
Project: Snow Thrive Protocol
Website: snowthrive.finance
Platform: Avalanche
Language: Solidity
Date: March 11th, 2022

https://snowthrive.finance/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 20

Audit Findings …………………………………………………………………………………… 21

Conclusion ………………………………………………………………………………………. 25

Our Methodology ………………………………………………………………………………... 26

Disclaimers ………………………………………………………………………………………. 28

Appendix

● Code Flow Diagram ……………………………………………………………………... 29

● Slither Results Log ………………………………………………………………………. 38

● Solidity static analysis ….……………………………………………………………….. 47

● Solhint Linter …………………………………………………………………….……….. 59

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Snow Thrive team to perform the Security audit of
the Snow Thrive Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 11th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Snow Thrive Contracts have functions like stake, withdraw, epoch, claimReward,

burn, mint, add and update pool, deposit, etc. The Snow Thrive contracts also inherits

ERC20Burnable, Math, IERC20, SafeERC20, ReentrancyGuard, SafeMath standard smart

contracts from the openzepelin library.

Audit scope

Name Code Review and Security Analysis Report for
Snow Thrive Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 HalfPipe.sol

File 1 MD5 Hash A51C068CDC9E26FD3164B6E7B80D817B

Updated File 1 MD5 Hash 5062E983A64F84D6B9E5DB48B776E963

File 2 Oracle.sol

File 2 MD5 Hash 342F8657975AB65AC5804897748148DA

Updated File 2 MD5 Hash C098DA341E0F55E5B5E3921C004B9CE8

File 3 STBond.sol

File 3 MD5 Hash 7EABFF7B2CEDEC0EF5B019565DF77610

Updated File 3 MD5 Hash F29B8FEC13017CE1D15077DDCE5AA35A

File 4 Thrive.sol

File 4 MD5 Hash D9A3FB1989576691A05946EB64598087

Updated File 4 MD5 Hash 294823E256AC01E63A276E6C7B729319

File 5 Treasury.sol

File 5 MD5 Hash 37AEC2296DC52D4ED5231805075ECEA4

Updated File 5 MD5 Hash D7A916A6954D7EA4CF2A7C52A6C7238A

File 6 Powder.sol

File 6 MD5 Hash 84B737600773E2E36F9F3653F26CFC93

Updated File 6 MD5 Hash FF92C4ACE5F572914D0B83E8FA44CA8D

File 7 ThriveGenesisRewardPool.sol

File 7 MD5 Hash 8BF0D3B40A169150A02BB8BE7E426C07

Updated File 7 MD5 Hash D658C43E6035B99107A22E6170294BCD

File 8 PowderRewardPool.sol

File 8 MD5 Hash 80D884E0BA8DE5471605436F8198D4D5

Updated File 8 MD5 Hash 8E74EEE6F5D166E5AB1FA81AE62820F0

File 9 PowderGenesisRewardPool.sol

File 9 MD5 Hash 823F944FFAC043DCBA53BDA3FA0497B7

Updated File 9 MD5 Hash 78E205B13F5B5DC687030A354DF46B6C

Audit Date March 11th,2022

Revise Audit Date March 22th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 HalfPipe.sol
● Withdraw Lockup Epochs: 6 Epochs

● Reward Lockup Epochs: 3

YES, This is valid.

File 2 Oracle.sol
● The Oracle contract can inherit Epoch class.

YES, This is valid.

File 3 STBond.sol
● Name: Snow Thrive Bonds

● Symbol: STBOND

YES, This is valid.

File 4 Thrive.sol
● Name: THRIVE

● Symbol: THRIVE

● Decimals: 18

● Initial distribution for the genesis pools: 24000

THRIVE

● Burn Threshold: 1.1 THRIVE

● Tax Tiers rate: 14

● Tax Tiers Twaps count:14

● Total Supply: 1 THRIVE

● Maximum Tax : 4.9%

YES, This is valid.

