
Project: Zexus Finance
Domain: Zexus.finance
Platform: Ethereum
Language: Solidity
Date: October 27th, 2023



Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Claimed Smart Contract Features ………………………………………………………………6

Audit Summary ……………....…………………………………………………………………...9

Technical Quick Stats …..……………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 16

Audit Findings …………………………………………………………………………………… 17

Conclusion ………………………………………………………………………………………. 21

Our Methodology ………………………………………………………………………………... 22

Disclaimers ………………………………………………………………………………………. 24

Appendix

● Code Flow Diagram ……………………………………………………………………... 25

● Slither Results Log ………………………………………………………………………. 32

● Solidity static analysis ….……………………………………………………………….. 37

● Solhint Linter …………………………………………………………………….……….. 44

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf


THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
EtherAuthority was contracted by the Zexus Finance Team to perform the Security audit of
the Zexus Finance smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on October 27th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Zexus is a decentralized Non-fungible Token(NFT) lending protocol.

● Zexus Finance is a contract that can be divided into multiples, each with unique

functionalities:

○ Utils: Utils contract for managing Zexus.
○ Vault: Vault contract for storing NFTs.
○ ZexusBorrower: This contract is designed to manage the actions of the

borrower.

○ ZexusCollateral: This contract is for managing collateral.
○ ZexusLender: This contract is designed to manage lender actions.
○ ZexusSecurity: This contract is responsible for managing security-related

aspects of protocol.

○ ZexusStorage: This contract is for the management of stored data.

● There are 7 smart contracts, 3 libraries, 6 interface files which were included in the

audit scope. And there were some standard library code such as OpenZepelin,

which were excluded. Because those standard library code is considered as time

tested and community audited, so we can safely ignore them.



Audit scope

Name Code Review and Security Analysis Report for Zexus
Finance Smart Contracts

Platform Ethereum / Solidity

File 1 Utils.sol

File 1 MD5 Hash E1D6D03C3D7E27CF79B62F76AAFB3A51

Updated File 1 MD5 Hash 03636A3F550F88D6D800DFDC4CBCA08E

File 2 Vault.sol

File 2 MD5 Hash 7F8E1EAA684F464E4C8DAC10DBCDF4E3

Updated File 2 MD5 Hash 3197A3367DD259F7C097108B726D2D48

File 3 ZexusBorrower.sol

File 3 MD5 Hash 23C2BDAB7101587E1A2CD89550A58CFA

Updated File 3 MD5 Hash 596B229FBA496806604A2C236968D4E4

File 4 ZexusCollateral.sol

File 4 MD5 Hash F8715BF1902B9AC7236FFA19AB60D878

Updated File 4 MD5 Hash EBF59750AD6F998D8957913C17332D8C

File 5 ZexusLender.sol

File 5 MD5 Hash CF9FA11C84E0D8FBD1E987A2734BC750

File 6 ZexusSecurity.sol

File 6 MD5 Hash F9F39EF7FA3A9EAC1EEAAC310CC1FBD4

Updated File 6 MD5 Hash 4DC2C2BF95FC63152847C4EEEDF1CC45

File 7 ZexusStorage.sol

File 7 MD5 Hash E6B3112173460C6CB71F76C53F440291

Updated File 7 MD5 Hash 2DED4A39BCD2CF1EEAC9676E6B2AA661

Audit Date October 27th, 2023

Revised Audit Date November 2nd, 2023



Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Utils.sol
● Interest Fee: 2.5%

● Principal Fee: 1%

Admin Specifications:
● Adds NFTs to the whitelist.

● Removes NFTs from the whitelist.

● Whitelist currencies.

● Blacklist currencies.

● Change fees on the platform.

Other Specifications:
● The contract is utilized for managing Zexus.

● Allows whitelisting / blacklisting NFTs and supported

currencies for Zexus protocol.

YES, This is valid.
The smart contract
owner uses a
multisignature wallet
to ensure security.

File 2 Vault.sol
Zexus Role Specifications:

● Withdraw NFTs.

Operator Role Owner Specifications:
● Emergent withdrawal of NFT.

Other Specifications:
● The Vault contract is a secure method for storing

non-fungible tokens (NFTs).

YES, This is valid.

File 3 ZexusBorrower.sol
Admin Specifications:

● Setup vault address.

YES, This is valid.



Other Specifications:
● The contract is a document that outlines the process of

managing borrower actions.

File 4 ZexusCollateral.sol
Admin Specifications:

● Setup vault address.

Other Specifications:
● The contract outlines the process for managing

collateral.

YES, This is valid.

