()
@ QglobalAgreementFee()
o QeeWallet()

@ QiokenAllowlist{)

@ QuagresmentContracts()
@ QhirerFees()

nAddress for address &

for IERC20
1
1
1
| @ AccessControl
r.L; Context
s lAccessControl
(B) serecrc20 ERC1ED

bytes32 DEFAULT_ADMIN_ROLE

< safeTransfer()

< safeTransferFrom()

< safeApprove()

< safelncreaseAllowance()
< safeDecreaseAlowance()
B _callOptionalReturn()

© Qsupportsinterface()
@ QhasRole()

< a_checkRole()
@ QgetRoleAdmin()
@ grantRole()

© revokeRole()

@ renounceRole()
< _setRoleAdmin()
< _grantRole()

< _revokeRole()

Ifor address

";7

[

@ Address

@ lAccessControl

< QisContract()

< sendValue()

< functionCall()

© functionCallWithValue()
< A functionStaticCall()
< QuerifyCalResult()

© QhasRole()

© QgetRoleAdmin()
@ grantRole()

@ revokeRole()

@ renounceRole()

© Context

@ ERC165

< Q_msgSender()
& Q_msgData()

IERC165

© Qsupportsinterface()

@ IERC165

© Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

® SelfientLibrary

(@) erct155EN0rS
=

© Qeheck:)

© Qadd()
© Qusub()
© Amul()
© Queiv()

© Qmedf)
< amin()
< Qsart()

@ Sirings

O bytes16 _SYMBOLS
O uirt ADDRESS LENGTH

< QoString()
< QoHexString(y

SelfientManager Diagram

© LinearAgreement

AccessControl
ISmartEmploymeatAgreement

mnSafeERC20 for JERC20

O bytes32 SELFIENT _MANAGER

© Selfiertianager selfientiianager

O uint256==Agreement agreements

0 uint256=>hool terminated Agreements
O uint256=>Lint256 totalClaimed

© __constructor__()
© cresteAgreement()
o ten

© QdepositFunds()

© withcrawFunds()

© QagreementStatus()

© QclaimableValue(y

© QgetTrimmedAgreementFields()
© QearlyWithcrawFunds()

© transferFunds()

I for IERG20

© withdrawF undsinternal()

NV

© cresteAgreement()

© terminateAgreement()
@ depostFunds()

© withdrawFunds()

© QclaimableValug()

© earlyWithdrawFunds()
@ agreementStatus()

© Qagreements()

(@) sarecrca

anAddress for address

< safeTransfer()

< safeTransferFrom()

< safeApprove()

© safeincreaseAllowance()

@ SelfientManager

AccessCoatrof
ISelfientManager
SelfientAdmin

nSafeERC20 for JERC20
BECDSA for bytes3?

© bytes32 SELFIENT_MANAGER
© Uint256 agreementCounter
© Uint256=>intA agreementTypeByld

© _constructor_()
© QgetAgreement()
® createAgreement()
@ depositFunds()
© earlyWithdrawFunds{)
© withdrawFunds()
@ terminateAgreement()
 transferFunds()
< QuerifySignature()
© QrecreateMessage()
© _incrementAgreementCounter()
Q_getAgreementContract()
< Q_retrieveAgreement()
T T

(@) seifientacmin

ISelientAdmin
AccessContral

mSafeERC20 for [ERC20

© bytes32 SELFIENT _ADMIN

© UiNt256 PERCENTAGE_PRECISION
© address feeWallet

© uint16 globalAgreemertF ee

© address=sbool tokenAllowList

© uint256=>1SmartEmploymentAgreement agreementContracts

© address=-HirerAgresmeniFee hirerFees
© __constructor_()

© allowToken()

© revokeToken()

® QualicateToken()

© registerSEA()

@ setAgresmentFee()

© setfFeswallet()

© setHirerAgreemeniFee()

 distribute AgreementFe=()

S

N

Pel

@ ISelfientanager

‘ @) ecosa

ISelfientAdmin

© QgetAgresment()

“ Qrecover()
m Q_throwError()

‘ © QiryRecover()

© createAgresment(y
© depostrunds()

® earlyWithdrawFunds()
© withdrawFunds{)

’

’
__+for IERC20
—

(© Erew

Context

IERC20
IERG20Metadata
IERC20ETTors

O uint256 _totalSupply
O string _name
O string _symbol

@ __constructor__()
© QotalSupply()

© Qpalanceor()

® transfer()

® Qallowance()

< safeDs

@ Qget
@ QtotalClaimed()

elds()

’
, for address

,

B _calloptionalReturn()
7

® Address @tERC?DMeIadaIa
& QusContract() [ERE20
© sendValus()
© functionCall() o :namz()m
< functionCalMVithValue() ° q:vm o\
B _functionCallVitrvalue() —

® approve()
 transferFrom()
® increaseAlowance()
® decreaseAllowance()
& _iransfer()
@ _update()
< _mint()
& burn()
< _approve()
< _spendAllowance()
T

-+

© AccessControl

© terminateAgreement(y
© QagreementTypeByld()

@ ISelfientAdmin

Context
IAccessControl
ERG165 © alowToken()
© revokeToken()
© validateToken()
O bytes32 DEFAULT_ADMIN_ROLE © registerSEA()
I T E— © selAgreementFee;
© Qsupportsirterface() o5 e‘F:ewa" D 0
g &ha:R°L§)| & setHirerAgresmentFes()
._checkRole() © QPERCENTAGE_PRECISION()

© QgetRoleAdming)
© grantRole()

@ revokeRole()

© renounceRole()
© _setRoleAdmin()
< _grantRole()

@ QglobalAgreementFee()
© QfeeWallet()

© QuokenAllowList()

© QuagreemertContracts()
® QhirerFees()

© _revokeRole()

N @ a;ERCIO

© QotalSupply()
© Qcecimals()
© Qsymbol()

© Qname()

© QetOwner()
© QpalanceOf)
© transfer()

© Qallowance()
@ approve()

© transferFrom()

©® —

(©) tRetss

© Q_msgSender()

IERC165

© Q_msgData()

@ Qsupportsinterface()

@ IERC165

© Qsupportsintertace()

@ IAccessControl|

© QhasRole()

© QgetRoleAdmin{)
© grantRole()

® revokeRole()

@ renounceRole()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.
We did the analysis of the project altogether. Below are the results.