File 5 Treasury.sol
● Period: 8 hours

YES, This is valid.

File 6 Powder.sol
● Name: Thrive Shares

● Symbol: POWDER

● Decimals: 18

● Farming Pool Reward Allocation: 35000

POWDER

YES, This is valid.

● Community Fund Pool Allocation: 5000

POWDER

● Dev Fund Pool Allocation: 5000 POWDER

● Digits Dao Allocation: 5000 POWDER

● Powder Genesis Reward Allocation: 100

POWDER

● Vesting Duration: 365 days

● Total Supply: 1 POWDER

File 7 ThriveGenesisRewardPool.sol
● Total Rewards: 24000 THRIVE

● Running Time: 72 hours

● Maximum deposit fee : 5%

● Maximum withdraw fee : 5%

YES, This is valid.
Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

File 8 PowderRewardPool.sol
● Total Rewards: 35000 POWDER

● Running Time: 365 days

● Maximum deposit fee : 5%

● Maximum withdraw fee : 5%

YES, This is valid.
Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

File 9 PowderGenesisRewardPool.sol
● Total Rewards: 100 POWDER

● Running Time: 72 hours

● Maximum deposit fee : 5%

● Maximum withdraw fee : 5%

YES, This is valid.
Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.
And those issues are resolved/acknowledged by the dev team and thus the contract
is ready for the deployment.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 10 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Snow Thrive Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Snow Thrive Protocol.

The Snow Thrive Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Snow Thrive Protocol smart contract code in the form of a File. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://snowthrive.finance/ which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://snowthrive.finance/

AS-IS overview

HalfPipe.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 masonExists modifier Passed No Issue
4 updateReward modifier Passed No Issue
5 notInitialized modifier Passed No Issue
6 initialize write Passed No Issue
7 setOperator external access only Operator No Issue
8 setLockUp external access only Operator No Issue
9 latestSnapshotIndex read Passed No Issue

10 getLatestSnapshot internal Passed No Issue
11 getLastSnapshotIndexOf read Passed No Issue
12 getLastSnapshotOf internal Passed No Issue
13 canWithdraw external Passed No Issue
14 canClaimReward external Passed No Issue
15 epoch external Passed No Issue
16 nextEpochPoint external Passed No Issue
17 getThrivePrice external Passed No Issue
18 rewardPerShare read Passed No Issue
19 earned read Passed No Issue
20 stake write access only One

Block
No Issue

21 withdraw write access only One
Block

No Issue

22 exit external Passed No Issue
23 allocateSeigniorage external access only One

Block
No Issue

24 claimReward write Passed No Issue
25 governanceRecoverUnsu

pported
external access only One

Block
No Issue

26 totalSupply read Passed No Issue
27 balanceOf read Passed No Issue
28 stake write Passed No Issue
29 withdraw write Passed No Issue
30 onlyOneBlock modifier Passed No Issue
31 checkSameOriginReentra

nted
internal Passed No Issue

32 checkSameSenderReentr
anted

internal Passed No Issue

Oracle.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 update external access by check

Epoch
No Issue

3 consult external Passed No Issue
4 twap external Passed No Issue
5 checkStartTime modifier Passed No Issue
6 checkEpoch modifier Passed No Issue
7 getCurrentEpoch read Passed No Issue
8 getPeriod read Passed No Issue
9 getStartTime read Passed No Issue

10 getLastEpochTime read Passed No Issue
11 nextEpochPoint read Passed No Issue
12 setPeriod external access only Operator No Issue
13 setEpoch external access only Operator No Issue
14 operator read Passed No Issue
15 onlyOperator modifier Passed No Issue
16 isOperator read Passed No Issue
17 transferOperator write access only Owner No Issue
18 _transferOperator internal Passed No Issue

