

SMART CONTRACT AUDIT REPORT

For

W GREEN PAY (Order #​​ ​12DEC2018A)

Prepared By​​: Yogesh Padsala ​Prepared For​​:​ ​W GLOBAL INVESTMENT

Prepared on​​: 12/12/2018 ​https://www.wpay.sg

audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Discussions and improvements

9. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following files:

● lockupWGP.sol

It contains approx 75 lines of Solidity code. All the functions and state variables

are ​not well commented using the natspec documentation. However that does

not raise any vulnerability.

The audit was performed by Yogesh Padsala, from EtherAuthority Limited.

Yogesh has extensive work experience of developing and auditing the smart

contracts.

The audit was based on the solidity compiler 0.5.1+commit.c8a2cb62 with

optimization enabled compiler in ​remix.ethereum.org

This audit is for a additional feature implementation, as per document

provided.

EtherAuthority Limited (www.EtherAuthority.io)

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Not Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated No Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop No Passed

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk Evil mint/burn Passed

The maximum limit for mintage not set Passed

“Fake Charge” Attack Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Auto Fuzzing Passed

Overall Audit Result: ​​PASSED

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

3.1: Over and under flows

Althogh SafeMath library is included in the contract, but there is no necessary

of using it, as there are no possibility of over and under flows anywhere in both

the contracts.

3.2: Short address attack

Although this contract ​is not vulnerable to this attack, it is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DOS)

There ​is ​​a process consuming loops in the contracts which can be used for DoS

attacks. But that is in the owner only function, which means very less likely

owner himself will do DoS to his own contract. Also, there is no progressing

state based on external calls, and thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transfer() function.

4.2 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.3 Good input validations

This function checks whether there is recipient address exist as well as

startDate is also added. Since that is updated by the owner, so it is good

practice to check that before doing further token transfer.

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No Critical vulnerabilities found

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found

EtherAuthority Limited (www.EtherAuthority.io)

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Costly Loop

At line #56, the function named, airdropToken() having loop which can go to

infinite.

Now, we understand that is owner only function, and owner never do DoS

attack to his own contract, but again, it is always better to place some kind of

iteration limitations to prevent any unexpected mistakes.

A require function which limits array.length to less than 200 will ideally useful.

7.2: Old compiler version

The code is not compatible with solidity latest version 0.5.1. So, it is highly

recommended to make the code compatible to it.

There are so many breaking changes introduced from version 0.5.0:

https://solidity.readthedocs.io/en/v0.5.0/050-breaking-changes.html

7.3: Extra gas consumption

At line #57, recipients.length is used in the for loop. So, while using state

variable, .length in the condition of for loop, every iteration of loop consumes

extra gas.

So, it is recommended to store that value in a variable and then use it in the

loop. For example:

uint256 recipientsLength = recipients.length;

for (uint256 i = 0; i < recipientsLength; i++) {

wgp.transfer(recipients[i], values[i] * 10**18);

}

Also, it would be better if token value would be in WEI to save some gas.

EtherAuthority Limited (www.EtherAuthority.io)

https://solidity.readthedocs.io/en/v0.5.0/050-breaking-changes.html

8. Discussions and improvements

8.1 Lock period of tokens can be influenced by owner

The function releaseWgp() in WgpHolder contract does prevent the token

transfer for the start date + 180 days.

However, this lock period can be influenced by the owner by changing the start

date at any time. So, if owner set start date as 1 and so that condition will pass

and he can do the token transfer.

8.2 While using SafeMath library

SafeMath library is not used anywhere in both the contracts. So, better to

remove the following lines, just to save some little gas:

using SafeMath for uint256;

8.3 Consider using self-destruct function

It many times happens, where contract owner would need to upgrade the

contract or to add any important feature in the contract.

So, the only way that can be possible by creating brand new contract and

destroying the old one. And that time, self-destruct comes to help.

EtherAuthority Limited (www.EtherAuthority.io)

9. Summary of the Audit

Overall, the code is simple and straightforward. apart from few improvements

suggested above, rest is pretty good.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

EtherAuthority Limited (www.EtherAuthority.io)