Slither log >> LinearAgreement.sol

SelfientAdmin 11 (Lin

Reference: ht

Reentra

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

version®.8.17 (LinearAgreement.sol#2) necessitates a version too recent to be trusted. Consider deploying with 0.6.12/0
8.16
.8.17 is not recommended for deployment)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Low level call in Address.sendvValue(address,uint256) (LinearAgreement.sol#2
{success) = recipient.call{value: amount}{) {LinearAgreement.sol#228)

Low level call in Address.function(allwithvalueiaddress,bytes,uintzEE,string) (LinearA
{success,returndata) = target.call{value: value}{data) (LinearAgreement.sol#
call in Address.functionsStaticCall{address,bytes,string) IL1n9a|Hg|anwnnt sol#2
{success,returndata) = target. statICCallldatal (LinearAgreement.sol#27

https://github.com/crytic/slither/wiki/Detector-Documentation#low- Ley

Parameter SelfientlLibrary.checkZeroAddress{address,string)._address (LinearAgreement.sol#18) is not in mixedCase

Function ISelfientAdmin.PERCENTAGE FRECICIDNi} {LinearAgreement.sol#178) is not in mixedCase

Parameter SelfientAdmin.allowToken(._tokenContract (LinearAgreement.sol#544) is not in mixedCase

Parameter SelfientAdmin.r eToken(j re]. tokenContract {LinearAgreement.sol#554) is not in mixedCase

Parameter SelfientAdmin idateToken(ess)._address (LinearAgreement.sol#563) is not in mixedCase

Parameter Selfientﬁdwin.registerSEA[address,uintsn. contractAddress (LinearAgreement.sol#578) is not in mixedCase

Parameter SelfientAdmin.registerSEA(address,uint8)._ contractId (LinearAgreement.sol#571) is not in mixedCase

Parameter SelfientAdmin.setAgreementFee{uintl6)._ fee {LinearAgreement.sol#583) is not in mixedCase

Parameter SelfientAdmin.setFeewallet({address). address (LinearAgreement.sol#592) is not in mixedCase

Parameter SelfientAdmin.setHirerAgreementFee{address,uintl16,bool)._ ajj|ass (LinearAgreement.sol#) is not in mixedCase
Parameter SelfientAdmin.setHirerAgreementFee({address,uint16,bool). (LinearA ement. #6 is not in mixedCase

Parameter SelfientAdmin.setHirerAgreementFee({address,uint16,bool)._ disabled {LinearAgreement. sol) is not in mixedCase
Parameter SelfientAdmin.distributeAgreementFee address,UIHtZ de)._hirer (LinearAgreement.sol#618) is not in mixedCase
Parameter SelfientAdmin.distributeAgreementFee(address,uint256,address)._agreementValue (LinearAgreement.sol#619) is not in mi
xedCase

;araweter SelfientAdmin.distributeAgreementFee(address,uint256,address)._tokenAddress (LinearAgreement.sol#620) is not in mixe
dCase

Parameter SelfientManager.getAgreement{uint256)._agreementId (LinearAgreement.sol#10831) is not in mixedCase

Parameter SelfientManager.createAgreement(ISmartEmploymentAgreement.NewAgreement,bytes). _agreement (LinearAgreement.sol#1045)
is not in mixedCase

Parameter SelfientManager.createAgreement(ISmartEmploymentAgreement.NewAgreement,bytes). data (LinearAgreement.sol#1846) is no
t in mixedCase

Parameter SelfientManager.withdrawFunds{uint256). agreementId (LinearAgreement.sol#1173) is not in mixedCase

Parameter SelfientManager tn|w1natAHg|AAWQHtIutnt;“fI. agreementId (LinearAgreement.sol#1188) is not in mixedCase

Parameter SelfientManager.transferfunds(address, address,uint2 ddress)._from (LinearAgreement.sol#12084) is not in mixedCase
Parameter Selfien .transferFunds(address,address,uint ddress)._to (LinearAgreement.sol#12 is not in mixedCase

Parameter CAITIAHtHanagar transferFundsiaddress,address,uintz.g,address}._awount {LinearAgreement.sol#1206) is not in mixedCas

e

Parameter SelfientManager.transferFunds{address,address,uint256,address)._tokenAddress (LinearAgreement.sol#12087) is not in mi

xedCase

Parameter SelfientManager.verifySignature{bytes32,bytes,address,string)._message {LinearAgreement.sol#1215) is not in mixedCas

e

Parameter SelfientManager.verifySignature(bytes32,bytes,address,string)._signature (LinearAgreement.sol#1216) is not in mixedC

ase

Parameter SelfientManager.verifySignature(bytes32,bytes,address,string)._signer (LinearAgreement.sol#1217) 1is not in mixedCase
Llnnaluglanwant CIQatﬁuglQQWQHTIUlhT;-_,ICWaITEWPleWQhTHgIeeWQHT NewAgreement ,bytes)._agreementId (LinearAgreement.
is not in mixedCase

Parameter LinearAgreement.createAgreement(uint256,IsmartEmploymentAgreement.NewAgreement,bytes)._agreement (LinearAgreement.so

1#1321) is not in mixedCase

Parameter LinearAgreewent.tA|wtnatAHg|AAWQHtIutnt;SC;. agreementId (LinearAgreement.sol#1352) is not in mixedCase

Parameter LinearAgreement.withdrawFunds{uint256). cementId (LinearAgreement. 531¢156°' is not in mixedCase

Parameter LinearAgreement.agreementStatus(uint256). agreementId (LinearAgreement.sol#1395) is not in mixedCase

Parameter LinearAgreement.claimablevalue(uint25 agreementId (LinearAgreement.sol#1417) is not in mixedCase

Parameter LinearAgreement.getT |1ww9jug|aawantF191jSIu1nt;. _agreementId (LinearAgreement.sol#1454) is not in mixedCase

Parameter LinearAgreement.transferFunds{address,uint256,)._to {LinearAgreement.sol#1473) is not in mixedCase

Parameter LinearAgreewent.transferFundsiaddress,uintz d)._amount (LinearAgreement.sol#1474) is not in mixedCase

Parameter LinearAgreement.transferFunds{address,uint2 a 255)._tokenAddress (LinearAgreement.sol#1475) is not in mixedCase

Parameter LinearAgreement.withdrawFundsInternal{uint256,bool)._agreementId (LinearAgreement.sol#1483) is not in mixedCase

Parameter LinearAgreement.withdrawFundsInternal{uint256,bool)._revertOnEmptyWithdrawalAmount (LinearAgreement.sol#1484) 1is not

in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Variable SelfientManager. gAtHg|anwantCDutractlu1n)._agreementContract (LinearAgreement.sol#1249) is too similar to Selfie
ntAdmin.agreementContracts (LinearAgreement.sol#52

Variable SelfientManager._retri nugleewantfuintA. g|eewantCDntract {LinearAgreement.sol#1264) is too similar to SelfientA
dmin.agreementContracts (LinearAgreement.sol#528-5