STBond.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write access only Operator No Issue
3 burn write Passed No Issue
4 burnFrom write access only Operator No Issue
5 name read Passed No Issue
6 symbol read Passed No Issue
7 decimals read Passed No Issue
8 totalSupply read Passed No Issue
9 balanceOf read Passed No Issue

10 transfer write Passed No Issue
11 allowance read Passed No Issue
12 approve write Passed No Issue
13 transferFrom write Passed No Issue
14 increaseAllowance write Passed No Issue
15 decreaseAllowance write Passed No Issue
16 _transfer internal Passed No Issue
17 _mint internal Passed No Issue
18 _burn internal Passed No Issue
19 _approve internal Passed No Issue

20 _beforeTokenTransfer internal Passed No Issue
21 _afterTokenTransfer internal Passed No Issue
22 burn write Passed No Issue
23 burnFrom write Passed No Issue
24 owner read Passed No Issue
25 onlyOwner modifier Passed No Issue
26 renounceOwnership write access only Owner No Issue
27 transferOwnership write access only Owner No Issue
28 _transferOwnership internal Passed No Issue
29 operator read Passed No Issue
30 onlyOperator modifier Passed No Issue
31 isOperator read Passed No Issue
32 transferOperator write access only Owner No Issue
33 _transferOperator internal Passed No Issue

Thrive.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _beforeTokenTransfer internal Passed No Issue
18 _afterTokenTransfer internal Passed No Issue
19 burn write Passed No Issue
20 burnFrom write Passed No Issue
21 owner read Passed No Issue
22 onlyOwner modifier Passed No Issue
23 renounceOwnership write access only Owner No Issue
24 transferOwnership write access only Owner No Issue
25 _transferOwnership internal Passed No Issue
26 operator read Passed No Issue
27 onlyOperator modifier Passed No Issue
28 isOperator read Passed No Issue

29 transferOperator write access only Owner No Issue
30 _transferOperator internal Passed No Issue
31 onlyTaxOffice modifier Passed No Issue
32 onlyOperatorOrTaxOffice modifier Passed No Issue
33 getTaxTiersTwapsCount read Passed No Issue
34 getTaxTiersRatesCount read Passed No Issue
35 isAddressExcluded read Passed No Issue
36 setTaxTiersTwap write access only Tax

Office
No Issue

37 setTaxTiersRate write access only Tax
Office

No Issue

38 setBurnThreshold write access only Tax
Office

No Issue

39 _getThrivePrice internal Passed No Issue
40 _updateTaxRate internal Passed No Issue
41 enableAutoCalculateTax write access only Tax

Office
No Issue

42 disableAutoCalculateTax write access only Tax
Office

No Issue

43 setThriveOracle write access only Operator
Or Tax Office

No Issue

44 setTaxOffice write access only Tax
Office

No Issue

45 setTaxCollectorAddress write access only Tax
Office

No Issue

46 setTaxRate write access only Tax
Office

No Issue

47 excludeAddress write access only Tax
Office

No Issue

48 includeAddress write access only Tax
Office

No Issue

49 mint write access only Operator No Issue
50 burn write Passed No Issue
51 burnFrom write access only Operator No Issue
52 transferFrom write Passed No Issue
53 _transferWithTax internal Passed No Issue
54 distributeReward external access only Operator No Issue
55 governanceRecoverUnsu

pported
external Function input

parameters lack of
check

Refer Audit
Findings

Treasury.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkCondition modifier Passed No Issue

4 checkEpoch modifier Passed No Issue
5 checkOperator modifier Passed No Issue
6 notInitialized modifier Passed No Issue
7 isInitialized read Passed No Issue
8 nextEpochPoint read Passed No Issue
9 getThrivePrice read Passed No Issue

10 getThriveUpdatedPrice read Passed No Issue
11 getReserver read Passed No Issue
12 getBurnableThriveLeft read Passed No Issue
13 getRedeemableBonds read Passed No Issue
14 getBondDiscountRate read Passed No Issue
15 getBondPremiumRate read Passed No Issue
16 initialize write Passed No Issue
17 setOperator external access only

