@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Tron Staker Token
Website: tronstaker.io
Platform: Binance Smart Chain
Language: Solidity

Date: March 23rd, 2022

https://tronstaker.io/

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 10
AUt FINAINGS oo e 11
@70 o T3 1017 T o 14
(@ 0] 1Y/ =1 1 T To [o] 0T) 15
DISCIAIMEIS ... e 17
Appendix
o Code FIoW Diagramououoiiii s 18
o Shther RESUIS LOGuiiiiii e 19
e Solidity staticanalysis ... 21
® SOININt LiNtEr oo 24

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Binance Smart Chain team to perform the Security
audit of the Tron Staker Token smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.
Project Background

The TronStaker Contract is a staking smart contract having functions like invest, withdraw.

Audit scope

Name Code Review and Security Analysis Report for Tron
Staker Token Smart Contract

Platform BSC / Solidity

File TronStaker.sol

File MD5 Hash 34B92705724B433C63899EDC669D4BBD

Updated MD5 Hash D81850F75122162B67101E9F5F71BE71

Online Code Link https://github.com/TronStaker/TronStaker-Contract/blob/
main/TronStaker.sol

Last Commit ID 2390797ecfdb5af391cbacf270e8d656435dff04

Audit Date March 23rd, 2022

Revise Audit Date March 24th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/TronStaker/TronStaker-Contract/blob/main/TronStaker.sol
https://github.com/TronStaker/TronStaker-Contract/blob/main/TronStaker.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Tokenomics:
e Invest Minimum Amount: 10 TRX Yes. This is valid.

e Project Fee: 12%
o Marketing Fee: 10%
o Liquidity Fee: 2%
e Daily Interest Rate: 0.25%
e Withdraw Fee: 10%
e Percents Divider: 10000
e Time Step: 1 day
e Referral Percentage:
o level 1: 6%
o level 2: 3%

o level 3: 1%

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Well Secured”. This token contract does not contain owner control, which does make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 0 medium and 1 low and some very low level issues.

Critical issues have been fixed.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Tron Staker Token are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Tron Staker Token.

The Tron Staker Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Tron Staker Token smart contract code in the form of a Github Web

Link.The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://tronstaker.io/ which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://tronstaker.io/

AS-IS overview

Functions

SI. Functions Type Observation Conclusion
1 | constructor write Visibility for Refer Audit

constructor is Findings

ignored, Missing
required error
message

2 [invest write Passed No Issue
3 | withdraw write Passed No Issue
4 | getContractBalance read Passed No Issue
5 [getPlaninfo read Passed No Issue
6 | getPercent read Passed No Issue
7 | getResult read Passed No Issue
8 | getUserDividends read Passed No Issue
9 | getUserCheckpoint read Passed No Issue
10 [getUserReferrer read Passed No Issue
11 [getUserDownlineCount read Passed No Issue
12 | getUserReferralBonus read Passed No Issue
13 | getUserReferralTotalBonus read Passed No Issue
14 | getUserReferralWithdrawn read Passed No Issue
15 | getUserAvailable read Passed No Issue
16 | getUserAmountOfDeposits read Passed No Issue
17 | getUserTotalDeposits read Passed No Issue
18 | getUserDepositinfo read Passed No Issue
19 [isContract internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

(1) Any user can invest tokens without having mentioned token:

Any user can execute the invest function as tokens have not been deducted from the

user's wallet.

Resolution: We suggest correcting the code.
Status: Fixed

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Minimum investment amount is not as per the requirement:
Required minimum investment amount is 10 TRX but in code it is set to 1 TRX. So that is

incorrect as per the feature required.

Resolution: We suggest correcting the minimum investment amount to 10 TRX.
Status: Fixed

Very Low / Informational / Best practices:

(1) Visibility for constructor is ignored:

Warning: Visibility for constructor is ignored. If you want the contract to be non-deployable,

making it "abstract” is sufficient.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest removing the “public’ keyword from the constructor of the
TronStaker.

Status: Acknowledged

(2) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.
Resolution: We suggest removing the SafeMath library and use normal math operators, It
will improve code size, and less gas consumption.