Variable LinearAgreement.SELFIENT_MANAGER (LinearAgreement.sol#1361) is too similar to LinearAgreement.constructor{address,add
ress)._selfientManager (LinearAgreement.sol#1311)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar

ERC208._name (LinearAgreement.sol#831) should be immutable
_symbal (Lir eement.sol#832) should be immutable
ence: https://github.com/crytic/slither/wiki/Detector-Documentation#state iables-that-could-be-declared- immutable
analyzed (23 contracts with 84 detectors), 182 result(s) found

SelfientAdmin.setFeewallet(address)._address IHllastonAHg|nawaut sol#1821) lacks a zero-check on

) - feewallet = _address (MilestoneAgreement.sol#10
Reference: https://github.com/crytic/slither/wiki/Detector- DDCUWthaTIDH«WISSIHQ zero-address-validation

Reentrancy in SelfientManager.createAgreement(ISmartEmploymentAgreement.NewAgreement,bytes) (MilestoneAgreement.sol#1222-1291)

External calls:
- depositAmount = agreementContract.createAgreement(newAgreementId, agreement, data) (MilestoneAgreement.sol#1273-1277

- distributeAgreementFee(_agreement.hirer,depositAmount,_agreement.currency) (MilestoneAgreement.sol#1279-1283)
- returndata = address(token).functionCall(data,SafeERC20: 10\—19 rel call failed) {MilestoneAgreement.sol#5
- (success,returndata) = target.call{value: weivalue}(data) (MilestoneAgr ement. sol#278)
- _token. Safn ransferFrom(_hirer,feewallet,fee) (MilestoneAgreement.sol#1
External calls sending eth:
- distributeAgreementFee(_agreement.hirer,depositAmount, agreement.currency) (MilestoneAgreement.sol#1279-
- (success,returndata) = target.call{value: \914a1ue}idata} (MilestoneAgreement.sol#278)
Event emitted after the call(s):
- FeeDistributed(fee) (MilestoneAgreement.sol#1069)
- distributeAgreementFee(_agreement.hirer,depositAmount, agreement.currency) (MilestoneAgreement.sol#1279-1283

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reentrancy in SelfientManager.depositFunds(uint256,ISmartEmploymentAgreement.Milestone,bytes) (MilestoneAgreement.sol#1293-
3):
External calls:
- agreementContract.depositFunds(_agreementId, milestone,_data) EMilestoneﬁgreewent.501*13@9)
- distributeAgreementFee(agreement.hirer,_milestone.amount,agreement.currency) (MilestoneAgreement.sol#1311-1315)
- returndata = address(token).functionCall(data,SafeERC20: low-level call failed) (MilestoneAgreement.sol#52
- {success,returndata) = target.call{value: weivalue}(data) {MilestoneAgreement.sol#278)
- _token.safeTransferFrom({_hirer,feeWallet,fee) (MilestoneAgreement.sol#1070)
External calls sending eth:
- distributeAgreementFee(agreement.hirer, milestone.amount,agreement.currency) (MilestoneAgr
- {success,returndata) = target.call{value: weiValue}(data) (MilestoneAgreement.sol#
Event emitted after the call(s):
- FeeDistributed{fee) {MilestoneAgreement.sol#1069)
- distributeAgreementFee(agreement.hirer, milestone.amount,agreement.currency) (MilestoneAgreement.sol#1311-13

ree
F27

ent.sol#1311-1315)

m
8)

15)
Reentrancy in MilestoneAgreement.depos itFunds({uint256,ISmartEmploymentAgreement.Milestone,bytes) (MilestoneAgreement.sol#1689-
1731):
External calls:
- withdrawFundsInternal(_agreementId,currentMilestene[_agreementId].amount) (MilestoneAgreement.sol#1716-1719)
- returndata = address(token). TunctlonCallldata,_ feERC20: low-level call failed) (MilestoneAgreement.sol#52
- _token.safeTransfer(_to,_amount) (MilestoneAgreement.sol#18
- {success,returndata) = target.call{value: weivValue}(data) IHllastonAHg|eewant sol#278)
External calls sending eth:
- withdrawFundsInternal(_agreementId,currentMilesteone[_agreementId].amount) (MilestoneAgreement.sol#1716-1719)
- {success,returndata) = target.call{value: weivalue}(data) {MilestoneAgreement.sol#278)
Event emitted after the call(s):
- FundsDeposited(_agreementId, milestone.amount) {MilestoneAgreement.sol#1738)
Reentrancy in LinearAgreement. tn|w1hatAHg|Aawantlu1nt45E; (MilestoneAgreement.sol#731-756):
External calls:
- withdrawFundsInternal(_agreementId,false) (MilestoneAgreement.sol#741)
- returndata = address(token).functionCall{data,SafeERC20: 10\—19 el call failed) (MilestoneAgreement.sol#52
- _token.safeTransfer{_to,_amount) (MilestoneAgreement.sol#353
- (success,returndata) = target.call{value: weivalue}{data) IHllastonAHg|eewant sol#27
External calls sending eth:
- withdrawFundsInternal({_agreementId,false) (MilestoneAgreement.sol#741)
- {success,returndata) = target.call{value: weivalue}(data) IHllastonAHg|eewant sol#278

Event emitted after the call(s):
- FundsWithdrawn{_agreementId,hirerFunds) (MilestoneAgreement.sol#749)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3

