@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: CateFarm Token
Website: https://catefarm.io
Platform: Binance Smart Chain
Language: Solidity

Date: April 8th, 2022

https://catefarm.io

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 18
(@ 0] 1Y/ =1 1 T To [o] 0T) 19
DISCIAIMEIS ... e 21
Appendix
o Code FIoW Diagramououoiiii s 22
o Shther RESUIS LOGuiiiiii e 23
e Solidity staticanalysis ... 26
® SOININt LiNtEr oo 29

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the CateFarm team to perform the Security audit of the
CateFarm Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 8th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

CateFarm is a standard BEP20 token smart contract. This audit only considers the

CateFarm token smart contract, and does not cover any other smart contracts on the

platform.
Audit scope
Name Code Review and Security Analysis Report for
CateFarm Token Smart Contract
Platform BSC / Solidity
File CATEFARM.sol
File MD5 Hash 5FECB6D6D4CC19978765F99E57F4B5E6

Updated File MD5 Hash | DBSD499ED0642DBA171C885299ED2A76

Online Code Link 0x5de624fcfd372E34cE0ed6d63519feC04c791c56
Audit Date April 8th, 2022
Revise Audit Date April 14th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://testnet.bscscan.com/address/0x5de624fcfd372E34cE0ed6d63519feC04c791c56#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:

Name: CateFarm

Symbol: CATEFARM

Decimals: 18

Total Supply: 1 Billion

Swap Threshold: 0.5 Million
Swap Amount: 1 Million
Minimum Tokens for rewards: 50,000
Maximum Transfer Taxes: 15%
Maximum Buy Taxes: 15%
Maximum Sell Taxes: 15%

Get Maximum Wallet: 1 Billion
Get Maximum transfer: 1 Billion
Reflector Gas: 0.75 Million

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet

securely.

Ratios:
o Rewards: 16%
o Liquidity : 6%
o Marketing : 2%
o Team: 2%
o Total: 26%

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet

securely.

Tax Rates:
o buyFee: 13%
o sellFee: 13%

o transfer: 0%

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet

securely.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

All these issues have been resolved / acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in CateFarm Token are part of its logical algorithm. A library is a different type
of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the CateFarm Token.

The CateFarm Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a CateFarm Token smart contract code in the form of a BSCScan Web

Link.The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website http://catefarm.io/ which provided rich

information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

http://catefarm.io/

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | swapping modifier Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [transferOwner external | access only Owner No Issue
5 | renounceOwnership write access only Owner No Issue
6 [receive external Passed No Issue
7 | totalSupply external Passed No Issue
8 [decimals external Passed No Issue
9 | symbol external Passed No Issue
10 | getOwner external Passed No Issue
11 | name external Passed No Issue
12 | balanceOf read Passed No Issue
13 | allowance external Passed No Issue
14 | approve write Passed No Issue
15 | approve write Passed No Issue
16 | approveContractContingency write access only Owner No Issue
17 | transfer external Passed No Issue
18 | transferFrom external Passed No Issue
19 | setBlacklistEnabled external [access only Owner No Issue
20 | setBlacklistEnabledMultiple external | access only Owner No Issue
21 | isBlacklisted read Passed No Issue
22 | setlnitializers external | access only Owner No Issue
23 | removeSniper external | access only Owner No Issue
24 | setProtectionSettings external | access only Owner No Issue
25 | setGasPriceLimit external | access only Owner No Issue
26 | enableTrading write access only Owner No Issue
27 | setTaxes external | access only Owner No Issue
28 | setRatios external | access only Owner No Issue
29 | setWallets external | access only Owner No Issue
30 | setContractSwapSettings external | access only Owner No Issue
31 | setSwapSettings external | access only Owner No Issue
32 | setReflectionCriteria external | access only Owner No Issue
33 | setReflectorSettings external | access only Owner No Issue
34 | claimRewards external
35 | getTotalReflected external Passed No Issue
36 | getUserlnfo external Passed No Issue
37 | getUserRealizedGains external Passed No Issue
38 | getUserUnpaidEarnings external Passed No Issue
39 | setNewRouter write access only Owner No Issue
40 | setlpPair external | access only Owner No Issue
41 | iskExcludedFromFees read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

