

SMART CONTRACT AUDIT REPORT

For

Crypto Miner Token (Order # FO711C99)

Prepared By: Yogesh Padsala Prepared For: CryptoCloud solutions

Prepared on: 04/10/2018 https://minertoken.cloud

audit@etherauthority.io

Ether Authority Limited (www.EtherAuthority.io)

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Discussions and improvements

9. Summary of the audit

Ether Authority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following file:

• CryptoMinerToken.sol

It contains approx 343 lines of Solidity code. All the functions and state

variables are not well commented using the natspec documentation. However,

that does not raise any vulnerability. It just increases the readability.

The audit was performed by Yogesh Padsala, from Ether Authority Limited.

Yogesh has extensive work experience of developing and auditing the smart

contracts.

The audit was based on the solidity compiler 0.4.25+commit.59dbf8f1 with

optimization enabled compiler in remix.ethereum.org

This audit was also performed the verification of the details exit in the main

website: https://minertoken.cloud

Ether Authority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

3.1: Over and under flows

This contract does check for overflows and underflows by using

OpenZeppelin's SafeMath to mitigate this attack, and all the functions have

strong validations, which prevented this attack.

3.2: Short address attack

Although this contract is not vulnerable to this attack, It is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

No such issues found in this smart contract and visibility also properly

addressed.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DOS)

There is no process consuming loops in the contracts which can be used for

DoS attacks. Also, there is no progressing state based on external calls, and

thus this contract is not prone to DoS.

Ether Authority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern

While transferring ether, this contract does all the process first and then

transfers the ether. This is very good practice which prevents reentrancy

possibility. The functions are: exit() and withdraw().

4.2 Declaring the variable as constant

If the state variables are not supposed to be changed, then it is good

practice to declare them as constant. It saves less gas compared to

the variables which are not declared as constant.

4.3 Minimum data stored in the contract

This contract stores very minimum amount of data in the smart contract,

which is really good thing as that minimize the gas cost to users of the contract

down the road.

4.4 Good validations

This contract processes loop with good validations as well as functions are

having good require conditions.

4.4 Good things in the code

• transfer function

This function validates amount of tokens, gives ether if dividend is

available, and also does all the checking first before transfering the tokens.

Ether Authority Limited (www.EtherAuthority.io)

• reinvest function

This function checks for the dividends. And it processes token transfet

after doing all other process in the end, which is a good thing.

• purchaseTokens function

All the variables are created first and then all the validations are being

done. Main thing is that the payout is done to user after all the validations

which is a good thing.

• sell function

This functions does a great validations before selling tokens.

Ether Authority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No critical vulnerabilities found

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found

7. Low severity vulnerabilities found

7.1: Deprecated element

At line #157, using contract member "balance" inherited from the address type

is deprecated in new solidity version. Convert the contract to "address" type to

access the member. Please use as like this:

return address(this).balance;

7.2: Compiler version should be fixed

Although, this is not a big issue, but source files indicate the versions of the

compiler they can be compiled with.

pragma solidity ^0.4.17; // bad: compiles w 0.4.17 and above

pragma solidity 0.4.17; // good : compiles w 0.4.17 only

It is recommended to follow the second example, as future compiler versions

may handle certain language constructions in a way the developer did not

foresee.

Ether Authority Limited (www.EtherAuthority.io)

7.3 No return statement in buy function

There is no return value for a function whose signature only denotes the type

of the return value

If you don't need the return value of the function, do not specify returns in

function signature.

7.4 Costly loop possibility

The function sqrt() implements ‘while’ loop. In ideal condition that does not

raise any problem as there will not be many iterations. But still there is

possibility where loop can go out of control and which max out the block’s gas

limit making the contract stuck. Please try to put logic to restrict more

potential iterations.

7.5 Unchecked Math

Safemath library is included, which is good thing. But at some place, it is not

used.

This is not a big issue, as validations are done well. But it is good practice to

use it at all the mathematical calculations. Following lines does not have

safemath used.

#248, #179, #149, #255, #270-276, #311, #248, #249, #263, #125, #150, #197,

#148, #106, #295-298, #128, #89, #124, #243, #231, #185, #171, #70, #90,

#107

Please implement Safemath at those places.

Ether Authority Limited (www.EtherAuthority.io)

8. Discussions and improvements

8.1 Putting higher degree of control

It is good idea to put ability for owner to put safeguard in the code. So, let’s say

for example, there would be any un-intended event occurred in the future,

then owner can put a safeguard and which prevents all the process from

happening until the issue is resolved.

This can be easily achieved by declaring a variable for that, which can be used

in all the functions. Admin can make this variable true or false. Another way is

to create modifier for that and use it in every function.

8.2 Declaring custom function for require () validation

It is good idea to create a custom function for the require condition, and make

an Event to fire in case of failed “required” validation. It helps client to better

understand why any possible error occurred.

bool internal dorequireRevert; // <=== IMPORTANT DEBUG/REVERT SWITCH

 // false => keep going but emit RequireFailed

 // true => do the revert

function dorequire(bool testresult, string message) internal {

 if (!testresult) {

 emit RequireFailed(message);

 if (dorequireRevert) {

 require(false, message);

 }

 }

}

dorequire (1 != 0, "one is not equal zero!");

Ether Authority Limited (www.EtherAuthority.io)

8.3 Timestamp dependence awareness

This contract depends on the timestamp as places like #130 and #257. There is

nothing wrong in that but please be aware that the timestamp of the block can

be slightly manipulated by the miner.

8.4 Style guide violation

In Solidity, function and event names usually start with a lower- and uppercase

letter respectively:

function foo(); // good

event LogFoo(); // good

Violating the style guide decreases readability and may lead to confusion.

Thus, please follow the style guide at these lines: #27, #36, #44, #50

Ether Authority Limited (www.EtherAuthority.io)

9. Summary of the Audit

Overall the code performs good data validations as well as meets the

calculations according to the information presented in the website:

https://minertoken.cloud

The compiler also displayed 25 warnings:

Now, we checked those warnings are due to their static analysis, which

includes like gas errors and all. So, it is important to supply correct gas values

while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

There are many places in the contract where many variables are marked as

“Private”. One thing to understand is that, making variables private, does not

make a them invisible. Miners have access to all contracts’ code and data.

Developers must account for the lack of privacy in Ethereum

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