LinearAgreement. tﬂlnlnatﬂuglnﬂnﬂntIUIHT 56) (MilestoneAgreement.sol#731-756) uses timestamp for comparisons
ngerous comparisons:
- hirerFunds = @ [MilestoneAgreement.sol#748)
LinearAgreement. agleewantctatUSIu1nt4._, {MilestoneAgreement.sol#771-791) uses timestamp for comparisons
l\gerous comparisons:
- agreements[_agreementId].agreementId == 0 (MilestoneAgreement.sol#774)
- block.timestamp == startDate && block.timestamp < agreementEndDate (MilestoneAgreement.sol#786)
LinearAgreement.claimablevalue{uint256) (MilestoneAgreement.sol#793-826) uses timestamp for comparisons
Dangerous comparisons:
- agreements[_agreementId].agreementId == 0 (MilestoneAgreement.sol#7
- terminatedAgreements[_agreementId] || lastClaim == agreementEndDate
mp <= startDate {MilestoneAgreement.sol#804-807)
- lastClaim == @ (MilestoneAgreement.sol#814)
- block.timestamp == agreementEndDate (MilestoneAgreement. sol#Sl“n
- block. timestamp agreementEndDate (MilestoneAgreement.sol#321
LinearAgreement.withdrawFundsInternal{uint256,bool) iMilestDneHgleewent.solfSEE—S 7) uses timestamp for comparisons
Igerous comparisons:
thd LAmount = . _revertOnEmptyWithdraw leaunt (MilestoneAgreement.sol#862)
withdrawalAmount != @ (MilestoneAgreement.sol#8708
MilestoneAgreement . claimableva lue{uint256) IHllnstonnuglnnwnnt sol#1733-1748) uses timestamp for comparisons
Dangerous comparisons:
- agreements[_agreementId].agreementId == 8 (MilestoneAgreement.sol#1737)
- block.timestamp = milestoneEndDate (MilestoneAgreement.sol#1743)
MilestoneAgreement. t9|wtnatAHg|eewnntlu1nt‘SC; {MilestoneAgreement.sol#1779-1797) uses timestamp for comparisons
Dangerous comparisons:
- block.timestamp == startDate && block.timestamp < milestoneEndDate (MilestoneAgreement.sol#1792)
MilestoneAgreement.agreementStatus(uint256) (MilestoneAgreement.sol#1799-1826) uses timestamp for CDWDaIlSDHS
Dangerous comparisons:
- agreements[_agreementId].agreementId == @ {MilestoneAgreement.sol#1882)
- totalClaimed[_agreementId] == agreements[_agreementId].amount {MilestoneAgreement.sol#1809)
- block.timestamp == startDate && block.timestamp < milestoneEndDate (MilestoneAgreement.sol#1817)
- block.timestamp - milestoneEndDate == 86 (MilestoneAgreement.sol#1821)
MilestoneAgreement. isAgreementTerminated{uint256) (MilestoneAgreement.sol#1 1018) uses timestamp for comparisons

94)
|| block.timestamp <= lastClaim || block.timesta

MilestoneAgreement. 15Hg|anwant erminated(uint256) (MilestoneAgreement.sol#1 1918) uses timestamp for comparisons

Dangerous comparisons:

- block.timestamp > milestoneEndDate block.timestamp - milestoneEndDate > 864 {MilestoneAgreement.sol#1911-1912)
Reference: https://github.com/crytic/slither/w

Address.isContract{address) (MilestoneAgreemen
- INLINE ASM IHilastonan|anwn“t sol#2
Address._functionCallWithvalue(address,bytes,uint ‘f Stllhgl {MilestoneAgreement.sol#270-292) uses assembly
- INLINE ASM IHllnstonAHg|anwant sol#;SJ 287
Strings.toString{uint256) (MilestoneAgreement.so
- INLINE ASM {MilestoneAgreement.sol#5)
- INLINE ASM (MilestoneAgreement.sol#544-546)
ECDSA.tryRecover(bytes32,bytes) (MilestoneAgreement.sol#1883-1097) uses assembly
- INLINE ASM {MilestoneAgreement.sol#1888-1092)
MerkleProof. efficientHash{bytes32,bytes32) IHllést)néHg|AAWAnt s50l#1590-1596) uses assembly
- INLINE ASM {MilestoneAgreement.sol#1591-1595)
MilestoneAgreement. QTTICIthHaShlbthSSA,bvtﬂSSA' (MilestoneAgreement.sol#1963-1972) uses assembly
- INLINE ASM {MilestoneAgreement.sol# 7-1971)
Reference: https:ffgithub.cowfcryticfslitherfwlkifDetector—Docuwentation#assewbly—usage

MerkleProof._efficientHash{bytes32,bytes32) (MilestoneAgreement.sol#1598-1596) uses assembly
- INLINE ASM (MilestoneAgreement.sol#1591-1585)
MilestoneAgreement._efficientHash(bytes32,bytes32) (MilestoneAgreement.sol#1963-1972) uses assembly
- INLINE ASM (MilestoneAgreement.sol#1967-1971)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pragma wversion®.8.17 (MilestoneAgreement.sol#2) necessitates a version too recent to be trusted. Consider deploying with 8.6.1
2/0.7 .8.16

solc-8.8.17 is not recommended for deployment i

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

4 level call in Address.sendvalue{address,uint256) (MilestoneAgreement.sol#233-238):
{success) = recipient.call{value: amount}{) (MilestoneAgreement.sol#236)
call in Address._functionCallwithva IUA\ajj|ass bytes,uint256,string) IHllastonAH
{success,returndata) = target.call{value: :AlJaIUA:Idatal {MilestoneAgreement.so
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

greement.sol#
1#278)

Parameter Hllﬂst)uﬂaglAAWAut createAgreement(uint256,ISmartEmploymentAgreement.NewAgreement,bytes)._agreementId {MilestoneAgre
ement.sol#) is not in mixedCase

Parameter HIIQSTDHQHQIEEWQHT createAgreement{uint256,I5martEmploymentAgreement .NewAgreement ,bytes)._agreement (MilestoneAgreem
ent.sol#1626) is not in mixedCase

Parameter HllastouAHg|aawaut createAgreement{uint256,ISmartEmploymentAgreement .NewAgreement ,bytes)._data (MilestoneAgreement.s
ol#1627) is not in mixedCase

ParaWAtar MilestoneAgreement.depos itFunds {uint256,ISmartEmploymentAgreement.Milestone, bytes)._agreementId (MilestoneAgreement.
sol# B) is not in mixedCase

ParaWAtar MilestoneAgreement.depositFunds{uint256,ISmartEmploymentAgreement.Milestone,bytes). milestone (MilestoneAgreement.so
1#1691) is not in mixedCase

Parameter MilestoneAgreement.depositFunds(uint256,ISmartEmploymentAgreement.Milestone,bytes)._data (MilestoneAgreement.sol#169
2) is not in mixedCase

Parameter MilestoneAgreement.claimablevalue({uint256)._agreementId (MilestoneAgreement.sol#1733) is not in mixedCase

Parameter MilestoneAgreement.withdrawFunds(uint25 gr enn_ntId (MilestoneAgreement.sol#1751) is not in mixedCase

Parameter MilestoneAgreement.withdrawFundsInternal{uint256,uint256)._agreementId (MilestoneAgreement.sol#1761) is not in mixed
Case

Parameter MilestoneAgreement.withdrawFundsInternal(uint256,uint256). amount (MilestoneAgreement.sol#1762) is not in mixedCase
Parameter MilestoneAgreement.terminateAgreement{uint256). a;lnawnntlﬂ {MilestoneAgreement.sol#1780) is not in mixedCase
Parameter MilestoneAgreement.agreementStatus{uint256)._agreementId (MilestoneAgreement.sol#18¢ is not in mixedCase

