

SMART CONTRACT AUDIT REPORT

For

Cryptoxygen Token (Order #​ ​26DEC2018A)

Prepared By​: Yogesh Padsala ​Prepared For​: Cryptoxygen OU

Prepared on​: 26/12/2018 ​https://www.cryptoxygen-stage.com

Revised on:​ 03/01/2019

audit@etherauthority.io

https://www.cryptoxygen-stage.com/

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Gas cost optimization discussion

9. Discussions and improvements

10. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following file:

● CryptoxygenToken.sol

The source code present at:

https://kovan.etherscan.io/address/0x45d75933d0345d65c1506153b59c0b08

b5b4d817#code

It contains approx 378 lines of Solidity code. All the functions and state

variables are ​not well commented using the natspec documentation, but that

does not raise any vulnerabilities. But It would have increased the readability.

https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Form

at

The audit was performed by Yogesh Padsala, from EtherAuthority Limited.

Yogesh has extensive work experience of developing and auditing the smart

contracts.

The audit was based on the solidity compiler 0.5.2+commit.1df8f40c with

optimization enabled compiler in ​remix.ethereum.org​.

This audit was also performed verification of the details exist in whitepaper:

https://www.cryptoxygen-stage.com/assets/whitepaper/cryptoxygen.pdf

EtherAuthority Limited (www.EtherAuthority.io)

https://kovan.etherscan.io/address/0x45d75933d0345d65c1506153b59c0b08b5b4d817#code
https://kovan.etherscan.io/address/0x45d75933d0345d65c1506153b59c0b08b5b4d817#code
https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format
https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop Passed

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk Evil mint/burn Passed

The maximum limit for mintage not set Passed

“Fake Charge” Attack Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Auto Fuzzing Passed

Overall Audit Result: ​PASSED

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

3.1: Over and under flows

This contract ​does ​check for overflows and underflows by using

OpenZeppelin's SafeMath to mitigate this attack, and all the functions have

strong validations, which prevented this attack.

3.2: Short address attack

Although this contract ​is not vulnerable to this attack, it is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly at most places. Although visibility is not

specified at some places , which are discussed below.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DOS)

There is no process consuming loops in the contracts which can be used for

DoS attacks. Also, there is no progressing state based on external calls, and

thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Declaring variables as constant
The value of variables at line number #309, #310, #312, #313, #314, etc., is not

expected to change. Thus it is good thing to declare them as constant, which

helps reduce the gas cost.

4.2 Admin control over token transfer

This is always considered a great practice for the owner to halt or resume the

token transfer and other process. This is really useful in any unexpected event

or any controlled token transfer logic.

Here, owner can stop token transfer by calling stop() function, and resume it

back again by calling start() function.

4.3 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transferFrom()

function.

4.4 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

EtherAuthority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No Critical Vulnerabilities found

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium Vulnerabilities found

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Non-initialized return value

The preSale() function at line number #346 doesn't initialize return value. This

is not a big issue as default value will be returned. But it is good practice not to

specify returns in function signature, if return value is not required.

7.2: Implicit visibility level

At line number #111, #112, #316, #317, #318, #319, #321, #322, #323, #324,

#325, #326, #328, #329, #330, #331, #332, the visibility was not specified

explicitly.

Now, this is not a big issue, as it takes default to “internal” for state variables.

But it is good practice to explicitly declare the visibility of the state variables.

https://solidity.readthedocs.io/en/develop/contracts.html#visibility-and-getters

EtherAuthority Limited (www.EtherAuthority.io)

8. Gas Optimization Discussion

=> Contract is most optimum for the gas cost

9. Discussions and improvements

9.1 The SafeERC20 Library

This library is not used anywhere in the code. So better to remove it to make

code clean, unless there is any intentional use of it.

9.2 Update hard-coded addresses

It is good idea to add a functions which enables owner to update/change

founders and developer address. This is useful in case of compromisation of

any of those accounts.

9.3 approve() of ERC20 Standard

To prevent attack vectors regarding approve() like the one described here:

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh

4DYKjA_jp-RLM/edit , clients SHOULD make sure to create user interfaces in

such a way that they set the allowance first to 0 before setting it to another

value for the same spender. THOUGH the contract itself shouldn't enforce it, to

allow backwards compatibility with contracts deployed before

9.4 Custom error message in require() function

It is good idea to specify a custom error message in require function, which can

be useful in GUI and error debugging down the road.

9.5 While using SafeMath library

The SafeMath library is doing the great job to prevent overflow and underflow.

However, it is recommended ​NOT to use it when overflow/underflow is

impossible. Because please keep in mind that every unnecessary checks

contribute to increased gas cost!

EtherAuthority Limited (www.EtherAuthority.io)

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

10. Summary of the Audit

Overall the code performs good data validations as well as meets the

correctness of data according to the information presented in the whitepaper:

https://www.cryptoxygen-stage.com/assets/whitepaper/cryptoxygen.pdf

The compiler also displayed 23 warnings:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be ​safely ignored ​as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

EtherAuthority Limited (www.EtherAuthority.io)

