
Project: Xandao Pixels
Platform: Etherscan
Language: Solidity
Date: October 11th, 2023

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Club Hush team to perform the Security audit of the
Xandao Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on October 11th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Xandao Pixels is an NFT project defined by a 1-36-char tokenid, representing a

single pixel in six colors.

● Each piece is on an oblique 6x6 canvas, rendered on a chain as a svg.

● The creator is permanently recorded on the chain, with a self-declared description.

● The aesthetic traits are derived from the token id, and the price to mint depends on

the token id length.

● The price is a geometric progression, starting at 0.006 Eth for a 36-char token id

and 6 Eth for a single char tokenid.

● The Xandao Pixels contract inherits ERC721, ERC721Burnable, Ownable2Step,

Counters, Base64, Strings, SafeMath standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Xandao Pixels Smart Contract

Platform Etherscan / Solidity

File PixelsV1.sol

MD5 hash code DE1A35DDCBEEBEE0AD04D03383D501F1

Updated MD5 hash code 7DDEABBC1C06AE805FCD9F82340BEA23

Audit Date October 11th, 2023

Revised Audit Date October 12th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Ownership Control:
● Withdraw amount.

● Current owner can transfer the ownership.

● Owner can renounce ownership.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make
them fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and 0 very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Xandao Pixels are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Xandao Pixels.

The Xandao Pixels team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used.

Documentation

We were given a Xandao Pixels smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented but the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setMintPrice write Removed -
3 _checkTokenId internal Passed No Issue
4 getAllTokenIds read Passed No Issue
5 upgradePixels write Passed No Issue
6 getMintPrice read Passed No Issue
7 mintPixels write Function input

parameters lack of
check

Refer Audit
Findings

8 tokenURIByTokenId read Passed No Issue
9 tokenURI read Passed No Issue
10 tokenURIByXN read Passed No Issue
11 creatorOf read Passed No Issue
12 isAvailable read Passed No Issue
13 getBalance read Passed No Issue
14 withdraw write Owner can drain

fund
Refer Audit
Findings

15 pendingOwner read Passed No Issue
16 transferOwnership write access only Owner No Issue
17 _transferOwnership internal Passed No Issue
18 acceptOwnership write Passed No Issue
19 onlyOwner modifier Passed No Issue
20 owner read Passed No Issue
21 _checkOwner internal Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue
24 _transferOwnership internal Passed No Issue
25 supportsInterface read Passed No Issue
26 balanceOf read Passed No Issue
27 ownerOf read Passed No Issue
28 name read Passed No Issue
29 symbol read Passed No Issue
30 tokenURI read Passed No Issue
31 _baseURI internal Passed No Issue
32 approve write Passed No Issue
33 getApproved read Passed No Issue
34 setApprovalForAll write Passed No Issue
35 isApprovedForAll read Passed No Issue
36 transferFrom write Passed No Issue
37 safeTransferFrom write Passed No Issue
38 safeTransferFrom write Passed No Issue
39 _ownerOf internal Passed No Issue

40 _getApproved internal Passed No Issue
41 _isAuthorized internal Passed No Issue
42 _checkAuthorized internal Passed No Issue
43 _increaseBalance internal Passed No Issue
44 _update internal Passed No Issue
45 _mint internal Passed No Issue
46 _safeMint internal Passed No Issue
47 _safeMint internal Passed No Issue
48 _burn internal Passed No Issue
49 _transfer internal Passed No Issue
50 _safeTransfer internal Passed No Issue
51 _safeTransfer internal Passed No Issue
52 _approve internal Passed No Issue
53 _approve internal Passed No Issue
54 _setApprovalForAll internal Passed No Issue
55 _requireOwned internal Passed No Issue
56 _checkOnERC721Received write Passed No Issue
57 generateSVG read Division before

multiplication
Refer Audit
Findings

58 generateTokenURI read Passed No Issue
59 handlePadding write Passed No Issue
60 getDigitCounts write Passed No Issue
61 getColorHSL write Passed No Issue
62 averageHSL read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Division before multiplication: PixelsMetadataUtils.sol

The generateSVG() function to calculate colorIndex, first performing a division operation

tokenId / 10 ** (36 - i - 1) and then taking the modulo.

Resolution: This can be optimized by performing the modulo operation first, and then the

division.

(2) Function input parameters lack of check: PixelsV1.sol
Some functions require validation before execution.

Functions are:

● mintPixels() - creator

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0). For

percentage type variables, values should have some range like minimum 0 and maximum

100.

(3) Owner can drain fund: PixelsV1.sol
Owner can drain all the balance of the contract.

Resolution: We suggest confirming withdrawal functionality before moving Mainnet, If this

is a part of the plan then disregard this issue.

Very Low / Informational / Best practices:

No very low severity vulnerabilities were found.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

PixelsV1.sol

● withdraw: withdraw by the owner.

Ownable2Step.sol

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

Ownable.sol

● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transfer ownership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed 3 low issues in the smart contracts. but

those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - Xandao Pixels

PixelsV1 Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> PixelsV1.sol

Solidity Static Analysis

PixelsV1.sol

Solhint Linter

PixelsV1.sol

Compiler version ^0.8.9 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:28
global import of path @openzeppelin/contracts/token/ERC721/ERC721.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:30
global import of path @openzeppelin/contracts/access/Ownable2Step.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:31
global import of path @openzeppelin/contracts/utils/Counters.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:32
global import of path ./PixelsMetadataUtils.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:33
global import of path ./PixelsTypesV1.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:34
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:45
Error message for require is too long
Pos: 9:68
Error message for require is too long
Pos: 9:74
Error message for require is too long
Pos: 13:104
Error message for require is too long
Pos: 9:129

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