File 5 ZexusLender.sol
Admin Specifications:

● Setup vault address.

Other Specifications:
● The contract is a document that outlines the process

for managing lender actions.

YES, This is valid.

File 6 ZexusSecurity.sol
Admin Specifications:

● Triggers stopped by the admin role owner.

● Returns to normal state by the admin role owner.

Other Specifications:
● The contract outlines the process for managing

security-related aspects on a protocol.

YES, This is valid.

File 7 ZexusStorage.sol
Admin Specifications:

● Allow updating the platform wallet.

Zexus Role Specifications:
● Allow updating collateral metadata.

YES, This is valid.



● Allow updating collateral nfts.

● Allow updating collateral terms.

● Delete Borrowers Offers.

● Update Active Collaterals.

● Update currency.

● Update Nft Whitelisted.

Other Specifications:
● The contract is for the management of stored data.



Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 3 low and 0 very low level issues.
We confirm that all issues have been fixed in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Code Quality
This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Zexus Finance are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Zexus Finance Protocol.

The Zexus Finance team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Zexus Finance smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.



AS-IS overview
Utils.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 addNFT external access by only

admin role
Fixed

3 removeNFT external access by only
admin role

Fixed

4 whitelistCurrencies external access by only
admin role

Fixed

5 delistCurrencies external access by only
admin role

Fixed

6 encodeNFTs external Passed No Issue
7 decodeNFTs external Passed No Issue
8 hashLoan external Passed No Issue
9 hashCollateral external Passed No Issue
10 recoverLoan external Passed No Issue
11 recoverCollateral external Passed No Issue
12 changeFee external access by only

admin role
Fixed

13 calculateFee external Passed No Issue
14 calculateRepayment external Passed No Issue
15 _domainSeparatorV4 internal Passed No Issue
16 _buildDomainSeparator read Passed No Issue
17 _hashTypedDataV4 internal Passed No Issue
18 eip712Domain read Passed No Issue
19 _EIP712Name internal Passed No Issue
20 _EIP712Version internal Passed No Issue
21 pause write access by only

admin role
No Issue

22 unpause write access by only
admin role

No Issue

Vault.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 withdrawNFTs external access by only

zexus role
Fixed

3 withdrawNFT external access by only
zexus role

Fixed

4 onERC721Received external Passed No Issue



5 emergencyWithdrawal external access by only
operator role

Fixed

6 pause write access by only
admin role

No Issue

7 unpause write access by only
admin role

No Issue

ZexusBorrower.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 acceptLoan external Passed No Issue
3 repayLoan external Passed No Issue
4 acceptLoanExtensionAsBorrower external Passed No Issue
5 _acceptLoanExtensionSameLender write Passed No Issue
6 _acceptLoanExtensionDifferentLender write Passed No Issue
7 _withdrawNFT write Passed No Issue
8 setUpVault write access by only

admin role
No Issue

9 pause write access by only
admin role

No Issue

10 unpause write access by only
admin role

No Issue

ZexusCollateral.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 pause write access by only

admin role
No Issue

3 unpause write access by only
admin role

No Issue

4 addNFTCollateral external Passed Fixed
5 updateCollateral external Passed Fixed
6 inArrays write Passed No Issue
7 cancelCollateral external Passed No Issue
8 _withdrawNFT write Passed No Issue
9 setUpVault write access by only

admin role
No Issue



ZexusLender.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 pause write access by only

admin role
No Issue

3 unpause write access by only
admin role

No Issue

4 acceptBorrowerOffer external Passed No Issue
5 loanDefaulted external Passed No Issue
6 acceptLoanExtensionAsLender external Passed No Issue
7 _withdrawNFT write Passed No Issue
8 setUpVault external access by only

admin role
No Issue

ZexusSecurity.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 pause write access by only

admin role
No Issue

3 unpause write access by only
admin role

No Issue

4 onlyRole read Passed No Issue
5 supportsInterface read Passed No Issue
6 hasRole read Passed No Issue
7 _checkRole internal Passed No Issue
8 _checkRole internal Passed No Issue
9 getRoleAdmin read Passed No Issue
10 grantRole write access by only

admin role
No Issue

11 revokeRole write access by only
admin role

No Issue

12 renounceRole write Passed No Issue
13 _setRoleAdmin internal Passed No Issue
14 _grantRole internal Passed No Issue
15 _revokeRole internal Passed No Issue
16 paused read Passed No Issue
17 whenNotPaused modifier Passed No Issue
18 whenPaused modifier Passed No Issue
19 _pause internal Passed No Issue
20 _unpause internal Passed No Issue
21 nonReentrant modifier Passed No Issue



