

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer​:​​ PrestigeClub
Prepared on​: 15/11/2020
Revised on: ​ 19/11/2020
Platform​: Ethereum
Language​: Solidity

audit@etherauthority.io

Table of contents

Document 4

Introduction 5

Project Scope 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions​ 9

Audit ​Findings ​9

Conclusion 12

Disclaimers 13

Document

EtherAuthority Limited (www.EtherAuthority.io)

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT IT SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN BE

USED INTERNALLY BY THE CUSTOMER OR IT CAN BE DISCLOSED

PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED - UPON

DECISION OF CUSTOMER.

Name Smart Contract Code Review and Security
Analysis Report for Prestige Club

Platform Ethereum / Solidity

MD5 hash BFADA8FC61A2F695CFB07AFCFE558B4D

File name PrestigeClub.sol

SHA256 hash
5BDD56C2DC0B6F226914A2FFBE91CC43C384B7AE02C564BCB0A1
53B79E6D776A

Date 15/11/2020

Introduction

EtherAuthority.io (Consultant) was contracted by ​Prestige Club Team
(Customer) to conduct a Smart Contracts Code Review and Security
Analysis. This report presents the findings of the security assessment of
Customer`s smart contracts and its code review conducted between Nov,
10th, 2020 – Nov 15th, 2020.

Project Scope

The scope of the project is ​Prestige Club​ smart contract.

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered (the full list includes them but is not
limited to them):

• Reentrancy
• Timestamp Dependence
• Gas Limit and Loops
• DoS with (Unexpected) Throw
• DoS with Block Gas Limit
• Transaction-Ordering Dependence
• Byte array vulnerabilities
• Style guide violation
• Transfer forwards all gas
• ERC20 API violation
• Malicious libraries
• Compiler version not fixed
• Unchecked external call - Unchecked math
• Unsafe type inference
• Implicit visibility level

EtherAuthority Limited (www.EtherAuthority.io)

Executive Summary

According to the assessment and after audit revisions, Customer`s
solidity smart contract is: ​well secured.

 You are here

Our team performed analysis of code functionality, manual audit and
automated checks with smartDec, Mythril, Slither and remix IDE. All
issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section.
General overview is presented in the AS-IS section and all found issues
can be found in the Audit overview section.

We found​ 1 high, ​2 medium​ ​and 0 low and some very low level issues.
We revised them again and they are resolved in the latest version.

Code Quality

Prestige Club protocol consists of modular smart contracts, which

interact with each other . This modularization increases the efficiency of

the code execution flow. This type of structure of smart contracts

increases ease of code writing in the development process.

The Prestige Club team has ​not ​provided scenario and unit test scripts,

which would help to determine the integrity of the code in an automated

way. Overall, the code is commented on necessary places to improve

readability. Commenting can provide rich documentation for functions,

return variables and more. Use of Ethereum Natural Language

Specification Format (NatSpec) for commenting is recommended.

EtherAuthority Limited (www.EtherAuthority.io)

Documentation

As mentioned above, Commenting was done at necessary places. It's

recommended to write comments in NatSpec format.

We were given a Prestige Club defi document, which is very helpful in

understanding the overall architecture of the protocol. It also provided a

clear overview of the system components, including helpful details, like

the lifetime of the background script.

Use of Dependencies
As per our observation, library-like contracts are used in this smart

contract infrastructure. Those were based on well known industry

standard open source projects. We found no serious issues in that.

Smart contract has ownerOnly functions, which owner can execute to

carry out admin level functionalities.

EtherAuthority Limited (www.EtherAuthority.io)

AS-IS overview

Prestige Club​ contract overview

Prestige Club ​is a smart contract that provides decentralized financial
activities to the users.​ ​Its file format is described below:

Contract:​ Context

Inherit:​ null

About:​ This contract provides context in the form of msg.sender and

msg.data.

Observation: ​Since this smart contract is not being used in GSN, or any

externally called contract. so, this contract can be safely removed and can be

used msg.serder and msg.data directly. This will save some gas. On another

hand, the presence of this contract does not create any major issue.

Test Report: ​All passed including security check.

Score: ​Passed
Conclusion: ​Passed

Contract:​ Ownable

Inherit:​ context

About:​ This contract allows the owner to do admin based financial activities.

Observation: ​Transfer ownership is ACTIVE. If the owner sent ownership to

invalid address by mistake (we have seen such scenarios in which the owner

does this by mistake in hurry), then it will render the smart contract ownerless.

It is recommended to implement acceptOwnership functions (described in

Audit Finding section)

Test Report: ​All passed including security check.

Score: ​Passed

Conclusion: ​Passed

EtherAuthority Limited (www.EtherAuthority.io)

Sl. Function Type Observation Test Report Conclusion Score
1 _msgSender read Passed All Passed No Issue Passed
2 _msgData read Passed All Passed No Issue Passed

Sl. Function Type Observation Test Report Conclusion Score
1 owner read Passed All Passed No Issue Passed
2 Transferownership write Passed All Passed No Issue Passed

Contract:​ Pausable

Inherit:​ Context

About:​ This contract allows the owner to pause/unpause some activities.

Observation: ​Passed

Test Report: ​All passed including security check.

Score: ​Passed
Conclusion: ​Passed

Contract:​ Prestigeclub

Inherit:​ ownable, Pausable

About:​ This contract provides users to do team based financial activities.

Observation: ​Use of SafeMath recommended.

Test Report: ​We found the possibility of re-entrency in the withdraw function

(more details in the audit finding section below). Also, safemath should be

implemented to prevent overflow/underflow possibility. So, this must be

resolved before going to production.