Status: Acknowledged

(3) Multiple pragma:

There are multiple pragmas with different compiler versions.

Resolution: We suggest using only one pragma and removing the other.

Status: Acknowledged

(4) Missing error message:

There is no error message in the require statement.

Resolution: We suggest setting relevant error messages to identify the failure of the
transaction.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(5) Variables should be immutable:

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties

Resolution: Consider marking these variables as immutable.

Status: Acknowledged

(6) Unused Modifier / variables / contract:

e Contract ReentrancyGuard, Ownable, Pausable
e Modifier nonReentrant

e Variables totalRefBonus, decimalPoint.

Resolution: Remove unused modifier / variables / contracts from the code.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have observed some issues and some of them are critical. Critical

issues have been fixed. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is “Well

Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

© Ownable

Code Flow Diagram - TronStaker Token

Context

O address _owner

@ Fausable

@ _ constructor__()
@ Qowner()

@ renounceXwnership()
@ transferOwnership()

Context

O hool _paused

B _setOwner()

@ _ constructor__ ()
@ Qpaused()

< _pause()

' _unpause()

T

T

ontext

@

< Q_msgSender()
< Q_msgDatal)

© TROMStaker

@ ReentrancyGuard

@) rerc20

O uint256 _ENTERED
O uint2568 _status

O uint256 _MNOT_ENTERED

@ _ constructor__ ()

@ QtotalSupply()
@ QbalanceOf()
@ transfer()
@ Qallowance()
D@ approvel)
@ transferFrom()

inSafeMath for wint256
NSafeERC20 for IERC20

O uint256 INVEST_MIN_AMOUNT
O uint256 REFERRAL_PERCENTS
O uint256 PROJECT _FEE

© uint256 PERCENT_STEP

O uint256 WITHDRAW_FEE

O uint256 PERCENTS_DIVIDER
© uint256 TIME_STEP

O uint256 totalStaked

© uint256 totalRefBonus

< Plan plans

< address=sUser users

O wint256 startNE

© address commissionyVallet

@ _ constructor__ ()

@ invest()

@ withdraw()

@ QgetContractBalance()

@ QgetPlaninfo()

@ QgetPercent()

@ QgetResult()

@ QgetUserDividends()

@ QgetUserCheckpoirt()

@ QgetlserReferrer()

@ QgetUserDownlineCourt()

©® QgetlserReferralBonus()

® QgetlUserReferralTotalBonus()
® QgetlUserReferralithdrawni)
@ QgetUserAvailablel)

@ QgetUserAmourtOfDeposits()
@ QgetUserTotalDeposits()

@ QgetUserDepositinfof)

< QisContract()

[for IERC20
v '.

-

'Ifw uint256

@ SafeERCZ20

inAddress for address

\II

@ SafeMath

< safeTransfer()

< safeTransferFrom()

< safeMpprove()

< safelncreaseAllowance()
< safeDecreaseAllowance()
B _calOptionalReturn()

:for address
7

\/
@ Address

< QisContract()

< sendValue()

< functionCall{)

< functionCall\ith'alue()
< G functionStaticCall()
< functionDelegate Call()
| O_verifyCalResult()

< Qadd()
< Gsubl)
< amul(y
< Qdiv()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> TronStaker.sol

INFO:Detectors:
Reentrancy in TRONStsker.in 8,TERC20,uint256) (TronStaker.sol#746-812):

External ¢ clls
Tronstaker.sol#751
Tronstaker.sol#2e
= use |s[Lp11r‘L
].bonus = users[upli
otalBonus = Ls.ls[Lrll
timestamp (
)) (TronStaker.sol#7
rulnerabilities-2
invest({address,uint8, IERC28,uint256) (TronStaker.sol#748-812):

rlsst-lucll t,fee) (TronStaker.sol#751

profit,block.timestamp, finish) (TronStaker.sol#803-811)

TronStaker.sol#783)
Reentrancy
TronStaker.sol#338)
vent emitte

- Withdra g (Stak)
Reference: https://gi b ;.-‘tl- slltl er, /De Documentat ion#reentrancy-vulnerabilities-3