ZexusStorage.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 pause write access by only

admin role
No Issue

3 unpause write access by only
admin role

No Issue

4 updateZexusWallet external access by only
admin role

No Issue

5 updateBorrowersOffers external access by only
zexus role

No Issue

6 updateBorrowersOffersNfts external access by only
zexus role

No Issue

7 updateBorrowersOffersCollateral external access by only
zexus role

No Issue

8 deleteBorrowersOffers external access by only
zexus role

No Issue

9 getBorrowersOffers external Passed No Issue
10 updateActiveCollaterals external access by only

zexus role
No Issue

11 getActiveCollaterals external Passed No Issue
12 deleteActiveCollaterals external access by only

zexus role
No Issue

13 updateCurrency external access by only
zexus role

No Issue

14 getSupportedCurrency external Passed No Issue
15 updateNftWhitelisted external access by only

zexus role
No Issue

16 getNftWhitelisted external Passed No Issue
17 nonces read Passed No Issue
18 useNonce write access by only

zexus role
No Issue

19 collateralId external access by only
zexus role

No Issue

20 loanId external access by only
zexus role

No Issue



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.



Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

(1) Infinite Loop:

Vault.sol
In emergencyWithdrawal, withdrawNFTs functions, for loop _nfts and _ids array length

must have some limit set to save the gas.

Utils.sol
In addNFT, removeNFT, whitelistCurrencies, delistCurrencies, functions, for loop _nfts and

_currencies array length must have some limit set to save the gas.

ZexusCollateral.sol
In addNFTCollateral, updateCollateral functions for loop array length should have some

limit to save the gas.

Resolution: The upper bound should have a certain limit for loops.
Status: Fixed

(2) Function input parameters lack of check:

Variable validation is not performed in the below functions:

Vault.sol
● withdrawNFT = _receiver



● withdrawNFTs = _receiver

● emergencyWithdrawal = _to

Resolution: We advise to put validation: int type variables should not be empty and

greater than 0, and address type variables should not be address(0).

Status: Fixed

(3) The fee limit is not set: Utils.sol

In the changeFee function, the fee limit is not set. Admin can set it to any number.

Resolution:We suggest adding explicit limits while setting the value of the fee variable.

Status: Fixed

Very Low / Informational / Best practices:

No very low severity vulnerabilities were found in the contract code.



Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Utils.sol
● addNFT: Adds NFTs to the whitelist by the admin role owner.

● removeNFT: Removes NFTs from the whitelist by the admin role owner.

● whitelistCurrencies: Whitelist currencies by the admin role owner.

● delistCurrencies:Blacklist currencies by the admin role owner.

● changeFee: Change fees on the platform by the admin role owner.

Vault.sol
● withdrawNFTs: Withdraw NFTs by the zexus role owner.

● withdrawNFT: Withdraw NFT by the zexus role owner.

● emergencyWithdrawal: Emergent withdrawal of NFT by the operator role owner.

ZexusBorrower.sol
● acceptLoan: Accept the loan by the borrower to accept the backend loan.

● repayLoan: Repay the loan by the borrower to repayLoan.

● acceptLoanExtensionAs Borrower: The borrower can accept a proposed loan

extension.

● setUpVault: Setup vault address by the admin role owner.

ZexusCollateral.sol
● updateCollateral: Updating collateral by the owner of collateral.

● cancelCollateral: Allows the cancellation of the collateral by the owner of the

collateral.

● setUpVault: Setup vault address by the admin role owner.

ZexusLender.sol
● acceptLoanExtensionAsLender: Accept borrower offer as lender by the original

loaner.



● setUpVault: Setup vault address by the admin role owner.

ZexusSecurity.sol
● pause: Triggers stopped state by the admin role owner.

● unpause: Returns to normal state by the admin role owner.

ZexusStorage.sol
● updateZexusWallet: Allow updating the platform wallet by the admin role owner.

● updateBorrowersOffers: Allow updating collateral metadata by the zexus role

owner.

● updateBorrowersOffersNfts: Allow updating collateral nfts by the zexus role owner.

● updateBorrowersOffersCollateral: Allow updating collateral terms by the zexus role

owner.

● deleteBorrowersOffers: Delete Borrowers Offers by the zexus role owner.

● updateActiveCollaterals: Update Active Collaterals by the zexus role owner.

● deleteActiveCollaterals: Delete Active Collaterals by the zexus role owner.

● updateCurrency: Update currency by the zexus role owner.