Parameter MilestoneAgreement.earlyWithdrawFunds(uint256,bytes,bytes). agreementId {MilestoneAgreement.sol#1829) is not in mixe
dCase

Pariweter MilestoneAgreement.earlyWithdrawFunds{uint256,bytes, bytes)._hirerSignature (MilestoneAgreement.sol#18308) is not in m
ixedCase

Parameter MilestoneAgreement.earlyWithdrawFunds{uint256,bytes, bytes)._talentSignature (MilestoneAgreement.sol#1831) is not in
mixedCase

Parameter MilestoneAgreement.getTrimmedAgreementFields(uint256). agreementId (MilestoneAgreement.sol#1859) is not in mixedCase
Parameter MilestoneAgreement.transferFunds(address,uint256,address)._to (MilestoneAgreement.sol#1878) is not in mixedCase
Parameter Milestoﬁeﬁgreeweﬁt.transferFundsiaddress,uint‘. ,address}._awount {MilestoneAgreement.sol#1871) is not in mixedCase
;araweter MilestoneAgreement.transferFunds{address,uint256,address)._tokenAddress (MilestoneAgreement.sol#1872) is not in mixe
dCase

Parameter MilestoneAgreement.verifySignature({bytes32,bytes,address,string)._message (MilestoneAgreement.sol#1891) is not in mi
xedCase

Parameter MilestoneAgreement.verifySignature(bytes32,bytes,address,string)._signature (MilestoneAgreement.sol#1892) is not in
mixedCase

Parameter MilestoneAgreement.computeMerkleRoot(ISmartEmploymentAgreement.Milestonel])._milestones (MilestoneAgreement.sol#1921
) is not in mixedCase
Parameter MilestoneAgreement.hashMilestone(ISmartEmploymentAgreement . Milestone)._milestone {MilestoneAgreement.sol#1944) is no
t in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Redundant expression "this (MilestoneAgreement.sol#329)" inContext (MilestoneAgreement.sol#324-332)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements

Variable LinearAgreement.SELFIENT_MANAGER (MilestoneAgreement.sol#676) is too similar to LinearAgreement.constructor{address,a
ddress)._selfientManager (MilestoneAgreement.sol#686)

Variable SelfientManager._getAgreementContract({uint25 mentContract (MilestoneAgreement.sol#1428) is too similar to Sel
fientAdmin.agreementContracts (MilestoneAgreement.sol#

Variable SelfientManager._retrieveAgreement(uint256). men g (Mile neAgreement.sol#1434) 1 imilar to Selfie
ntAdmin.agreementContracts (MilestoneAgreement.sol#

Variable MilestoneAgreement.SELFIENT_MANAGER IHIlést)néHg reement.sol#1604) is too similar to MilestoneAgreement.constructer(ad
dress,address). selfientManager (MilestoneAgreement.sol# i)

Reference: https:f{github.CDWKC|ytlcfsllth»r.ulklfDﬂtﬂctDr Documentation#variable-names-too-similar

ERC20 (MilestoneAgreement.sol#342-466) does not implement functions:
- IERC28Metadata.decimals{) (MilestoneAgreement.sol#339)
IERC2 etOwner() (MilestoneAgreement.sol#3083)
IERC20Metadata.name() (MilestoneAgreement.sol#335)
IERC20Metadata.symbol{) (MilestoneAgreement.sol#337)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-functions

_name (MilestoneAgreement.sol#347) should be immutable

_symbol (MilestoneAgreement.sol#348) should be immutable
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
MilestoneAgreement.sol analyzed (25 contracts with 84 detectors), 147 result(s) found

Slither log >> MockUSDC.sol

Address . isContract{address) (MockUSDC. sol#@E—lh;n uses assembly
- INLINE ASM (MockUsSDC.sol#93-1
Address._functionCallWithValue(address, bvtas uint256,string) (MockUSDC.sol#141-163) uses assembly
- INLINE ASM {MockUSDC.sol#155-158
Strings.toString{uint256) tH)ckLSEC.s:l#-f“ 481) uses assembly
- INLINE ASM {MockUSDC.sol#468-
- INLINE ASM (MockUSDC.sol#473-
Reference: https://github. CDWIC|vt1cf511th9|f\lklfDntactor Documentation#assembly-usage

Pragma version®.8.17 (MockUSDC.sol#2) necessitates a version too recent to be trusted. Consider deploying with ©.6.12/0.7.6
8.16
solc-0.8.17 is not recommended for deployment i
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
Low level call in Address.sendValue({address,uint256) (MockUSDC.sol#104-109):
(success) = recipient.call{value: amount}{) (MockUSDC.sol#107)

Low Llev 91 call in Address._functionCallWithvalue(address,bytes,uint256,string) (MockUSDC.sol#141-163):

) (success,returndata) = target.call{value: weiValue}(data) (MockUSDC.sol#149)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level -calls

Redundant expression "this (MockUSDC.sol#201)" inContext (MockUSDC.sol#195-2¢
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

'IL'kLCEC 50 1*Fl4—

z 3 f ik i/De t»-t- r-Documentation#unimplemented-functions
MockUSDC . sol analyzed (18 contracts with 84 detectors), 38 result(s) found

Reference: https:// hub . co y ¢ ress-validation
Address .verifyCa e (ytes, ing) #284-302) uses assembly
INLINE ASM i 5
Strings.toString(uint
INLINE ASM (SelfientAdmin.
- INLINE ASM (SelfientAdmin.
Reference: https://github.com/crytic/slither/w 'L|-<'L Detector-Documentation#assembly-usage

Pragma version@ 7 (SelfientAdmin.sol#2) necessitates a version too recent to be trusted. Consider deploying with 8.6.12/

alL-:l'a:-:ress uint256) (SelfientAdmin.sol#
call{value: cr’-utﬂ IC-1T1-|td-r1|
Ccll.ﬂ.t Tue ,bytes, 2 . ing) (SelfientAdmin.sol#253-264):