Operator
No Issue

18 setMasonry external access only
Operator

No Issue

19 setThriveOracle external access only
Operator

No Issue

20 setThrivePriceCeiling external access only
Operator

No Issue

21 setMaxSupplyExpansionPercent
s

external access only
Operator

No Issue

22 setSupplyTiersEntry external access only
Operator

No Issue

23 setMaxExpansionTiersEntry external access only
Operator

No Issue

24 setBondDepletionFloorPercent external access only
Operator

No Issue

25 setMaxSupplyContractionPercen
t

external access only
Operator

No Issue

26 setMaxDebtRatioPercent external access only
Operator

No Issue

27 setBootstrap external access only
Operator

No Issue

28 setExtraFunds external access only
Operator

No Issue

29 setMaxDiscountRate external access only
Operator

No Issue

30 setMaxPremiumRate external access only
Operator

No Issue

31 setDiscountPercent external access only
Operator

No Issue

32 setPremiumThreshold external access only
Operator

No Issue

33 setPremiumPercent external access only
Operator

No Issue

34 setMintingFactorForPayingDebt external access only
Operator

No Issue

35 _updateThrivePrice internal Passed No Issue
36 getThriveCirculatingSupply read Passed No Issue
37 buyBonds external access only

One Block
No Issue

38 redeemBonds external access only
One Block

No Issue

39 _sendToMasonry internal Passed No Issue
40 _calculateMaxSupplyExpansion

Percent
internal Passed No Issue

41 allocateSeigniorage external access only
One Block

No Issue

42 excludeFromTotalSupply external access only
Operator

No Issue

43 includeToTotalSupply external access only
Operator

No Issue

44 governanceRecoverUnsupported external Function input
parameters

lack of check

Refer Audit
Findings

45 masonrySetOperator external access only
Operator

No Issue

46 masonrySetLockUp external access only
Operator

No Issue

47 masonryAllocateSeigniorage external access only
Operator

No Issue

48 masonryGovernanceRecoverUn
supported

external Function input
parameters

lack of check

Refer Audit
Findings

49 checkSameOriginReentranted internal Passed No Issue
50 checkSameSenderReentranted internal Passed No Issue
51 onlyOneBlock modifier Passed No Issue

Powder.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue

14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _beforeTokenTransfer internal Passed No Issue
18 _afterTokenTransfer internal Passed No Issue
19 burn write Passed No Issue
20 burnFrom write Passed No Issue
21 owner read Passed No Issue
22 onlyOwner modifier Passed No Issue
23 renounceOwnership write access only Owner No Issue
24 transferOwnership write access only Owner No Issue
25 _transferOwnership internal Passed No Issue
26 operator read Passed No Issue
27 onlyOperator modifier Passed No Issue
28 isOperator read Passed No Issue
29 transferOperator write access only Owner No Issue
30 _transferOperator internal Passed No Issue
31 setTreasuryFund external Passed No Issue
32 setDevFund external Passed No Issue
33 unclaimedTreasuryFund read Passed No Issue
34 unclaimedDevFund read Passed No Issue
35 unclaimedDigitsDaoFund read Passed No Issue
36 claimRewards external Passed No Issue
37 distributeReward external access only Operator No Issue
38 burn write Passed No Issue
39 governanceRecoverUns

upported
external Function input

parameters lack of
check

Refer Audit
Findings

ThriveGenesisRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only Operator No Issue
5 set write access only Operator No Issue
6 getGeneratedReward read Passed No Issue
7 pendingTHRIVE external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue

10 deposit write Passed No Issue
11 withdraw write Passed No Issue
12 emergencyWithdraw write Passed No Issue
13 safeThriveTransfer internal Passed No Issue
14 setOperator external access only Operator No Issue