Score: ​Passed after revision
Conclusion: ​Passed

EtherAuthority Limited (www.EtherAuthority.io)

Sl. Function Type Observation Test Report Conclusion Score
1 Paused read Passed All Passed No Issue Passed
2 _Pause write Passed All Passed No Issue Passed
3 _unpause write passed All Passed No Issue Passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 receive write Passed All Passed No Issue Passed
3 UpdateUpline read Passed All Passed No Issue Passed
4 UpdatePayout write Passed All Passed No Issue Passed
5 getInterestPayout read Passed All Passed No Issue Passed
6 getPoolPayout read Passed All Passed No Issue Passed
7 getDownlinePayout read Passed All Passed No Issue Passed
8 getDirectsPayout read Passed All Passed No Issue Passed
9 PushPoolState write Passed All Passed No Issue Passed
10 UpdateUserPool write Passed All Passed No Issue Passed
11 UpdateDownlineBonusSt

age
write Passed All Passed No Issue Passed

12 CalculateDirects read Passed All Passed No Issue Passed
13 CalculateDirects read Passed All Passed No Issue Passed
14 Withdraw write Passed All Passed No Issue Passed

Severity Definitions

EtherAuthority Limited (www.EtherAuthority.io)

15 _SetReferral write Passed All Passed No Issue Passed
16 totalDeposits read Passed All Passed No Issue Passed
17 invest write Passed All Passed No Issue Passed
18 reinvest write Passed All Passed No Issue Passed
19 SetMinDeposit write Passed All Passed No Issue Passed
20 SetMinWithdraw write Passed All Passed No Issue Passed
21 Pause write Passed All Passed No Issue Passed
22 Unpause write Passed All Passed No Issue Passed
23 getUserData read Passed All Passed No Issue Passed
24 getUserList write Passed All Passed No Issue Passed
25 getusers write Passed All Passed No Issue Passed
26 triggerCalculation write Passed All Passed No Issue Passed

 Risk Level Description

 Critical Critical vulnerabilities are usually straightforward to

 exploit and can lead to tokens loss etc.

 High-level vulnerabilities are difficult to exploit;

 High
 however, they also have significant impact on smart

 contract execution, e.g. public access to crucial

 functions

 Medium
 Medium-level vulnerabilities are important to fix;

 however, they can’t lead to tokens lose

 Low-level vulnerabilities are mostly related to

 Low outdated, unused etc. code snippets, that can’t have

 significant impact on execution

 Lowest / Code Lowest-level vulnerabilities, code style violations

 Style / Best and info statements can’t affect smart contract

 Practice execution and can be ignored.

Audit Findings

Critical Vulnerabilities

(1) Double Spend (reentrancy) might be attacked. In withdraw function,

variable update should be before transfer initiation. (as in the image

below, the green box should be above the red box)

Revision: This issue was fixed by Prestige club team

High Severity Vulnerabilities

No high severity vulnerabilities were found.

Medium Severity Vulnerabilities

(1) SafeMath is not used. Some test cases may trigger overflow /

underflow. Although it costs very little extra gas, it gives protection

against such attacks. There are unlimited potential use case

scenarios where it might go wrong. So, it's better to eliminate that

entirely using SafeMath. Please implement it from open zepelin:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master

/contracts/math/SafeMath.sol

Revision: This issue was fixed by Prestige club team

EtherAuthority Limited (www.EtherAuthority.io)

(2) Multiplication after division, this may lead to 0 return values in some

lower input values. It is a good practice to do all multiplications first

and then divide it last. So, the equation would be:

deposit * quote / 10000

Revision: This issue was fixed by Prestige club team

Low Severity Vulnerabilities

No low severity vulnerabilities were found.

Very Low Severity Vulnerabilities (Resolved and acknowledged)

(1) ​Expansive loop, loop is limited by array length in line 379 and 465, If it is

limited by plan then OK else needs to change to avoid function call fail or

High Gas consumption

(2) Other errors indicated by static tool analysis can be ignored for

production.

EtherAuthority Limited (www.EtherAuthority.io)

(3) Please make the ownership transfer function PASSIVE. In other words,

sending ownership to any wallet directly to invalid wallet by mistake can

create problems (we have seen such scenarios happen to contract

owners). In passive transfer, the new owner must accept ownership for the

actual ownership to be transferred. Please use following structure:

 function transferOwnership(address _newOwner) public onlyOwner {

 newOwner = _newOwner;

 }

 //this flow is to prevent transferring ownership to wrong wallet by mistake

 function acceptOwnership() public {

 require(msg.sender == newOwner);

 emit OwnershipTransferred(owner, newOwner);

 owner = newOwner;

 newOwner = address(0);

 }

EtherAuthority Limited (www.EtherAuthority.io)

Conclusion

We were given a contract file. And we have used all possible tests based

on given objects as files. The contract is mostly commented. We

recommend using the NatScap standard.

Since possible test cases can be unlimited for such extensive smart

contract protocol, so we provide no such guarantee of future outcomes.

We have used all the latest static tools and manual observations to

cover maximum possible test cases to scan everything.

Smart contracts within the scope, were manually reviewed and analyzed

with static analysis tools. Smart Contract’s high level description of

functionality was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in

the reviewed code.

Security state of contracts after audit revision is, ​Well Secured​. This
contract is good to go for the production.

EtherAuthority Limited (www.EtherAuthority.io)

Disclaimers

EtherAuthority.io Disclaimer

The smart contracts given for audit have been analyzed in accordance
with the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Because the total number of test cases are unlimited, so the audit makes
no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of
the code, bugfree status or any other statements of the contract. While
we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a public
bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