Parameter SelfientLil ckZer 255 (3 es5,5tring)._ (SelfientAdmin. #10) 1s not in mixedCase
Function ISelfientA) f 7 i ot i i
Parameter blleltH\ in.al k) nCon ct ": Admin. 1.' is not in
Parameter entAdmin. r = () (6 is |“t in mix
Parameter 1fien tﬂ' min.va ate {) .' mixedCase
Parameter l‘rl-l tAd r1|'. r 2rSEA ,uin ._con t| ac td' 2l f .5 604) is not in mixedCase
Paramete LentA o[SEA(ess,uin ontractId (Selfi . 5¢) not in mixedCase
Parameter fientAdmin.setAgreementF i) ce (Selfienta .sol#618) 1is not in mixedCase
Parameter fientAdmin.setFeewallet(a 2 ress (SelfientAdmin 3) is |-t in mi
Paramet fientAdmin.setH1 r { ss,uint16, C e { e) is not in mixedCase
Parameter fientAdmin.setH1 / = s5,uintl6, = (Se 2ntA N i ot in mixedCase
Paramet 1fientAdmin. / (s5,uintl6,) ed (Self :) is not in mixedCase
Parameter 1fientAdmin.di i ress,uint) i (fi Adm1i is |.t in mixedCase
Parameter SelfientAdmin.distribute 2eme eef ress,uint2s6, res :.. is not in mixe
dCase
Parameter SelfientAdmin.distributeAgreementFee(address,uint256,address)._tokenAddress (SelfientAdmin.sol#662) is not in mixedC
ase

fe 1//github.com/crytic/slither/wik i/Detector-Documentation#conformance-to-solidity-naming entions
Se'L'F'LentAdm'Ln sol analyzed (13 contracts with 84 detectors), 46 result(s) found

https

y in SelfientManager.createAgreement({ISmartEmpl
E/.teucl -clls

antManager.sol#1165)
External calls se
- distributeA _at ent.hi 0s itA ,_@ nt.currency) (SelfientMan
) fientManag

FeeDistributed(. 3 !
- distribute ementFee(_ . ar, itA ,_agreement.curr) (SelfientMana
Reentrancy in SelfientManag pos itF (uin ymentAgreement.Milestone,bytes) {SelfientMan
cternal calls:
reement ct. 1tF (_a ile y) {selfientMan r.sol#1352
IC»1T1»| tl‘ara-j»‘r sol#

T»-..lcll t
,_milestone.amo
call{value: w

_milestone.amount, a-:r-‘»‘r-m c 2 (SelfientManager.sol#1354-135

Lo o Do oo _

y in LinearAgreement.termi eAgreement(uint256) I_E-:lri-:|'tl-a|'a-;-:|"s-:l?;.-'._—
External c
- withdraw L,\"‘SII‘t rnal(2)
returndata e .functi Calll-.ctc afe i-Llevel call failed) (SelfientManager.sol#5
f f) IC»1T1»|tl’ar
call{value:

External
- withdrawF
- (su

Event emitted

- FundsWithdrawn{_ =) (Se e
Refere : https://github.co ytic/slither/wiki/ ocumenta =1y ncy-vulnerabilities-3

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

LinearAgreement.terminateAgreement(uint256) (SelfientManager.sol#756-783) uses timestamp for comparisons
erous COMparisons:

D

hirerFunds = @

SelfientManager.sol#775)

LinearAgreement. aglﬂﬂn»nt_tatu51u1nt4=fl (SelfientManager.sol#799-820) uses timestamp for comparisons
erous comparisons:

D

- agreements[_agreementId].agr
- block.timestamp >= startDate
LinearAgreement.claimablevalue{uint25

cementId == @ (SelfientManager.sol#882)
&& block.timestamp < agreementEndDate (SelfientManager.sol#815)

6) (SelfientManager.sol#822-856) uses timestamp for comparisons

Dangerous COMPArisons:

- agreements[_agreementId].agreementId == 8 (SelfientManager.sol#323)

- terminatedAgreements[_agreementId] || lastClaim == agreementEndDate || block.timestamp == lastClaim || block.timesta
mp == startDate ISelTl»ntManagﬂl so0l#834-837)
lastClaim == 8 (SelfientManager.sol#844)

LinearAgreement.withdr

D

block.timestamp
block.timestamp

agreementEndDate (SelfientManager.sol#845)
agreementEndDate Selfléntnanagér sol#851)

awFundsInternal{uint256,bool) (SelfientManager.sol#887-969) uses timestamp for comparisons

erous corrparisons

- withdrawalAmount = && _rev nltDnEnptvulthdra\aluwount {SelfientManager.sol#2093)
L=

i - withdr lamount != @ (SelfientManager.sol#9
Reference: https:fﬁgithub.CDWKC|vtlcfsllthé|f\lklfDAtactor Documentation#block-timestamp

Address . isContract{address) (SelfientManager.sol#219-226) uses assembly
- INLINE ASM {SelfientManager.sol#2 24)
Address._functionCallwithvalue({address,bytes,uint256,string) {SelfientManager.sol#2
- INLINE ASM [SelfientManager.501#279—232}
Strings.toString{uint256) (SelfientManager.sol#54
- INLINE ASM (SelfientManager.sol#550-55
- INLINE ASM (SelfientManager.sol#555-
ECDSA.tryRecover(bytes32,bytes) (SelfientManage .sol £1119-1133) uses assembly
- INLINE ASM {SelfientManager.sol#1124-1128)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

Pragma version8.8.17 (SelfientManager.sol#2) necessitates a version too recent to be trusted. Consider depleying with 8.6.12/0

7 0.8.16

solc-0.8.17 is not recommended for deployment)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

+ level call in Address.sendValue{address,uint256) (SelfientManager. sal*“ZS

{success) = recipient.call{value: amount}() {SelfientManager.
call in Address._functionCallwithvalue(address,bytes,uint2 ;,Stlihg' (s
{success, returndata) = target.call{value: weivalue}{data) CAITIAHtHanagar s
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

Parameter SelfientLibrary.checkZeroAddress{address,string)._address (SelfientManager.sol#18) is not in mixedCase

Parameter L1n9a|ug|aawnnt C|AatAHg|aawantlu1nt‘5_,ICWa|tEwplovwantHg|eennnt NewAgreement,bytes)._agreementId (SelfientManager.
sol#717) is not in mixedCase

Parameter LinearAgreement.createAgreement{uint256,ISmartEmploymentAgreement.NewAgreement,bytes). agreement {SelfientManager.so
1#718) 1is not 1in mixedCase

Parameter LlnéalaglééWént.terwir teAgreement(uint256)._agreementId (SelfientMana ger.sol#?_?- is not in mixedCase

Parameter 23 cement.withdrawFunds (uint256). ementId (SelfientManager.sol#794) is not in mixedCase

Parameter LinearAgreemen .'greewent?tatusiuint‘=ﬂw _ag|eeweutlj {5elfientManager.sol#300) is not in mixedCase

Parameter Linea .claimablevalue{uint256)._agreementId {SelfientManager.sol#a2 is not in mixedCase

Parameter Linea cement.getTrimmedAgreementFields{uint256)._agreementId ({SelfientManager.sol#859) is not in mixedCase
Parameter LinearAgreement.transferFunds(address,uint256, ._to (SelfientManager.sol#878) is not in mixedCase