15 governanceRecoverUns
upported

external Function input
parameters lack of

check

Refer Audit
Findings

PowderRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only

Operator
No Issue

5 set write access only
Operator

No Issue

6 getGeneratedReward read Passed No Issue
7 pendingShare external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue

10 deposit write Passed No Issue
11 withdraw write Passed No Issue
12 emergencyWithdraw write Passed No Issue
13 safeTShareTransfer internal Passed No Issue
14 setOperator external access only

Operator
No Issue

15 governanceRecoverUnsupp
orted

external Function input
parameters lack of

check

Refer Audit
Findings

PowderGenesisRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only Operator No Issue
5 set write access only Operator No Issue
6 getGeneratedReward read Passed No Issue
7 pendingPOWDER external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue

10 deposit write Passed No Issue
11 withdraw write Passed No Issue
12 emergencyWithdraw write Passed No Issue
13 safeThriveTransfer internal Passed No Issue

14 setOperator external access only Operator No Issue
15 governanceRecoverUns

upported
external Function input

parameters lack of
check

Refer Audit
Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check: PowderGenesisRewardPool.sol,
HalfPipe.sol, PowderRewardPool, ThriveGenesisRewardPool.sol, Powder.sol,
Thrive.sol, Treasury.sol

Variable validation is not performed in below functions :

governanceRecoverUnsupported, masonryGovernanceRecoverUnsupported

Resolution: We advise using validation like address type variables should not be

address(0).

(2) Missing Event Log: PowderGenesisRewardPool.sol, PowderRewardPool,
ThriveGenesisRewardPool.sol
Some functions need an event log.

● add

● set

● updatePool

● governanceRecoverUnsupported

Resolution: We suggest adding a log for listed events.

Very Low / Informational / Best practices:
(1) Variables should be made immutable:

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

PowderGenesisRewardPool.sol
powder, poolStartTime, poolEndTime, feeAddress

PowderRewardPool.sol
tshare, poolStartTime, poolEndTime, feeAddress

ThriveGenesisRewardPool.sol
thrive, poolStartTime, poolEndTime, feeAddress

Treasury.sol
thrive, stbond, powder, seigniorageExpansionFloorPercent

Powder.sol
startTime, endTime, communityFundRewardRate, devFundRewardRate,

digitsDaoRewardRate

Resolution: We suggest setting these variables as immutable.

(2) Make variables constant:

PowderGenesisRewardPool.sol
runningTime, powderPerSecond

PowderRewardPool.sol
runningTime, tSharePerSecond

ThriveGenesisRewardPool.sol
runningTime, thrivePerSecond

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● update: The Oracle checkEpoch owner can update 1-day EMA price from Uniswap.

● mint: The STBond Operator owner can mint an amount of token.

● burnFrom: The STBond Operator owner can burn an amount from the address.

● setTaxTiersTwap: The Thrive TaxOffice owner can set tax tiers.

● setTaxTiersRate: The Thrive TaxOffice owner can set tax tiers rate.

● setBurnThreshold: The Thrive TaxOffice owner can set burn threshold.

● enableAutoCalculateTax: The Thrive TaxOffice owner can enable auto calculate tax.

● disableAutoCalculateTax: The Thrive TaxOffice owner can disable auto calculate

tax.

● setThriveOracle: The Thrive Operator Or TaxOffice owner can set the thrive oracle

address.

● setTaxOffice: The Thrive Operator Or TaxOffice owner can set tax office address.

● setTaxCollectorAddress: The Thrive TaxOffice owner can set tax collector address.

● setTaxRate: The Thrive TaxOffice owner can set the tax rate.

● excludeAddress: The Thrive Operator Or TaxOffice owner can check if the address

can't be excluded.

● includeAddress: The Thrive Operator Or TaxOffice owner can check if the address

can't be included.

● mint: The Thrive Operator owner can mints THRIVE to a recipient address.