● updateNftWhitelisted: Update Nft Whitelisted by the zexus role owner.

● useNonce: Use Nonce by the zexus role owner.

● collateralId: Collateral ID by the zexus role owner.

● loanId: Loan ID by the zexus role owner.

AccessControl.sol
● grantRole: Grants `role` to `account` can be set by the owner.

● revokeRole: Revokes `role` from `account` by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.



Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed 3 low severity issues in the smart

contracts. We confirm that all issues have been fixed in the revised smart contract code.

So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - Zexus Finance

Utils Diagram



Vault Diagram



ZexusBorrower Diagram



ZexusCollateral Diagram



ZexusLender Diagram



ZexusSecurity Diagram



ZexusStorage Diagram



Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> Utils.sol



Slither log >> Vault.sol

Slither log >> ZexusBorrower.sol



Slither log >> ZexusCollateral.sol



Slither log >> ZexusLender.sol



Slither log >> ZexusSecurity.sol

Slither log >> ZexusStorage.sol



Solidity Static Analysis

Utils.sol



Vault.sol



ZexusBorrower.sol



ZexusCollateral.sol





ZexusLender.sol



ZexusStorage.sol



Solhint Linter

Utils.sol

Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/token/ERC721/IERC721.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:4
global import of path Events.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:6
global import of path IStorage.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:7
global import of path IUtils.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:8
global import of path Model.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:10
global import of path ./ZexusSecurity.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:11
Explicitly mark visibility of state
Pos: 5:17
Explicitly mark visibility of state
Pos: 5:25
Explicitly mark visibility of state
Pos: 5:26
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:28

Vault.sol

Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement



Pos: 1:1
global import of path
@openzeppelin/contracts/token/ERC721/IERC721.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:4
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:5
global import of path IVault.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:6
global import of path ./ZexusSecurity.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:7
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:15

ZexusBorrower.sol

Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/token/ERC721/IERC721.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:4
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:5
global import of path IVault.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:7
global import of path IUtils.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:8
global import of path IStorage.sol is not allowed. Specify names to



import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:9
global import of path Model.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:11
global import of path Events.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:12
global import of path TransferHelper.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:13
global import of path IBorrower.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:16
Explicitly mark visibility of state
Pos: 5:24
Explicitly mark visibility of state
Pos: 5:25
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:29
Avoid making time-based decisions in your business logic
Pos: 34:51
Avoid making time-based decisions in your business logic
Pos: 21:113
Avoid making time-based decisions in your business logic
Pos: 13:145
Avoid making time-based decisions in your business logic
Pos: 34:223
Error message for require is too long
Pos: 9:231

ZexusCollateral.sol

Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path Model.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:3
global import of path Events.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:4
global import of path
@openzeppelin/contracts/token/ERC721/IERC721.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:8



global import of path ./ZexusSecurity.sol is not allowed. Specify
names to import indivdually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:9
Explicitly mark visibility of state
Pos: 5:15
Explicitly mark visibility of state
Pos: 5:16
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:20
Error message for require is too long
Pos: 9:42
Error message for require is too long
Pos: 9:95
Error message for require is too long
Pos: 9:103
Error message for require is too long
Pos: 9:204

ZexusLender.sol

Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/token/ERC721/IERC721.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:4
global import of path IUtils.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:8
global import of path IStorage.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:9
Unexpected import of console file
Pos: 1:11
global import of path hardhat/console.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:11
global import of path Model.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:13
global import of path Events.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name



(import "path" as Name)
Pos: 1:14
global import of path TransferHelper.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:15
global import of path ./ZexusSecurity.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:17
global import of path ILender.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:18
Explicitly mark visibility of state
Pos: 5:28
Explicitly mark visibility of state
Pos: 5:29
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:32
Error message for require is too long
Pos: 9:49
Avoid making time-based decisions in your business logic
Pos: 28:92
Avoid making time-based decisions in your business logic
Pos: 17:121
Avoid making time-based decisions in your business logic
Pos: 39:151

ZexusSecurity.sol

Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
global import of path @openzeppelin/contracts/security/Pausable.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:4
global import of path
@openzeppelin/contracts/security/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:5
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:10

ZexusStorage.sol



Compiler version ^0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path @openzeppelin/contracts/utils/Counters.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:3
global import of path Model.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:5
global import of path IStorage.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:6
global import of path ./ZexusSecurity.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:7
Explicitly mark visibility of state
Pos: 5:14
Explicitly mark visibility of state
Pos: 5:15
Explicitly mark visibility of state
Pos: 5:16
Explicitly mark visibility of state
Pos: 5:25

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.




