

SMART CONTRACT AUDIT REPORT

For

DeposiTOKEN (Order #06​ ​MAR2019A)

Prepared By​: Yogesh Padsala ​Prepared For​:​ ​DeposiTOKEN

Prepared on​: 06/03/2019 ​https://depositoken.com

Revised on​: 25/03/2019

audit@etherauthority.io

https://depositoken.com/

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Gas Optimization Discussion

9. Discussions and improvements

10. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following files:

● https://etherscan.io/address/0xb8d66804440c6e21376ce23e6eaa76843

a45401a#code

● https://etherscan.io/address/0x3896fcffff3a48c24ad1b2c2a0ba9e9a32a

e982d#code

It contains approx 594 lines of Solidity code. All the functions and state

variables are ​not well commented using the natspec documentation. However

that does not raise any vulnerability.

The audit was performed by Yogesh Padsala, from EtherAuthority. Yogesh has

extensive work experience of developing and auditing the smart contracts.

This audit procedure also included the use of automated software to further

scan of the code to identify potential issues:

DepositToken_10.sol

https://tool.smartdec.net/scan/a03dfd34bffb4115bcfe9ed43ad5d574

DepositAsset.sol

https://tool.smartdec.net/scan/83b991ac6cbc448b94127655e3971415

We checked those reports carefully and confirm that some of the warnings,

either are just for information purpose or not relevant to our use case!

EtherAuthority Limited (www.EtherAuthority.io)

https://tool.smartdec.net/scan/a03dfd34bffb4115bcfe9ed43ad5d574
https://tool.smartdec.net/scan/83b991ac6cbc448b94127655e3971415

Quick Stats:

Overall Audit Result: ​PASSED

EtherAuthority Limited (www.EtherAuthority.io)

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version is old Not Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop N/A

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

3.1: Over and under flows

SafeMath library is used in the contract, which prevented the possibility of

overflow and underflow attacks.

3.2: Short address attack

Although this contract ​is not vulnerable to this attack, it is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DoS)

There ​is No ​any process consuming loops in the contracts which can be used

for DoS attacks. and thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transfer() function.

4.2 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.3 Good input validations

This function checks available referrer bonus as well other things before doing

ether transfer. This pattern is really helpful to prevent re-entrancy attack.

4.4 Declaring variables as constant
The value of many variables in both the contracts, is not expected to change.

Thus it is good thing to declare them as constant, which helps reduce the gas

cost.

EtherAuthority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No Critical vulnerabilities found

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version can be fixed

Both contracts have lower solidity version than current one. This version gap is

not too much and does not break anything, or generate any vulnerabilities.

However, it is good practice to deploy the contract having latest solidity

version at the time of contract deployment.

EtherAuthority Limited (www.EtherAuthority.io)

8. Gas Optimization Discussion

=> Both Contracta are most optimum for the gas cost. There is no gas

expensive loops, or logical unnecessary processes.

9. Discussions and improvements

9.1 No ERC20 compliance in DepositToken_10 contract

This contract does not have approve, tranferFrom, etc functions.. and other

ERC20 components. So if you might want to add your tokens to any exchanges

in future, then it would be difficult to do. It is good idea just to keep those

function, even if you are not using it. Just those might be helpful in the future.

9.2 approve() of ERC20 Standard in DepositAsset contract

To prevent attack vectors regarding approve() like the one described here:

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh

4DYKjA_jp-RLM/edit , clients SHOULD make sure to create user interfaces in

such a way that they set the allowance first to 0 before setting it to another

value for the same spender. THOUGH the contract itself shouldn't enforce it, to

allow backwards compatibility with contracts deployed before

9.3 While using SafeMath library

We ​do not recommend using SafeMath library for all arithmetic operations. It

is good practice to use explicit checks where it is really needed, and to avoid

extra checks where overflow/underflow is impossible.

9.4 Consider using upgradable contracts

It many times happens, where contract owner would need to upgrade the

contract or to add any important feature in the contract. So, it’s good idea to

use upgradible pattern in contract.

https://github.com/zeppelinos/labs/tree/master/upgradeability_using_unstru

ctured_storage

EtherAuthority Limited (www.EtherAuthority.io)

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

10. Summary of the Audit

Overall, the code is simple and straightforward. apart from few improvements

suggested above, rest is pretty good.

Compiler showed 19 warnings, as below:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

EtherAuthority Limited (www.EtherAuthority.io)