● burnFrom: The Thrive Operator owner can burn an amount from the address.

● distributeReward: The Thrive Operator owner can distribute to the reward pool.

● governanceRecoverUnsupported: The Thrive Operator owner can governance

recover unsupported.

● setOperator: The Treasury Operator can set the operator address.

● setMasonry: The Treasury Operator can set the masonry address.

● setThriveOracle: The Treasury Operator can set the thrive oracle address.

● setThrivePriceCeiling: The Treasury Operator can set the thrive price ceiling

amount.

● setMaxSupplyExpansionPercents: The Treasury Operator can set maximum supply

expansion percentages.

● setSupplyTiersEntry: The Treasury Operator can set supply tires entry value.

● setMaxExpansionTiersEntry: The Treasury Operator can set maximum expansion

tiers entry.

● setBondDepletionFloorPercent: The Treasury Operator can set bond depletion floor

percentage.

● setMaxSupplyContractionPercent: The Treasury Operator can set maximum supply

contraction percentage.

● setMaxDebtRatioPercent: The Treasury Operator can set maximum debt ratio

percentage.

● setBootstrap: The Treasury Operator can set bootstrap range.

● setExtraFunds: The Treasury Operator can set extra funds.

● setMaxDiscountRate: The Treasury Operator can set a maximum discount rate.

● setMaxPremiumRate: The Treasury Operator can set the maximum premium rate.

● setDiscountPercent: The Treasury Operator can set the discount percentage.

● setPremiumThreshold: The Treasury Operator can set a premium threshold.

● setPremiumPercent: The Treasury Operator can set a premium percentage.

● setMintingFactorForPayingDebt: The Treasury Operator can set the minting factor

for paying debt.

● buyBonds: The Treasury Operator can buy bonds amount.

● redeemBonds: The Treasury OneBlock can redeem bonds amount.

● allocateSeigniorage: The Treasury OneBlock can allocate seigniorage.

● excludeFromTotalSupply: The Treasury Operator can check if the address is

excluded From TotalSupply or not.

● includeToTotalSupply: The Treasury Operator can check if the address is included

From TotalSupply or not.

● governanceRecoverUnsupported: The Treasury Operator can transfer the amount

to governance to recover unsupported addresses.

● masonrySetLockUp: The Treasury Operator can set masonry lockup.

● masonryAllocateSeigniorage: The Treasury Operator can set masonry allocate

seigniorage.

● masonryGovernanceRecoverUnsupported: The Treasury Operator can set masonry

governance to recover unsupported token.

● distributeReward: The Powder Operator can distribute to the reward pool.

● governanceRecoverUnsupported: The Powder Operator can transfer governance

and transfer the amount to governance to recover unsupported addresses.

● add: The ThriveGenesisRewardPool Operator owner can add a new lp to the pool.

● set: The ThriveGenesisRewardPool Operator owner can update the given pool's

THRIVE allocation point.

● setOperator: The ThriveGenesisRewardPool Operator owner can set the operator

address.

● governanceRecoverUnsupported: The ThriveGenesisRewardPool Operator owner

can transfer the amount to governance to recover unsupported addresses.

● add: The PowderRewardPool Operator owner can add a new lp to the pool.

● set: The PowderRewardPool Operator owner can update the given pool's tSHARE

allocation point.

● setOperator: The PowderRewardPool Operator owner can set the operator

address.

● governanceRecoverUnsupported: The PowderRewardPool Operator owner can

transfer the amount to governance to recover unsupported addresses.

● add: The PowderGenesisRewardPool Operator owner can add a new lp to the

pool.

● set: The PowderGenesisRewardPool Operator owner can update the given pool's

POWDER allocation point.

● setOperator: The PowderGenesisRewardPool Operator owner can set the operator

address.

● governanceRecoverUnsupported: The PowderGenesisRewardPool Operator owner

can transfer the amount to governance to recover unsupported addresses.