INFO: Detectors)
TRONStaker (address,uint®,IERC20,uint256) (TronStaker.sol#740-812) uses timestamp for comparisons

referrer != msg.sender (TronStaker.sol#758)

p for ¢ ompar 1sons
Da

) (TronStaker.sol#827

TRONStake arc {uin Staker. #856 uses timestamp for comparisens
uses timestamp for comparisons

k.timestamp = ar ts[i].finish
Slts[l] Tl\lsk k. timestamp 7) i
on 25 tlr»st=r| for comparisons

ion#block - timestamp

Address. . . TronStaker.sol#491-511) uses assembly

TRONSta .1 (ess) (Tr 1039-1045) uses assembly

ic/slither/wiki/Detector-Documentation#dead-code

) necessitates a version too recent to be trusted. Consider dep
ment

/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

r.sol#402-418):
489
vel-calls
t;ker.il »st\errr»ss uint8, IERC in betAmount (T Staker.sol#744) is not in mixedCase

solidity-naming ntiens

INFD:DetectUrs
.to tcl

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

tt it tic/slith -D L ti
lither:Tronstaker.sol an: g9 contracts with 75 detectors), 52 L) found
ither

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

TronStaker.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

Address functionCallWithValue(address,bytes, uint256,string): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 402:4:

Check-effects-interaction:) 4

Potential violation of Checks-Effects-Interaction pattern in TRONStaker withdraw(contract IERC20):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

Pos: 814:4:

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
more

Pos: 1041:8:

Block timestamp:) 4

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 790:30:

Block timestamp:)~ 4

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 799:55:

Low level calls:) 4

Use of "delegatecall”: should be avoided whenever possible. External code, that is called can change
the state of the calling contract and send ether from the caller's balance. If this is wanted behaviour,
use the Solidity library feature if possible.

more

Pos: 487:50:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:) 4

Gas requirement of function TRONStaker getPlaninfo is infinite: If the gas requirement of a function is
higher than the block gas Limit, it cannot be executed. Please avoid Lloops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 847:4:

Gas costs:

Gas requirement of function TRONStaker getPercent is infinite: If the gas requirement of a function is
higher than the block gas Limit, it cannot be executed. Please avoid Loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 856:4:

Gas costs:)~ 4

Gas requirement of function TRONStaker. getUserTotalDeposits is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1007:4:

Gas costs:) 4

Gas requirement of function TRONStaker.getUserDepositinfo is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1017:4:

For loop over dynamic array:)~ 4

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values,
have to be used carefully. Due to the block gas limit, transactions can only consume a certain amount of
gas. The number of iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded loops incurs in a lot of
avoidable gas costs. Carefully test how many items at maximum you can pass to such functions to
make it successful.

Pos: 904:8:

For loop over dynamic array:) 4

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values,
have to be used carefully. Due to the block gas limit, transactions can only consume a certain amount of
gas. The number of iterations in a loop can grow beyond the block gas Llimit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded loops incurs in a lot of
avoidable gas costs. Carefully test how many items at maximum you can pass to such functions to
make it successful.

Pos: 1012:8:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions: ¥

IERC20 transfer(address,uint256) : Potentially should be constant/view/pure but is not Note: Modifiers
are currently not considered by this static analysis.
more

Pos: 208:4:

Constant/View/Pure functions:

TRONStaker isContract(address) : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.
more

Pos: 1039:4:

Similar variable names:) 4

TROMStaker.invest(address,uint8, contract IERC20,uint256) - Variables have very similar names "user"
and "users". Note: Modifiers are currently not considered by this static analysis.
Pos: 755:8:

Similar variable names:) 4

TRONStaker.invest(address,uint8 contract IERC20,uint256) : Variables have very similar names "user”
and "users". Note: Modifiers are currently not considered by this static analysis.
Pos: 755:28:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 747-8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 8278

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 657:20:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

TronStaker.sol

TronStaker.sol:586:18: Error: Parse error: missing

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