Parameter Line transferFundsiaddress,uintz de]. amount (SelfientManager.sol#2879) is not in mixedCase
Parameter Linea reement . transferFunds{address,uint2 a ._tokenAddress (SelfientManager.sol#880) is not in mixedCase
Parameter nearAgreement .with wFundsInterna iu1nt2.:,bool;. sgreementId (SelfientManager.sol#888) is not in mixedCase
Parameter LinearAgreement.withdrawFundsInternal{uint256,bool)._ rtonEmptyWithdrawalAmount {SelfientManager.sol#839) is not
in mixedCase

Function ISelfientAdmin.PERCENT AGE_ _PRECISION() (SelfientManager.sol#962) is not in mixedCase

Parameter SelfientAdmin.allowToken(address)._tokenContract (SelfientManager.sol#1088) is not in mixedCase

Parameter SelfientAdmin.revokeToken(address). tokenContract (SelfientManager.sol#1818) is not in mixedCase

Parameter SelfientAdmin.validateToken{address)._ address (SelfientManager.sol#10827) is not in mixedCase

Parameter SelfientManager.transferFunds(address,address,uint256,address)._from (SelfientManager.sol#1422) is not in mixedCase
Parameter SelfientManager.transferFunds(address,address,uint2 ddress)._to (SelfientManager.sol#1423) is not in mixedCase
Parameter SelfientManager.transferFunds(address,address,uint256,address)._amount (SelfientManager.sol#1424) is not in mixedCas
e

Parameter SelfientManager.transferFunds(address,address,uint256,address)._tokenAddress ({SelfientManager.sol#1425) is not in mi
xedCase

Parameter SelfientManager.verifySignature(bytes32,bytes,address,string)._message (SelfientManager.sol#1433) is not in mixedCas
e

Parameter SelfientManager.verifySignature{bytes32,bytes,address,string)._signature {SelfientManager.sol#1434) is not in mixedC
ase

Parameter SelfientManager.verifySignature(bytes22,bytes,address,string)._signer (SelfientManager.sol#1435) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Redundant expression "this (SelfientManager.sol#325)" inContext (SelfientManager.sol#319-328)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements

Variable LinearAgreement.SELFIENT_MANAGER (SelfientManager.sol#698) is too similar to LinearAgreement.constructor(address,addr
ess)._selfientManager (SelfientManager.

Variable SelfientManager. _getAgreementContract(uint256). agreementContract ({SelfientManager.sol#1466) is too similar to Selfie
ntAdmin.agreementContracts {SelfientManager.sol#992 ‘

variable SelfientManager._retrieveAgreement(uint256). mentContract (SelfientManager.sol#1481) is too similar to SelfientA
dmin.agreementContracts (SelfientManager.sol#992-994)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar

ERC208 ({SelfientManager.sol#338-474) does not implement functions:
- IERC2BMetadata.decimals() (SelfientManager.sol#335)
- IERC28.getOwner{) (SelfientManager.sol#293)
- IERC2@Metadata.name() {SelfientManager.sol#331)
- IERC20Metadata. S\uITbDl') (5 i
Reference: https://github. CDWfCIythfSlltheF,uikifDeteCTDF Documentation#unimplemented-functions

ERC20._name {SelfientManager.sol#245) should be immutable

ERC20. symbol (SelfientManager.sol#346) should be immutable

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
SelfientManager.sol analyzed (22 contracts with 84 detectors), 1083 result(s) found

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

LinearAgreement.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
SelfientManager.createAgreement(struct
ISmartEmploymentAgreement.NewAgreement,bytes): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 70:2:

Block timestamp:

Use of "block timestamp™: "block timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

more

Pos: 262:41:

Gas costs:

Gas requirement of function LinearAgreement.createAgreement is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays
in storage)

Pos: 61:2:

Constant/View/Pure functions:

LinearAgreement.agreementStatus(uint2586) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
more

Pos: 148:2:

Similar variable names:

LinearAgreement.createAgreement(uint256,struct
ISmartEmploymentAgreement.NewAgreement,bytes) : Variables have very similar names
"agreements" and "_agreement". Note: Modifiers are currently not considered by this static
analysis.

Pos: 69:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 / 100 = O instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values

since those yield rational constants.
Pos: 197:13:

MilestoneAgreement.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
SelfientManagerterminateAgreement(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 214:2:

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static
analysis modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 494:4:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the block timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 107:24:

Gas costs:

Gas requirement of function MilestoneAgreement.createAgreement is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 61:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on
storage values, have to be used carefully. Due to the block gas limit, transactions can
only consume a certain amount of gas. The number of iterations in a loop can grow
beyond the block gas limit which can cause the complete contract to be stalled at a
certain point. Additionally, using unbounded Loops incurs in a lot of avoidable gas costs.
Carefully test how many items at maximum you can pass to such functions to make it
successful.

Pos: 87:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on
storage values, have to be used carefully. Due to the block gas limit, transactions can
only consume a certain amount of gas. The number of iterations in a loop can grow
beyond the block gas limit which can cause the complete contract to be stalled at a
certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas costs.
Carefully test how many items at maximum you can pass to such functions to make it
successful.

Pos: 435:4:

Constant/View/Pure functions:

MilestoneAgreement.claimableValue(uint256) : Is constant but potentially should not
be. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 187:2:

Constant/View/Pure functions:

MilestoneAgreement.claimableValue(uint256) : Is constant but potentially should not
be. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 187:2:

No return:

MilestoneAgreement._efficientHash(bytes32 bytes32): Defines a return type but never
explicitly returns a value.
Pos: 490:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

MilestoneAgreement.createAgreement(uint256,struct
ISmartEmploymentAgreement.NewAgreement,bytes) : Variables have very similar
names "agreements" and "_agreement". Note: Modifiers are currently not considered by
this static analysis.

Pos: 112:6:

MockUSDC.sol

Gas costs:

Gas requirement of function MockUSDC.mint is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 26:2:

SelfientAdmin.sol

Constant/View/Pure functions:

ISelfientAdmin.setAgreementFee(uint16) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by
this static analysis.

