
Customer:     HOKK  Token
Platform: Ethereum, Heco Chain,

Binance Smart Chain
Language: Solidity
Date: October 18th, 2021



Table of contents

Introduction  ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats  …..……………………………………………………………………… 7

Code Quality  ……………………………………………………………………………………. 8

Documentation  ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 24

Our Methodology ………………………………………………………………………………... 25

Disclaimers ………………………………………………………………………………………. 27

Appendix

● Code Flow Diagram ……………………………………………………………………... 28

● Slither Results Log ………………………………………………………………………. 31

● Solidity static analysis ….……………………………………………………………….. 44

● Solhint Linter …………………………………………………………………….……….. 54

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.2et92p0
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.tyjcwt
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.4d34og8


THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
EtherAuthority was contracted by the HOKK Token team to perform the Security audit of
the HOKK Token smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on October 18th, 2021.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
HOKK Finance is a community-centric decentralized finance (DeFi) project.

Audit scope

Name Code Review and Security Analysis Report for
HOKK Token Smart Contract

Platform Ethereum / Solidity

File 1 HOKK_ETH.sol

File 1 MD5 Hash CAB9FCD99C2316F1B1E34D8E9185084C

File 2 HOKK_BEP.sol

File 2 MD5 Hash C1660C6C24A033D7A9B5056FDFDDAF79

File 3 HOKK_HECO.sol

File 3 MD5 Hash 35A7A2CD58C4BF01DEFB82F247F51A68

Audit Date October 18th, 2021



Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 : HOKK_ETH.sol
● Name: Hokkaido Inu

● Symbol: HOKK

● Decimals: 18

● Rewards Fee: 4%

● Liquidity Fee: 4%

● Total Supply : 1 billion

YES, This is valid.

File 2 : HOKK_BEP.sol
● Name: Hokkaido Inu

● Symbol: HOKK

● Decimals: 18

● Rewards Fee: 4%

● Liquidity Fee: 1%

● Marketing Fee: 3%

● Maximum Sell Transaction Amount:

100,000,000

● Swap Tokens At Amount: 2,00,000

● Gas For Processing: 5,00,000

YES, This is valid.

File 3 : HOKK_HECO.sol
● Name: Hokkaido Inu

● Symbol: HOKK

● Decimals: 18

● Rewards Fee: 4%

● Liquidity Fee: 1%

● Marketing Fee: 3%

● Maximum Sell Transaction Amount:

50,000,000

● Swap Tokens At Amount: 200,000

● Gas For Processing: 500,000

YES, This is valid.



Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 14 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability Passed
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Code Quality
This audit scope has 3 smart contract files. Smart contracts also contain Libraries, Smart

contracts inherits and Interfaces.  These are compact and well written contracts.

The libraries in HOKK are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties / methods can be reused many times by

other contracts in the  HOKK Token.

The HOKK Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are Not well commented on smart contracts.

Documentation

We were given a HOKK smart contract code in the form of a code form of a file. The

hashes of that code are mentioned above in the table.

As mentioned above, code parts are Not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the Token.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects. And their core code blocks

are written well.

Apart from libraries,  its functions are not used in external smart contract calls.



AS-IS overview

HOKK_ETH.sol
Functions

Sl. Functions Type Observation No Issue
1 constructor read Passed No Issue
2 activate write access only Owner No Issue
3 onlyBridge modifier Passed No Issue
4 doConstructorStuff external Empty function defined Refer audit

findings section
below

5 receive external Passed No Issue
6 setAutomatedMarketMak

erPair
write access only Owner No Issue

7 _setAutomatedMarketM
akerPair

write Passed No Issue

8 excludeFromFees write access only Owner No Issue
9 updateGasForTransfer external access only Owner No Issue

10 allowTransferBeforewTra
dingIsEnabled

write access only Owner No Issue

11 updateGasForProcessin
g

write access only Owner No Issue

12 setBridgeAddresses write access only Owner No Issue
13 swapAcrossChain write Passed No Issue
14 portMessage write access only Bridge No Issue
15 updateClaimWait external access only Owner No Issue
16 getGasForTransfer external Passed No Issue
17 enableDisableDevFee write Passed No Issue
18 setMaxBuyEnabled external access only Owner No Issue
19 getClaimWait external Passed No Issue
20 getTotalDividendsDistrib

uted
external Passed No Issue

21 isExcludedFromFees write Passed No Issue
22 withdrawableDividendOf read Passed No Issue
23 dividendTokenBalanceOf read Passed No Issue
24 getAccountDividendsInfo external Passed No Issue
25 getAccountDividendsInfo