● setOperator: The HalfPipe Operator can set the operator address.

● setLockUp: The HalfPipe Operator can set lockup addresses.

● stake: The HalfPipe OneBlock can add new stake.

● withdraw: The HalfPipe OneBlock can withdraw an amount.

● allocateSeigniorage: The HalfPipe OneBlock can allocate seigniorage.

● governanceRecoverUnsupported: The HalfPipe Operator can not allow drain core

tokens.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Snow Thrive Protocol

HalfPipe Diagram

Oracle Diagram

STBond Diagram

Thrive Diagram

Treasury Diagram

Powder Diagram

ThriveGenesisRewardPool Diagram

PowderRewardPool Diagram

PowderGenesisRewardPool Diagram

Slither Results Log

Slither log >> HalfPipe.sol

Slither log >> Oracle.sol

Slither log >> STBond.sol

Slither log >> Thrive.sol

Slither log >> Treasury.sol

Slither log >> Powder.sol

Slither log >> PowderRewardPool.sol

Slither log >> PowderGenesisRewardPool.sol

Slither log >> ThriveGenesisRewardPool.sol

Solidity Static Analysis

HalfPipe.sol

Oracle.sol

STBond.sol

Thrive.sol

Treasury.sol

ThriveGenesisRewardPool.sol

Powder.sol

PowderRewardPool.sol

PowderGenesisRewardPool.sol

Solhint Linter

HalfPipe.sol

HalfPipe.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the
r semver requirement
HalfPipe.sol:58:71: Error: Code contains empty blocks
HalfPipe.sol:85:28: Error: Avoid using low level calls.
HalfPipe.sol:159:51: Error: Avoid using low level calls.
HalfPipe.sol:213:51: Error: Avoid using low level calls.
HalfPipe.sol:235:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
HalfPipe.sol:409:38: Error: Avoid to use tx.origin
HalfPipe.sol:422:31: Error: Avoid to use tx.origin

Oracle.sol

Oracle.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Oracle.sol:24:5: Error: Contract name must be in CamelCase
Oracle.sol:30:5: Error: Contract name must be in CamelCase
Oracle.sol:118:5: Error: Function name must be in mixedCase
Oracle.sol:120:5: Error: Function name must be in mixedCase
Oracle.sol:139:5: Error: Function name must be in mixedCase
Oracle.sol:185:23: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:559:17: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:559:35: Error: Use double quotes for string literals
Oracle.sol:566:13: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:567:47: Error: Use double quotes for string literals
Oracle.sol:576:21: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:606:60: Error: Use double quotes for string literals

STBond.sol

STBond.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
STBond.sol:407:24: Error: Code contains empty blocks
STBond.sol:427:24: Error: Code contains empty blocks
STBond.sol:554:63: Error: Code contains empty blocks

Thrive.sol

Thrive.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Thrive.sol:792:24: Error: Code contains empty blocks
Thrive.sol:812:24: Error: Code contains empty blocks

Treasury.sol

Treasury.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the
r semver requirement
Treasury.sol:336:71: Error: Code contains empty blocks
Treasury.sol:363:28: Error: Avoid using low level calls.
Treasury.sol:437:51: Error: Avoid using low level calls.
Treasury.sol:491:51: Error: Avoid using low level calls.
Treasury.sol:513:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Treasury.sol:830:38: Error: Avoid to use tx.origin
Treasury.sol:843:31: Error: Avoid to use tx.origin
Treasury.sol:848:1: Error: Contract has 34 states declarations but
allowed no more than 15
Treasury.sol:934:17: Error: Avoid to make time-based decisions in
your business logic
Treasury.sol:940:17: Error: Avoid to make time-based decisions in
your business logic
Treasury.sol:1218:44: Error: Code contains empty blocks
Treasury.sol:1218:53: Error: Code contains empty blocks
Treasury.sol:1293:32: Error: Avoid to make time-based decisions in
your business logic
Treasury.sol:1298:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
Treasury.sol:1300:32: Error: Avoid to make time-based decisions in
your business logic
Treasury.sol:1308:28: Error: Avoid to make time-based decisions in
your business logic
Treasury.sol:1357:41: Error: Avoid to make time-based decisions in
your business logic

