

SMART CONTRACT AUDIT REPORT

For

Banknet Token (Order #02​ ​MAY2019)

Prepared By​: Yogesh Padsala ​Prepared For​:​ ​Banknet Token

Prepared on​: 02/05/2019 ​https://banknetico.com

audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Gas Optimization Discussion

9. Discussions and improvements

10. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following file:

● https://etherscan.io/address/0x18e46125233cb973cc04ae4f0a8f1ff63ed

9541c#code

It contains ​224 lines of Solidity code. All the functions and state variables are

well commented, which raises readability.

The audit was performed by Yogesh Padsala, from EtherAuthority. Yogesh has

extensive work experience of developing and auditing the smart contracts.

This smart contract reflects correct data according to white paper found at:

https://banknetico.com/wp-content/uploads/2019/04/finalwhitepaper-1.pdf

This audit procedure also included the use of automated software to further

scan of the code to identify potential issues:

For example:

https://tool.smartdec.net/scan/23bcca626d2b4886a12e2f8c92f294a0

We checked those reports carefully and confirm that some of the warnings,

either are just for information purpose or not very critical for our use case!

EtherAuthority Limited (www.EtherAuthority.io)

https://etherscan.io/address/0x18e46125233cb973cc04ae4f0a8f1ff63ed9541c#code
https://etherscan.io/address/0x18e46125233cb973cc04ae4f0a8f1ff63ed9541c#code
https://banknetico.com/wp-content/uploads/2019/04/finalwhitepaper-1.pdf
https://tool.smartdec.net/scan/23bcca626d2b4886a12e2f8c92f294a0

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version is old Not Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Visibility not explicitly declared Not Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop N/A

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set N/A

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: ​PASSED

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks on

the code. Some of those are as below:

3.1: Over and under flows

SafeMath library is used in the contract, which prevented the possibility of

overflow and underflow attacks.

3.2: Short address attack

Although this contract ​is not vulnerable to this attack, it is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DoS)

There ​is No ​any process consuming loops in the contracts which can be used

for DoS attacks. and thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Accept ownership
It is often time overlooked by developers by just transferring ownership of

address provided. We have seen incidents when ownership transferred to

wrong address by mistake. So, to mitigate this human error, accept ownership

function is a good thing.

4.2 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transfer() function.

4.3 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.3 No unnecessary validations

The SafeMath library checks for user token balance, as well as overflow. Hence,

no need for extra validation conditions, which is good thing.

4.4 Unstuck token transfer

The function, transferAnyERC20Token, allows owner to unstuck any tokens

sent to this contract by mistake.

EtherAuthority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No Critical vulnerabilities found - Good job team!

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found - Good job again!

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version can be fixed

The contracts has lower solidity version than current one. This version gap is

not too much and does not break anything, or generate any vulnerabilities.

However, it is good practice to deploy the contract having latest solidity

version.

7.2: Explicit visibility declaration

Line number #107, #109, #110 does not have explicit visibility specified.

Solidity takes “public” visibility by default, but it is good practice to specify

visibility explicitly.

EtherAuthority Limited (www.EtherAuthority.io)

8. Gas Optimization Discussion

=> The Contract is most optimum for the gas cost. There is no gas expensive

loops, or logical unnecessary processes.

9. Discussions and improvements

9.1 No direct burn function

This contract does not have direct burn function. So, to burn any tokens, users

have to send that to zero address (0x0).

9.2 approve() of ERC20 Standard

To prevent attack vectors regarding approve() like the one described here:

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh

4DYKjA_jp-RLM/edit , clients SHOULD make sure to create user interfaces in

such a way that they set the allowance first to 0 before setting it to another

value for the same spender. THOUGH the contract itself shouldn't enforce it, to

allow backwards compatibility with contracts deployed before

9.3 While using SafeMath library

We ​do not recommend using SafeMath library for all arithmetic operations. It

is good practice to use explicit checks where it is really needed, and to avoid

extra checks where overflow/underflow is impossible, which is done here

optimally!

9.4 Consider using upgradable contracts

It many times happens, where contract owner would need to upgrade the

contract or to add any important feature in the contract.

https://github.com/zeppelinos/labs/tree/master/upgradeability_using_unstruc

tured_storage

On flip side, this pattern centralises the process removing immutability of the

contract. So, consider this only if this pattern is okay with your business model.

EtherAuthority Limited (www.EtherAuthority.io)

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://github.com/zeppelinos/labs/tree/master/upgradeability_using_unstructured_storage
https://github.com/zeppelinos/labs/tree/master/upgradeability_using_unstructured_storage

10. Summary of the Audit

Overall, the code is simple and straightforward. apart from few improvements

suggested above, rest is pretty good.

Compiler showed 10 warnings, as below:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

EtherAuthority Limited (www.EtherAuthority.io)