AtIndex
external Passed No Issue

26 processDividendTracker external Passed No Issue
27 claim external Passed No Issue
28 getLastProcessedIndex external Passed No Issue
29 getNumberOfDividendTo

kenHolders
external Passed No Issue

30 _transfer internal False return functions Refer audit
findings section

below



31 withdrawDividend write False return functions Refer audit
findings section

below
32 swapAndSendToDev write Passed No Issue
33 sendEthToDev internal Compile error Refer audit

findings section
below

34 swapTokensForEth write Passed No Issue
35 swapAndSendDividends write Passed No Issue
36 name read Passed No Issue
37 symbol read Passed No Issue
38 decimals read Passed No Issue
39 totalSupply read Passed No Issue
40 balanceOf read Passed No Issue
41 transfer write Passed No Issue
42 allowance read Passed No Issue
43 approve write Passed No Issue
44 transferFrom write Passed No Issue
45 increaseAllowance write Passed No Issue
46 decreaseAllowance write Passed No Issue
47 _transfer internal Transfer 0 amount Refer audit

findings section
below

48 _mint internal Passed No Issue
49 _burn internal Passed No Issue
50 _approve internal Passed No Issue
51 _beforeTokenTransfer internal Passed No Issue
52 owner read Passed No Issue
53 onlyOwner modifier Passed No Issue
54 renounceOwnership write access only Owner No Issue
55 transferOwnership write access only Owner No Issue

HOKK_BEP.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor read Passed No Issue
2 onlyBridge modifier Wrong validation Refer audit

findings
section below

3 _transfer internal Passed No Issue
4 withdrawDividend write Passed No Issue
5 excludeFromDividends external access only Owner No Issue
6 updateClaimWait external access only Owner No Issue
7 getLastProcessedIndex external Passed No Issue
8 getNumberOfTokenHolde

rs
external Passed No Issue



9 getAccount write Passed No Issue
10 getAccountAtIndex write Passed No Issue
11 canAutoClaim read Passed No Issue
12 setBalance external access only Owner No Issue
13 process write Passed No Issue
14 processAccount write access only Owner No Issue
15 updateDividendTracker write access only Owner No Issue
16 receive external Passed No Issue
17 updateUniswapV2Router write access only Owner No Issue
18 setMarketingWallet write access only Owner No Issue
19 excludeFromFees write access only Owner No Issue
20 excludeMultipleAccounts

FromFees
write access only Owner No Issue

21 setAutomatedMarketMak
erPair

write access only Owner No Issue

22 _setAutomatedMarketMa
kerPair

write Passed No Issue

23 setBridgeAddresses write access only Owner No Issue
24 swapAcrossChain write Passed No Issue
25 portMessage write access only Bridge No Issue
26 updateLiquidityWallet write access only Owner No Issue
27 updateGasForProcessin

g
write access only Owner No Issue

28 updateClaimWait external access only Owner No Issue
29 getClaimWait external Passed No Issue
30 getTotalDividendsDistribu

ted
external Passed No Issue

31 isExcludedFromFees read Passed No Issue
32 withdrawableDividendOf read Passed No Issue
33 dividendTokenBalanceOf read Passed No Issue
34 getAccountDividendsInfo external Passed No Issue
35 getAccountDividendsInfo

AtIndex
external Passed No Issue

36 processDividendTracker external Passed No Issue
37 claim external Passed No Issue
38 getMarketingFeePercent read Passed No Issue
39 getLastProcessedIndex external Passed No Issue
40 getNumberOfDividendTo

kenHolders
external Passed No Issue

41 _transfer internal Passed No Issue
42 swapAndLiquify write Passed No Issue
43 swapTokensForEth write Passed No Issue
44 addLiquidity write Passed No Issue
45 sendBNBToMarketing write Passed No Issue
46 swapAndSendDividends write Passed No Issue