42 | isExcludedFromDividends read Passed No Issue
43 | isExcludedFromLimits read Passed No Issue
44 | setExcludedFromLimits external | access only Owner No Issue
45 | setDividendExcluded write access only Owner No Issue
46 | setExcludedFromFees write access only Owner No Issue
47 | setMaxTxPercent external | access only Owner No Issue
48 | setMaxWalletSize external | access only Owner No Issue
49 | getMaxTX read Passed No Issue
50 [getMaxWallet read Passed No Issue
51 | excludePresaleAddresses external | access only Owner No Issue
52 | hasLimits write Passed No Issue
53 | transfer internal Passed No Issue
54 | finalizeTransfer internal Passed No Issue
55 | processTokenReflect internal Passed No Issue
56 | basicTransfer internal Passed No Issue
57 [takeTaxes Passed No Issue Passed
58 | contractSwap internal Passed No Issue
59 | checkLiquidityAdd write Passed No Issue
60 [multiSendTokens external

61 [manualDeposit external | access only Owner No Issue
62 | setMinimumTokensForRewards | external | access only Owner No Issue
63 | whomst tokens external Passed No Issue
64 | whomst routers external Passed No Issue
65 | updateRewardsTokens external Passed No Issue
66 | getRewardsRatios external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.
High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for: claimRewards

Resolution: Please write an event log for listed events.

Status: Acknowledged

(2) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

e multiSendTokens() - accounts.length

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Missing required error message:

onlyOwner {

onlyOwner {

excludePresaleAddresses router, onlyOwner {
(allowedPresaleexclusion);
if (router == presale) {

: buyFee, S ee, transferFee) onlyOwner {
(buyFee <= maxBuyTaxes
&% sellFee <= maxSellTaxes
&& transferfFee <= maxTransferTaxes);
buyFee = buyFee;
_taxRates.sellFee = sellFee;

alnitializer, cInitializer) onlyOwner {

() && alnitializer !=) && cInitializer != alnitializer);

There is no error message set in the required condition.

Resolution: We suggest setting relevant error messages to identify the failure of the
transaction.
Status: Fixed

(2) Unused function parameter / variables / event / internal function:

Unused function parameter:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Unused variables:

_transfer(from, 0 amount)
(from 1= (8), "ERC20: transfer from the zero address");
(to 1= (@), "ERC2e
(amount > @, "
buy = 3
sell = 2
other = H
if (1pPairs[from]) {
buy = g
} else if (lpPairs[to]) {
sell = H
} else {
other =

¥

if(_hasLimits(from, to)) {
if(!tradingenabled) {

Unused event:

SniperCaught(

Unused internal function:

_basicTransfer(from, Lo amount)
_towned[from] -= amount;
_toOwned[to] += amount;

Transfter(from, to, amount);

»

There are many functions that have passed unused function parameters. CATECOIN,
CATPAY, and other variables defined but not used anywhere.A SniperCaught() event is
defined but not used in code. A _basicTransfer internal function defined but not used

anywhere.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: Remove unused variables / event / function parameter / internal function from
the code.
Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e transferOwner: Owner can be removed as a library and added here to allow for
custom transfers and announcements.

e renounceOwnership: Owner can renounce new ownership.

e approveContractContingency: Owner can approve contract contingency.

e setBlacklistEnabled: Owner can set enabled status in address in blacklist.

e setlnitializers: Owner can set initializers.

e removeSniper: Owner can remove sniper address.

e setProtectionSettings: Owner can set protection settings like: _antiSnipe, _antiGas,
_antiBlock, _algo.

e setGasPriceLimit: Owner can set gas price limit.

e enableTrading: Owner can enable trading status.

e setTaxes: Owner can set buy Fee, sell Fee, transfer Fee taxes.

e setRatios: Owner can set rewardsToken1, rewardsToken2, liquidity, marketing ,team
ratios.

e setWallets: Owner can set wallet addresses like: marketing address, payable team
address, liquidity address.

e setContractSwapSettings: Owner can set contract swap settings status.

e setSwapSettings: Owner can set swap settings like: thresholdPercent,
thresholdPercent, amountPercent, amountDivisor.

e setReflectionCriteria: Owner can set reflection criteria like: _minPeriod,
_minReflection, minReflectionMultiplier.

e setReflectorSettings: Owner can set reflector value.

e setNewRouter: Owner can set new router address.

e setLpPair: Owner can set LP pair address.

e setExcludedFromLimits: Owner can set excluded address status.

e setDividendExcluded: Owner can set dividend exclude address.

e setExcludedFromFees: Owner can set excluded fees from account.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

setMaxTxPercent: Owner can set transaction percentage.

setMaxWalletSize: Owner can set maximum wallet size.
excludePresaleAddresses: Owner can set presale address and router address.
multiSendTokens: Owner can send multi tokens.