Pos: 147:2:

Constant/View/Pure functions:

SelfientAdmin.validateToken(address) : Is constant but potentially should not
be. Note: Madifiers are currently not considered by this static analysis.
more

Pos: 86:2:

No return:

ISmartEmploymentAgreement.totalClaimed(uint256): Defines a return type but
never explicitly returns a value.
Pos: 369:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 /100
= 0 instead of 0.1 since the result is an integer again. This does not hold for

division of (only) literal values since those yield rational constants.
Pos: 169:18:

SelfientManager.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
SelfientManager.createAgreement(struct
ISmartEmploymentAgreement.NewAgreement,bytes): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

Pos: 70:2:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
SelfientManagerterminateAgreement(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 214:2:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the block timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 262:41:

Gas costs:

Gas requirement of function SelfientManager.terminateAgreement is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 101:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function SelfientManager.registerSEA is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 93:2:

Constant/View/Pure functions:

SelfientManagerverifySignature(bytes32 bytes,address,string) : Is constant but
potentially should not be. Note: Modifiers are currently not considered by this static
analysis.

Pos: 256:2:

Similar variable names:

SelfientManager.createAgreement(struct
ISmartEmploymentAgreement.NewAgreement,bytes) : Variables have very similar
names "agreementContract" and "agreementContracts". Note: Modifiers are currently
not considered by this static analysis.

Pos: 86:4:

Similar variable names:

SelfientManagerwithdrawFunds(uint256) : Variables have very similar names
"agreementContract" and "agreementContracts". Note: Modifiers are currently not

considered by this static analysis.
Pos: 206:6:

Data truncated:

Division of integer values yields an integer value again. That meanse.g. 10/100=0
instead of 0.1 since the result is an integer again. This does not hold for division of

(only) literal values since those vyield rational constants.
Pos: 169:18:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

LinearAgreement.sol

Compiler version 0.8.17 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)

Pos: 1:13

global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)

Pos: 1:14

global import of path Qopenzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)

Pos: 1:15

global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)

Pos: 1:16

global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)

Pos: 1:18

global import of path SelfientlLibrary.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)

Pos: 1:19

global import of path SelfientManager.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)

Pos: 1:21

Explicitly mark visibility in function
true if using solidity >=0.7.0)

Pos: 3:52

(Set ignoreConstructors to

Avoid making
Pos: 7:82
Avoid making
Pos: 9:163
Avoid making
Pos: 41:163
Avoid making
Pos: 7:184
Avoid making
Pos: 7:185
Avoid making
Pos: 11:193
Avoid making

time-based

time-based

time-based

time-based

time-based

time-based

time-based

decisions

decisions

decisions

decisions

decisions

decisions

decisions

business

business

business

business

business

business

business

logic
logic
logic
logic
logic
logic

logic

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permi

Email: audit@EtherAuthority.io

ion of EtherAuthority.

Pos: 16:196

Avoid making time-based decisions in your business logic
Pos: 9:199

Avoid making time-based decisions in your business logic
Pos: 14:203

Avoid making time-based decisions in your business logic
Pos: 42:261

MilestoneAgreement.sol

Compiler version 0.8.17 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)

Pos: 1:13

global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)

Pos: 1:14

global import of path @openzeppelin/contracts/utils/Address.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)

Pos: 1:15

global import of path Qopenzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)

Pos: 1:16

global import of path
@openzeppelin/contracts/utils/cryptography/ECDSA.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)

Pos: 1:17

global import of path
@openzeppelin/contracts/utils/cryptography/MerkleProof.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)

Pos: 1:18

global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)

Pos: 1:20

global import of path Selfientlibrary.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)

Pos: 1:21

global import of path SelfientManager.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)

Pos: 1:22

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pos: 3:57
Avoid making
Pos: 25:106
Avoid making
Pos: 42:182
Avoid making
Pos: 9:198
Avoid making
Pos: 9:254
Avoid making
Pos: 41:254
Avoid making
Pos: 9:281
Avoid making
Pos: 41:281
Avoid making
Pos: 9:285
Avoid making
Pos: 7:415
Avoid making
Pos: 7:416

Avoid using inline assembly.

Pos: 5:493

MockUSDC.sol

Compiler version 0.8.17 does not satisfy the

requirement
Pos: 1:1

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the

module into a name

Pos: 1:13

global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l is not

allowed.

the module into a name

Pos: 1:14

(import

decisions
decisions
decisions
decisions
decisions
decisions
decisions
decisions
decisions

decisions

”pathﬂ

in

as Name)

”path"

your

your

your

your

your

your

your

your

your

your

business

business

business

business

business

business

business

business

business

business

It is acceptable only

as Name)

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

in rare cases

~0.5.8 semver

Specify names to import individually or bind all exports of
(import

global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol

is not allowed.

exports of the module into a name

Pos: 1:15

(import

”pathﬂ

Specify names to import individually or bind all
as Name)

global import of path Qopenzeppelin/contracts/token/ERC20/ERC20.sol

is not allowed.
exports of the module into a name

Pos: 1:16

global import of path
@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol is
Specify names to import individually or bind all exports
”pathﬂ

not allowed.

of the module into a name

Pos: 1:17

(import

(import

”pathﬂ

as Name)

Specify names to import individually or bind all
as Name)

global import of path @openzeppelin/contracts/access/Ownable.sol is
Specify names to import individually or bind all exports
”path"

not allowed.

of the module into a name

(import

as Name)

This is a private and confidential document. No part of this document should

be disclosed to third party without prior written permi

Email: audit@EtherAuthority.io

ion of EtherAuthority.

Pos: 1:18

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 3:21

SelfientAdmin.sol

Compiler version 0.8.17 does not satisfy the 70.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:13
global import of path @openzeppelin/contracts/token/ERC20/IERC20.so0l
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:14
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:15
global import of path @openzeppelin/contracts/utils/Address.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:16
global import of path ISelfientAdmin.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)

1:18
global import of path ISmartEmploymentAgreement.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:19
global import of path SelfientLibrary.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:20
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:54

SelfientManager.sol

Compiler version 0.8.17 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Specify names
module into a
Pos: 1:13
global import of path @openzeppelin/contracts/utils/Addre
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:14
global import of path
@openzeppelin/contracts/utils/cryptography/ECDSA.sol is not allowed.
Specify names to lmpolt individually or bind all exports of the
module into a name (import "path" as Name)
Pogs Lgls

lobal import of path ISmartEmploymentAgreement.sol is
Cp@flt names to import individually or bind all exports
module into a name (import "path" as Name)
Pos: 1:17
global import of path ISelfientManager.sol is no
names to import individually or bind all exports
name (import "path" as Name)
Pos: 1:18
global import of path ISelfientAdmin.sol is not allowed. Specify
names to import individually or bind all exports of the module into
name (import "path" as Name)

s: 1:19
global import of path SelfientAdmin.sol is not allowed. Specify name
to import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:21
global import of path LinearAgreement.sol is allowed. Specify
names to import individually or bind all expor the module into

(import "path" as Name)

to import individually or bind all exports
rame (import "path" as Name)

module into

E“p11<1f1/ mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:46

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