HOKK_HECO.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor read Passed No Issue
2 onlyBridge modifier Wrong validation Refer audit

findings
section below

3 receive external Passed No Issue
4 updateDividendTracker write access only Owner No Issue
5 setMarketingWallet write access only Owner No Issue
6 excludeFromFees write access only Owner No Issue
7 excludeMultipleAccounts

FromFees
write Infinite loop possibility Refer audit

findings
section below

8 setAutomatedMarketMak
erPair

write access only Owner No Issue

9 _setAutomatedMarketMa
kerPair

write Passed No Issue

10 updateLiquidityWallet write access only Owner No Issue
11 updateGasForProcessin

g
write access only Owner No Issue

12 updateClaimWait external access only Owner No Issue
13 getClaimWait external Passed No Issue
14 getTotalDividendsDistribu

ted
external Passed No Issue

15 isExcludedFromFees read Passed No Issue
16 withdrawableDividendOf read Passed No Issue
17 dividendTokenBalanceOf read Passed No Issue
18 getAccountDividendsInfo external Passed No Issue
19 getAccountDividendsInfo

AtIndex
external Passed No Issue

20 processDividendTracker external Passed No Issue
21 claim external Passed No Issue
22 getMarketingFeePercent read Passed No Issue
23 getLastProcessedIndex external Passed No Issue
24 getNumberOfDividendTo

kenHolders
external Passed No Issue

25 setBridgeAddresses write access only Owner No Issue
26 swapAcrossChain write Passed No Issue
27 portMessage write access only Bridge No Issue
28 _transfer internal Passed No Issue
29 swapAndLiquify write Passed No Issue
30 swapTokensForEth write Passed No Issue
31 addLiquidity write Centralized risk in

addLiquidity
Refer audit

findings
section below

32 sendHTToMarketing write Passed No Issue



33 swapAndSendDividends write Passed No Issue
34 _transfer internal False return functions Refer audit

findings
section below

35 withdrawDividend write False return functions Refer audit
findings

section below
36 excludeFromDividends external access only Owner No Issue
37 updateClaimWait external access only Owner No Issue
38 getLastProcessedIndex external Passed No Issue
39 getNumberOfTokenHolde

rs
external Passed No Issue

40 getAccount write Passed No Issue
41 getAccountAtIndex read Passed No Issue
42 canAutoClaim read Passed No Issue
43 process write Passed No Issue
44 setBalance external access only Owner No Issue
45 processAccount write access only Owner No Issue



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level  vulnerabilities  are  difficult  to  exploit; however,
they  also  have  significant  impact  on  smart contract
execution,  e.g.  public  access  to  crucial

Medium Medium-level  vulnerabilities  are  important  to  fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.



Audit Findings

Critical

No Critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

File : HOKK_ETH.sol

(1) Transferred 0 amount:

Transfers 0 amounts.

Resolution: We suggest avoiding 0 amounts to get transferred.

(2) Compile error:

Exactly one argument expected for explicit type conversion.

Resolution: Add address to avoid this error

(3) Commented code in if condition:

Only commented code is there inside the if condition.



Resolution: We suggest removing that condition to reduce gas fees.

(4) Critical operation lacks event log:

Missing event log for :

● portMessage

● sendEthToDev

● claim

● swapAcrossChain.

Resolution: Please write an event log for listed events.

FILE : HOKK_BEP.sol

(1) Definition of base has to precede definition of derived contract:

Resolution: Define Context contract before Ownable and IERC20 Interface before

IERC20Metadata.

(2) Expected identifier but got reserved keyword for solidity compiler version older than

0.6.9:

Expected identifier but got reserved keyword 'immutable'.



Resolution: Remove "Immutable" keyword

(3) Data location must be "storage" or "memory" for solidity compiler version older than

0.6.9:

Data location must be "storage" or "memory" for return parameter in function, but "calldata"

was given.

Resolution: Instead of "calldata" add "memory" type.

(4) Centralized risk in addLiquidity:

In addLiquidityETH function, liquidity wallet gets Tokens from the Pool. If the private key of

the liquidity wallet is compromised, then it will create a problem.



Resolution: Ideally this can be a governance smart contract. On another hand, the

liquidity can accept this risk and handle the private key very securely.