manualDeposit: Owner can manual deposit.

setMinimumTokensForRewards: Owner can set minimum tokens for rewards.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have not observed any major issues. So, it’s good to go to

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ IFactoryV2

Code Flow Diagram - CateFarm Token

(©) TESTINGTIME

IERC20

address _owner

uint256 timeSincel astPair
address==mapping acdress==uint256 _allowances

_liguidityHolders

bool allowedPresaleExclusion
UINt256 startingSupply
string _name

string _symbol

uints _decimals

uint256 _tTotal

Fees _taxRates

Ratios _ratios

WINt256 maxBuy Taxes
UiMt256 maxSelTaxes
uiNt256 maxTransferTaxes
wiNtZ56 masterTaxDivisor
IRouter0Z dexRouter
address [pPair

address CATECOIN
address CATPAY

address DEAD

address ZERO
Tax\Wallets _taxWVallsts
WINt256 _maxTxAmount
uiNt256 _masdValletSize
Cashier reflector

UINt25E reflectorGas

bool iINnSwap

bool contractSwapEnabled
UiNt256 cortractSwapTimer
uint256 lastSwap

uint25& swapThreshold
UINtZ56 swap Amaount

bool processReflect

bool tradingEnabilec!

bool _hasLigBesnAdded
AntiSnipe antiSnipe

bool presaleAddresses

uint256 minimumTokensForRewards

&__constructor__()
transferOwner()
renounceCwnership()

@ zeair

QtotalSupply()
Quelecimals()

Qsymbol()

@ QgetPair()
© createPair()

© G factory()
© QgetReserves()
® sync()

Qname()

Qgetowner()
QbalanceOf()
Qallowance()

@ antisnipe

checkUser()
setLaunchi)

setlpPair()

setProtections()
setGasPriceLimit()
remaveSniper()
QisBlacklisted()
setBlacklistEnabled()
setBlacklistEnabledMuttiple)
fullReset()

d000000000

apprave()
_approvei}
approveContractContingency()
transfer()

transferFrami)
setBlacklistEnabled()
setBlacklistEnabledhuttiplel)
QisBlacklisted()
setinitializers()
remaveSniper()
setProtectionSettings()
setGasPriceLimit()
enableTradinal)

setTaxes()

setRatios()

setWallets()
setContractSwapS ettings()
setSwapSettings()
setReflectionCriterial)
setReflectorSettings()
claimRewards()

A get TotalReflected()

S getUserinfol)
QgetUserRealizedGains()
QgetUserUnpaidEarningsi)
setNewRowter()

setLpPair()
QisExcludedFromFees()
QisExcludedFromDividends()
QisExcludedFromLimits()
setExcludedFromLimits()
setDividendEsxcluded()
setExcludedFromFees()
setMaxTxPercent()
setMaxWalletSize()

S getMax TR}
QugetMasiallet()
excludePresalefddresses()
A _hasLimits()

< _transfer(y

< _finalizeTransfer()

< processTokenReflect()

< _pasicTransfer()

< takeTaxes()

< contractSwap()
_checkLiguidity Adel()
muttiSendT okens()
manualDeposit()
setMinimumTokensForRewards()
Suwhomst_tokens()
Swhomst_routersi)
updateRewardsTokens()

A getRewardsRatios()

H000000000000000000000000000000000000H0000000Q0Q00|0000000000¢¢(00000000040000000000000000¢OGGO

2000000 nm

(@ rrouteroz

IRouter0?

@ swapExactTokensForETHSUpportingFeeOnTransferTokens()

© @swapExactE THFor TokensSupportingFeeOnTransterTokens()
@ swapExactTokensForTokensSupportingFeeOnTransterTokens()
© swapExactTokensForTokens()

@ Cashier

0000000000000 00

setReflectionCriterial)

@ :;ERczo

tally()

Bloadl)

cashout{)
giveMeVVelfarePlease()
QugetTotalDistributed()
QgetShareholderinfol)
Q.getShareholderRealizecd()
QgetPendingRewards()
inttialize()

setRatios()
Qwhomst_tokens()
Qwhomst_routers()

QtotalSupply ()
Adecimals()

S symbol()
Quname()
Qgetowner()
QbalanceO ()
transfer()
Qallowance()
approve()
transferFrom()

o000000000

updateRewardsTokens()
QgetRatios()

(@) rrouterot

S factory()
QUNETHL)