Powder.sol

Powder.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Powder.sol:605:24: Error: Code contains empty blocks
Powder.sol:625:24: Error: Code contains empty blocks
Powder.sol:811:24: Error: Avoid to make time-based decisions in your
business logic
Powder.sol:818:24: Error: Avoid to make time-based decisions in your
business logic
Powder.sol:825:24: Error: Avoid to make time-based decisions in your
business logic
Powder.sol:838:40: Error: Avoid to make time-based decisions in your

business logic
Powder.sol:843:34: Error: Avoid to make time-based decisions in your
business logic
Powder.sol:848:40: Error: Avoid to make time-based decisions in your
business logic

ThriveGenesisRewardPool.sol

ThriveGenesisRewardPool.sol:3:1: Error: Compiler version 0.6.12 does
not satisfy the r semver requirement
ThriveGenesisRewardPool.sol:33:71: Error: Code contains empty blocks
ThriveGenesisRewardPool.sol:60:28: Error: Avoid using low level
calls.
ThriveGenesisRewardPool.sol:134:51: Error: Avoid using low level
calls.
ThriveGenesisRewardPool.sol:188:51: Error: Avoid using low level
calls.
ThriveGenesisRewardPool.sol:210:17: Error: Avoid using inline
assembly. It is acceptable only in rare cases
ThriveGenesisRewardPool.sol:650:17: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:685:13: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:696:59: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:697:35: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:702:29: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:753:13: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:754:80: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:772:13: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:777:35: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:785:80: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:789:31: Error: Avoid to make time-based
decisions in your business logic
ThriveGenesisRewardPool.sol:873:13: Error: Avoid to make time-based
decisions in your business logic

PowderRewardPool.sol

PowderRewardPool.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
PowderRewardPool.sol:32:71: Error: Code contains empty blocks
PowderRewardPool.sol:59:28: Error: Avoid using low level calls.
PowderRewardPool.sol:133:51: Error: Avoid using low level calls.
PowderRewardPool.sol:187:51: Error: Avoid using low level calls.

PowderRewardPool.sol:209:17: Error: Avoid using inline assembly. It
is acceptable only in rare cases
PowderRewardPool.sol:649:17: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:684:13: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:695:59: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:696:35: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:701:29: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:752:13: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:753:80: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:771:13: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:776:35: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:784:80: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:788:31: Error: Avoid to make time-based
decisions in your business logic
PowderRewardPool.sol:872:13: Error: Avoid to make time-based
decisions in your business logic

PowderGenesisRewardPool.sol

PowderGenesisRewardPool.sol:3:1: Error: Compiler version 0.6.12 does
not satisfy the r semver requirement
PowderGenesisRewardPool.sol:32:71: Error: Code contains empty blocks
PowderGenesisRewardPool.sol:59:28: Error: Avoid using low level
calls.
PowderGenesisRewardPool.sol:133:51: Error: Avoid using low level
calls.
PowderGenesisRewardPool.sol:187:51: Error: Avoid using low level
calls.
PowderGenesisRewardPool.sol:209:17: Error: Avoid using inline
assembly. It is acceptable only in rare cases
PowderGenesisRewardPool.sol:649:17: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:684:13: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:695:59: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:696:35: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:701:29: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:752:13: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:753:80: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:771:13: Error: Avoid to make time-based

decisions in your business logic
PowderGenesisRewardPool.sol:776:35: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:784:80: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:788:31: Error: Avoid to make time-based
decisions in your business logic
PowderGenesisRewardPool.sol:872:13: Error: Avoid to make time-based
decisions in your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