(5) Critical operation lacks event log:

Missing event log for :

● portMessage

● sendBNBToMarketing

● claim

● swapAcrossChain.

Resolution: Please write an event log for listed events.

(6) Function input parameters lack of check :

Variable validation is not performed in below functions :

● setMarketingWallet = wallet

● etBridgeAddresses = _port & _wallet

● withdrawableDividendOf = account

Resolution: Use validation : variable is not empty and should be greater than 0 and for

address type check variable is not address(0).

(7) Wrong validation:

In onlyBridge modifier, the caller is validated for bridgePort.

Resolution: Instead of bridgePort, it should be validated as bridgeAddress.

FILE : HOKK_HECO.sol

(1) Wrong Marketing wallet address:

As per the document, the marketing wallet is different. So the deployer has to change the

variable value before deploying the contract.



Resolution:This variable can be updated by the contract owner.

(2) Infinite loop possibility:

In the excludeMultipleAccountsFromFees function, the for loop does not have an

accountIds length limit , which costs more gas.

Resolution: Accounts limit should be limited in for loops.

(3) Critical operation lacks event log:

Missing event log for :

● portMessage

● sendHTToMarketing

● claim

● swapAcrossChain.

Resolution: Please write an event log for listed events.

(4) Centralized risk in addLiquidity:

In addLiquidityETH function, liquidity wallet gets Tokens from the Pool. If the private key of

the liquidity wallet is compromised, then it will create a problem.



Resolution:Ideally this can be a governance smart contract. On another hand, the liquidity

can accept this risk and handle the private key very securely.

(7) Wrong validation:

In onlyBridge modifier, the caller is validated for bridgePort.

Resolution: Instead of bridgePort, it should be validated as bridgeAddress.

Very Low / Informational / Best practices:

File : HOKK_ETH.sol

(1) Unused variable:

The variable has not been used anywhere.

Resolution: We suggest removing unused variable.

(2) Make variable constant:

This variable will be unchanged. So, please make it constant. It will save some gas.

Resolution: Declare this variable as constant. Just put a constant keyword.

(3) Empty function defined:

Empty function defined in contract.

Resolution: We suggest to remove empty function.

(4) False return functions:

These functions will always return 0 or False.



Resolution: We suggest removing this kind of function.

(5) Irrelevant variable name:

Here marketing fee is defined as Liquidity fee.

Resolution: The variable name should be marketing_fee.

FILE : HOKK_BEP.sol

(1) Multiple pragma added:

There are multiple pragma added in the code.

Resolution: We suggest keeping only pragma.

(2) Use the latest solidity version:

Using the latest solidity will prevent any compiler-level bugs.

Resolution: Please use 0.8.9 which is the latest version.

(3) SPDX license identifier is missing:

SPDX license identifier not provided in source file.

Resolution: We suggest adding SPDX license identifier.

(4) Missing error message:

Require without error message



.Resolution: Write appropriate error message.

FILE : HOKK_HECO.sol

(1) Multiple pragma added:

There are multiple pragma added in the code.

Resolution: We suggest keeping only pragma.

(2) Use the latest solidity version:

Using the latest solidity will prevent any compiler-level bugs.

Resolution: Please use 0.8.9 which is the latest version.

(3) SPDX license identifier is missing:

SPDX license identifier not provided in source file.

Resolution: We suggest adding SPDX license identifier.

(4) Make variable constant:

This variable will be unchanged. So, please make it constant. It will save some gas.

Resolution: Declare this variable as constant. Just put a constant keyword.

(5) False return functions:

These functions will always return 0 or False.

Resolution: We suggest removing this kind of function.



Centralization
These smart contracts have some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● activate: The Owner can activate the account address.

● doConstructorStuff: The Owner can do constructor stuff.

● setAutomatedMarketMakerPair: The Owner can set automated marketing marker

pairs.

● excludeFromFees: The owner can exclude from fees.

● updateGasForTransfer: The Owner can update gas for transfer.

● allowTransferBeforeTradingIsEnabled: The Owner can allow transfer before trading

is enabled or not.

● updateGasForProcessing: The Owner can update gas for processing.

● setBridgeAddresses: The Owner can set bridge addresses.

● portMessage: The Owner can port messages.