& addLiguidityETH()
addLiquidity()
QgetAmountsOut()
S getAmountsing

000000

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> CateFarm.sol

INFO:Detectors:
TESTINGTIME.setS < i (uint256,uint256,uint25 .Lllt 256, uint256) (TESTINGTIME.sol#424-
(_tTotal * thre d ivisor (TESTINGTIME.sol#:
_tTotal * amountPerce v (TESTINGTIME.sol#426)
time T
tirgSiLirt (TESTINGTIME. #e 438) should emit an event for:

'tlLllt_EE ,uin STINGTIM #517) should emit an event for:
_ (_tTotal - < visor Ec ILG IIE
TESTINGTIME.setMaxWalletSize(uint2 int2 EE'IhG'IFE.sclI
- _maxWalletSiz C divi (
TESTINGTIME.setMinimumT =N (ui (TEST TIM #792-794) d emit an event for:
- minimumT
https://gi b . ferytic r mentation#miss ing-events-arithmetic
INFD.Detectors
Vari | TEST IIG IME. fi izeT fer(s 255 ,U1in ol,bool,bool) (TESTINGTIME.sol#
(o entially us
iki/Detector-Documentation#pre-declaration-usag
eentrancy in TESTINGTIME. finalizeTransfer{address,s ess,uint256 ,bool,bool, 1) (TESTINGTIME.sol
External calls:
i i (TESTINGTIME .sol#631-635)
{TESTINGTIME.so
(from,amo |t buy,se 11 other) (TESTINGTIME.sol#645
(TEST INGTIME.sol#699)
TESTINGT IIE.S:I
Reentran STINGTIM ess,address,uint256) (TESTINGTIME.sol#565-619):
TESTINGTIME.sol#611)
- orETHSupporting TransferTokens(swapAmt,8,path,address(this),block.timestamp)
TESTINGTIME.so
dexRou iquidityETH{value: liguidityBalance}{address{this),tolLiguify taxWallets.liguidity,block
-timestamp) (TESTINGTIME.s)
< » } (TESTINGTIME .sol#7
- _finalizeT =r ,to,amount, takeFee,buy, ,other)

Ec INGTIME.s

STINGTIME .sol#611 -
ligquidityBalanc ddres his), toLiguify _taxwWallets.liguidity.b

- mark

alan

createPair({dexRouter . WETH(),address(this)) (TESTINGTIME.sol#25

56

Reentranc

Reentrant
Eft»lrel
- setDi

ES | ME .
TESTINGTIME
er])

ESTINGTIME.s

[o
Reentranc i = B) {TESTINGTIME.sol#

TESTINGTIME.sol#346)

TINGT IIE sol#585
#A460-471)

.createPair(address(this)._newRouter .WETH{)) (TESTINGTIME.sol#464)

J{uint256) .max TESTINGTIME.sol#470)
TESTINGTIME .sold)

bilities-2

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:

Reentrancy in TESTINGTIME. finalizeTransfer{address,address,uint256,bool,bool,bool ,bool)
External calls:
- antisnipe.checkUser{from,to,amount) {TESTINGTIME.sol#631-
Event emitted after the callis):

feeAmount) (TESTINGTIME.sol#70

a

- Transfer(from,address{this),
- amountReceived = tak
Reentrancy in TESTINGTIME. finalizeTrar
External calls:
- antisnipe.checkUser{from,to,amount) {TESTINGTIME.sol#631-
- processTokenReflect({from,to) (TESTINGTIME.sol#649)
- reflector.tally({from,08) {TESTINGTIME.sol#659)
- reflector.tally({from,_tOwned[from]) {TESTINGTIME.sol#661)
- reflector.tally(to,®) (TESTINGTIME.sol#666)
- reflector.tally(to,_tOwned[to]) (TESTINGTIME.sol#
- reflector.cashout(reflectorGas) {TESTINGTIME.sol
Event emitted after the call(s):
- Transfer(from,to,amountReceived) (TESTINGTIME.sol#651)
Reentrancy in TESTINGTIME. transfer{address,address,uint256) (TESTINGTIME.sol#565-619
External calls:
- contractSwap({contractTokenBalance) (TESTINGTIME.sol#611)
dexRouter .swapExactTokensForETHSupportingFeeOnTrans ferTokens(swapAmt,8,path,address(this),block.timestamp)
TESTINGTIME. SDl*a 7
dexRouter. addLiguidityETH{value: liguidityBalance}{address(this),toLiquify,0,8, taxWallets.liguidity,block
.timestamp) (TESTINGTIME.sol#734-741)
- reflector.load{value: rewardsBalance}() (TESTINGTIME. sol#752)
- _finalizeTransfer(from,to,amount,takeFee,buy,sell,other) {TESTINGTIME.sol#618)
- reflector.tally({from,08) {TESTINGTIME.sol#659)
- reflector.tally({from, tOwned[from]) {TESTINGTIME.sol#661)
- antisnipe.checkUser{from,to,amount) {TE T
- reflector.tally({to,B8) (TESTINGTIME.sol3
- reflector.tally{to,_tOwned[to]) (TEST
reflector.cashout(reflectorGas)
External Calls sending eth:
- contractSwap({contractTokenBalance) (TESTINGTIME.sol#611)
dexRouter.addL iquidityETH{value: liquidityBalance}({address(this),toLiquify,8,0, taxWallets.liquidity,block
.timestamp) (TESTINGTIME.sol#734-741)

