
Project: Pulse Rich
Domain: pulserich.app
Platform: Ethereum PLUS Network
Language: Solidity
Date: January 19th, 2024

https://pulserich.app

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Claimed Smart Contract Features …………………………………………………………….. .6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Pulse Rich team to perform the Security audit of the
Pulse Rich smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on January 19th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Pulse Rich is a contract that can be divided into multiples, each with unique

functionalities:

○ PulseRich: This contract is utilized for mint NFTs, which can be paid with

USDC, HEX, eHEX, PLSX, or PLS tokens.

○ PulseRichPulseRewards: This contract is utilized for withdrawing rewards

and registering a new Nft for rewards.

● There are 2 smart contracts, which were included in the audit scope.

● The Pulse Rich NFT contract inherits Strings, SafeERC20, IERC20,

ReentrancyGuard standard smart contracts from the OpenZeppelin library. An

ERC721r contract inherited from the middlemarch contracts.These OpenZeppelin

contracts and middlemarch contracts are considered community audited and time

tested, and hence are not part of the audit scope.

● The token is without any other custom functionality and without any ownership

control, which makes it truly decentralized.

Audit scope

Name Code Review and Security Analysis Report for Pulse
Rich Smart Contracts

Platform Ethereum PLUS Network

Language Solidity

File 1 PulseRich.sol

File 2 PulseRichPulseRewards.sol

Audit Date January 19th, 2024

Revised Audit Date February 15th, 2024

https://gist.github.com/pulsebitcoinlock/b3cbbf4e20500e1f29f55c1494e006b9
https://gist.github.com/pulsebitcoinlock/814e7b55ca4230536f11050b447f4585

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 PulseRich.sol

● This contract is utilized for mint NFTs, which can be paid

with USDC, HEX, eHEX, PLSX, or PLS tokens.

● OpenZeppelin library used.

● Middlemarch library used.

Ownership Control:
● There are no owner functions, which makes it 100%

decentralized.

YES, This is valid.

File 2 PulseRichPulseRewards.sol
● The owner of NFT can withdraw rewards.

● The owner of NFT can register a new NFT for rewards.

● OpenZeppelin library used.

Ownership Control:
● There are no owner functions, which makes it 100%

decentralized.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does not have any ownership control, hence it is 100%
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 4 very low level issues.
All the issues have been fixed/acknowledged in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Moderated
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Pulse Rich are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Pulse Rich Protocol.

The Pulse Rich team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Pulse Rich smart contract code in the form of a gist.github.com web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://gist.github.com/

AS-IS overview
PulseRich.sol : Functions List

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 usdcMint external non Reentrant No Issue
3 eHexMint external non Reentrant No Issue
4 hexMint external non Reentrant No Issue
5 plsxMint external non Reentrant No Issue
6 plsMint external non Reentrant No Issue
7 tokenURI read Passed No Issue
8 getTokenIdsByWallet external Passed No Issue
9 totalSupply read Passed No Issue
10 name read Passed No Issue
11 symbol read Passed No Issue
12 numberMinted read Passed No Issue
13 _mintRandom internal Passed No Issue
14 _mintAtIndex internal Passed No Issue
15 getAvailableTokenAtIndex write Passed No Issue
16 _setExtraAddressData internal Passed No Issue
17 _getAddressExtraData internal Passed No Issue
18 _incrementAmountMinted write Passed No Issue
19 nonReentrant modifier Passed No Issue
20 _nonReentrantBefore write Passed No Issue
21 _nonReentrantAfter write Passed No Issue
22 _reentrancyGuardEntered internal Passed No Issue
23 getReferrerNames read Passed No Issue

PulseRichPulseRewards.sol : Functions List

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 receive external Passed No Issue
3 withdrawRewards write Passed No Issue
4 registerNftForRewards write Passed No Issue
5 currentDay external Passed No Issue
6 _currentDay internal Passed No Issue
7 _senderIsTokenOwner internal Passed No Issue
8 bulkRegister write non Reentrant No Issue
9 bulkWithdraw write non Reentrant No Issue
10 nonReentrant modifier Passed No Issue
11 _nonReentrantBefore write Passed No Issue
12 _nonReentrantAfter write Passed No Issue
13 _reentrancyGuardEntered internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) Commented code: PulseRich.sol

Commented code is present.

Resolution: Please remove commented code as code of standard.

Status: Fixed

(2) Use latest solidity version: PulseRichPulseRewards.sol

Using the latest solidity will prevent any compiler level bugs.

Resolution: Please use the latest solidity versions.
Status: Acknowledged

(3) Parameter can be immutable:

PulseRich.sol

PulseRichPulseRewards.sol

Variables that are set within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution: Consider marking this variable as immutable.

Status: Acknowledged

(4) Not able to get token ID for wallet address: PulseRich.sol

Since the NFT's are minted in random so token ids are in random so to view token ids for

particular wallet the to and from token ids will be in large numbers so iterating large

numbers will result in out of gas error.

Status: Acknowledged

Centralization Risk

The Pulse Rich smart contract does not have any ownership control, hence it is 100%

decentralized.

Therefore, there is no centralization risk.

Conclusion

We were given a contract code in the form of a gist.github.com web link. And we have

used all possible tests based on given objects as files. We had observed 4 Informational

severity issues in the smart contracts. All the issues have been fixed/acknowledged in the

revised smart contract code. So, the smart contracts are ready for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

https://gist.github.com/

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - Pulse Rich Protocol

PulseRich Diagram

PulseRichPulseRewards Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> PulseRich.sol

Slither log >> PulseRichPulseRewards.sol

Solidity Static Analysis
PulseRich.sol

PulseRichPulseRewards.sol

Solhint Linter

PulseRich.sol

Compiler version ^0.8.16 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path @middlemarch/erc721r/contracts/ERC721r.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:3
global import of path @openzeppelin/contracts/utils/Strings.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:4
global import of path
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol is not
allowed. Specify names to import individually or bind all exports of
the module into a name (import "path" as Name)
Pos: 1:5
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:6
global import of path
@openzeppelin/contracts/security/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:7
Constant name must be in capitalized SNAKE_CASE
Pos: 5:28
Explicitly mark visibility of state
Pos: 5:31
Explicitly mark visibility of state
Pos: 5:32
Explicitly mark visibility of state
Pos: 5:33
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:50
Error message for require is too long
Pos: 9:59
Avoid making time-based decisions in your business logic
Pos: 13:145
Avoid making time-based decisions in your business logic
Pos: 13:171
Provide an error message for require
Pos: 9:189
Provide an error message for require
Pos: 9:192
Avoid making time-based decisions in your business logic
Pos: 13:201
Code contains empty blocks
Pos: 21:241

PulseRichPulseRewards.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/security/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
Explicitly mark visibility of state
Pos: 5:10
Variable name must be in mixedCase
Pos: 5:10
Variable name must be in mixedCase
Pos: 5:11
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:22
Variable name must be in mixedCase
Pos: 17:22
Visibility modifier must be first in list of modifiers
Pos: 23:27
Code contains empty blocks
Pos: 32:27
Error message for require is too long
Pos: 9:32
Error message for require is too long
Pos: 9:33
Error message for require is too long
Pos: 9:34
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:39
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:40
Error message for require is too long
Pos: 9:44
Error message for require is too long
Pos: 9:45
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:60
Avoid making time-based decisions in your business logic
Pos: 17:68

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