● updateClaimWait: The Owner can update the claim wait process.

● setMaxBuyEnabled: The Owner can set maximum  buy enabled.



Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We observed some issues in the smart contracts and those issues are not

critical ones. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high level description of functionality was presented in

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix

Code Flow Diagram - HOKK Token

HOKK-ETH Diagram



HOKK-BEP Diagram



HOKK-HECO Diagram



Slither Results Log

Slither log >> HOKK-ETH.sol







Slither log >> HOKK-BEP.sol











Slither log >> HOKK-HECO.sol











Solidity static analysis

HOKK-ETH.sol







HOKK-BEP.sol







HOKK-HECO.sol









Solhint Linter

HOKK-ETH.sol

HOKK_ETH.sol:2:1: Error: Compiler version ^0.8.4 does not satisfy the r
semver requirement
HOKK_ETH.sol:16:5: Error: Function name must be in mixedCase
HOKK_ETH.sol:180:5: Error: Function name must be in mixedCase
HOKK_ETH.sol:181:5: Error: Function name must be in mixedCase
HOKK_ETH.sol:198:5: Error: Function name must be in mixedCase
HOKK_ETH.sol:575:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
HOKK_ETH.sol:763:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
HOKK_ETH.sol:1017:24: Error: Code contains empty blocks
HOKK_ETH.sol:1028:31: Error: Constant name must be in capitalized
SNAKE_CASE
HOKK_ETH.sol:1051:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
HOKK_ETH.sol:1099:31: Error: Avoid using low level calls.
HOKK_ETH.sol:1214:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
HOKK_ETH.sol:1288:58: Error: Avoid to make time-based decisions in your
business logic
HOKK_ETH.sol:1288:94: Error: Avoid to make time-based decisions in your
business logic
HOKK_ETH.sol:1310:29: Error: Avoid to make time-based decisions in your
business logic
HOKK_ETH.sol:1313:16: Error: Avoid to make time-based decisions in your
business logic
HOKK_ETH.sol:1382:39: Error: Avoid to make time-based decisions in your
business logic
HOKK_ETH.sol:1409:5: Error: Explicitly mark visibility of state
HOKK_ETH.sol:1410:5: Error: Explicitly mark visibility of state
HOKK_ETH.sol:1481:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
HOKK_ETH.sol:1517:53: Error: Code contains empty blocks
HOKK_ETH.sol:1520:32: Error: Code contains empty blocks
HOKK_ETH.sol:1647:91: Error: Avoid to use tx.origin
HOKK_ETH.sol:1686:85: Error: Code contains empty blocks
HOKK_ETH.sol:1745:72: Error: Code contains empty blocks
HOKK_ETH.sol:1745:81: Error: Code contains empty blocks
HOKK_ETH.sol:1746:68: Error: Code contains empty blocks
HOKK_ETH.sol:1746:77: Error: Code contains empty blocks
HOKK_ETH.sol:1754:98: Error: Avoid to use tx.origin
HOKK_ETH.sol:1755:21: Error: Code contains empty blocks
HOKK_ETH.sol:1780:51: Error: Code contains empty blocks
HOKK_ETH.sol:1802:13: Error: Avoid to make time-based decisions in your
business logic
HOKK_ETH.sol:1810:27: Error: Avoid using low level calls.



HOKK-BEP.sol

HOKK_BEP.sol:2:1: Error: Compiler version ^0.6.2 does not satisfy the r
semver requirement
HOKK_BEP.sol:16:5: Error: Function name must be in mixedCase
HOKK_BEP.sol:180:5: Error: Function name must be in mixedCase
HOKK_BEP.sol:181:5: Error: Function name must be in mixedCase
HOKK_BEP.sol:198:5: Error: Function name must be in mixedCase
HOKK_BEP.sol:1011:24: Error: Code contains empty blocks
HOKK_BEP.sol:1022:29: Error: Constant name must be in capitalized
SNAKE_CASE
HOKK_BEP.sol:1042:88: Error: Code contains empty blocks
HOKK_BEP.sol:1090:25: Error: Avoid using low level calls.
HOKK_BEP.sol:1199:30: Error: Variable name must be in mixedCase
HOKK_BEP.sol:1206:5: Error: Explicitly mark visibility of state
HOKK_BEP.sol:1257:9: Error: Variable name must be in mixedCase
HOKK_BEP.sol:1298:32: Error: Code contains empty blocks
HOKK_BEP.sol:1444:85: Error: Avoid to use tx.origin
HOKK_BEP.sol:1533:72: Error: Code contains empty blocks
HOKK_BEP.sol:1533:81: Error: Code contains empty blocks
HOKK_BEP.sol:1534:68: Error: Code contains empty blocks
HOKK_BEP.sol:1534:77: Error: Code contains empty blocks
HOKK_BEP.sol:1540:89: Error: Avoid to use tx.origin
HOKK_BEP.sol:1542:13: Error: Code contains empty blocks
HOKK_BEP.sol:1587:13: Error: Avoid to make time-based decisions in your
business logic
HOKK_BEP.sol:1604:13: Error: Avoid to make time-based decisions in your
business logic
HOKK_BEP.sol:1619:27: Error: Avoid using low level calls.
HOKK_BEP.sol:1727:58: Error: Avoid to make time-based decisions in your
business logic
HOKK_BEP.sol:1728:71: Error: Avoid to make time-based decisions in your
business logic
HOKK_BEP.sol:1752:25: Error: Avoid to make time-based decisions in your
business logic
HOKK_BEP.sol:1756:13: Error: Avoid to make time-based decisions in your
business logic
HOKK_BEP.sol:1827:33: Error: Avoid to make time-based decisions in your
business logic

HOKK-HECO.sol

HOKK_HECO.sol:2:1: Error: Compiler version ^0.6.2 does not satisfy the
r semver requirement
HOKK_HECO.sol:17:5: Error: Function name must be in mixedCase
HOKK_HECO.sol:236:5: Error: Function name must be in mixedCase
HOKK_HECO.sol:238:5: Error: Function name must be in mixedCase
HOKK_HECO.sol:256:5: Error: Function name must be in mixedCase
HOKK_HECO.sol:1041:24: Error: Code contains empty blocks
HOKK_HECO.sol:1052:29: Error: Constant name must be in capitalized
SNAKE_CASE
HOKK_HECO.sol:1072:88: Error: Code contains empty blocks



HOKK_HECO.sol:1120:25: Error: Avoid to use low level calls.
HOKK_HECO.sol:1217:24: Error: Variable name must be in mixedCase
HOKK_HECO.sol:1218:30: Error: Variable name must be in mixedCase
HOKK_HECO.sol:1229:30: Error: Variable name must be in mixedCase
HOKK_HECO.sol:1238:5: Error: Explicitly mark visibility of state
HOKK_HECO.sol:1287:9: Error: Variable name must be in mixedCase
HOKK_HECO.sol:1301:6: Error: Variable name must be in mixedCase
HOKK_HECO.sol:1303:9: Error: Variable name must be in mixedCase
HOKK_HECO.sol:1328:32: Error: Code contains empty blocks
HOKK_HECO.sol:1452:85: Error: Avoid to use tx.origin
HOKK_HECO.sol:1557:72: Error: Code contains empty blocks
HOKK_HECO.sol:1557:81: Error: Code contains empty blocks
HOKK_HECO.sol:1558:68: Error: Code contains empty blocks
HOKK_HECO.sol:1558:77: Error: Code contains empty blocks
HOKK_HECO.sol:1564:89: Error: Avoid to use tx.origin
HOKK_HECO.sol:1566:13: Error: Code contains empty blocks
HOKK_HECO.sol:1611:13: Error: Avoid to make time-based decisions in
your business logic
HOKK_HECO.sol:1628:13: Error: Avoid to make time-based decisions in
your business logic
HOKK_HECO.sol:1643:27: Error: Avoid to use low level calls.
HOKK_HECO.sol:1751:58: Error: Avoid to make time-based decisions in
your business logic
HOKK_HECO.sol:1752:71: Error: Avoid to make time-based decisions in
your business logic
HOKK_HECO.sol:1776:25: Error: Avoid to make time-based decisions in
your business logic
HOKK_HECO.sol:1780:13: Error: Avoid to make time-based decisions in
your business logic
HOKK_HECO.sol:1851:33: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.