§x951T|0w amount,buy,sell, Dthn|l TESTINGTIME.sol#645)
nsfer{address, ajj|ass u1nt;5t,bool bool,bool,bool; TESTINGTIME.sol#6

- reflector.load{value: rewardsBalance}{) (TESTINGTIME.sol#752)
- _taxWallets.marketing.transfer(marketingBalance) (TESTINGTIME.sol#756
- _taxWallets.team.transfer(teamBalance) (TESTINGTIME.sol#759)
vent emitted after the call(s):
ContractSwapEnabledUpdated(true) (TESTINGTIME.sol#776)
- finalizeTransfer{from,to, amount, takeFee,buy,sell,other) {TESTINGTIME.sol#61
- Transfer{from, ajj|ASSIthls;,TeeHwountl TESTINGTIME. SDI*?P)
- _finalize'ransfer[frow,to awount takeFee,buy,sell,other) {TESTINGTIME.sol#6
- Transfer({from,to,amountReceived) (TESTINGTIME. sol¢r=1l
- _finalize'ransferifrow,to,awount,takAFaa buy,sell,other) (TESTINGTIME.sol#6
Reentrancy in TESTINGTIME.constructor() (TESTINGTIME.sol#234-278):
External calls:
- lpPair = IFactoryV2(dexRouter.factory()).createPair({dexRouter .WETH{),address({this)) (TESTINGTIME.sol#256
Event emitted after the call(s):
- Approvalisender,spender,awount} (TESTINGTIME.sol#325
- _approve({address(this),address(dexRouter]), tvpéi}iuintzSE}.wax} (TESTINGTIME.sol#260)
Approval(sender,spender,awount} (‘ES‘ING‘IME.SDl#BZE]
- _approve(_owner,address{dexRouter),type(}(uint256).max) (TESTINGTIME.sol#259)
Reentrancy in TESTINGTIME.contractSwap(uint256) (TESTINGTIME.sol#705-761):
External calls:
dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(swapAmt,®,path,address(this),block.timestamp) (TESTIN
GTIME.sol#722-728)
dexRouter.addL iguid ityETH{v : liguidityBalance}{address{this),toLiguify,0,8, taxWallets.liguidity,block.timesta
mp) {TESTINGTIME.sol#734-741)
External calls sending eth:
dexRouter.addL iquidityETH{v : liguidityBalance}{address(this),toLiquify,8,08, taxWallets.liquidity,block.timesta
mp) | TINGTIME.sol#734-741)
Event emitted after the call(s):
- AutolLiguify({liguidityBalance,toLiguify) (TESTINGTIME.sol#742)
Reentrancy in TESTINGTIME.setNewRouter{address) (TESTINGTIME.sol#460-471):
External calls:
- lpPair = IFactoryV2(_newRouter.factory()).createPair{address({this), newRouter .WETH{)) {TESTINGTIME.sol#464)
Event emitted after the call{s):
- Approval(sender,spender,amount) (TESTINGTIME.sol#325
- _approve[addressithis},addressidexRoute|;,typaf\fuint2=ﬂ\.wax) (TESTINGTIME.sol#470)
Reentrancy in TESTINGTIME.transferOwner(address) (TESTINGTIME.sol#277-292):
External calls:

- 7finalize'ransferi7Dwner,new0wner,balanceDfﬁiowner),false,fa (TESTINGTIME.s0l#286
- reflector.tally({from,08) {TESTINGTIME.sol#659)
- FefleCtDF.tallvlTloﬁ, tOwned[from]) (TESTINGTIME.sol#66
- antiSnipe.checkUser(rom, to,amount) (TESTINGTIME.s0l#631-635
- reflector.tally(to,@) (TESTINGT IME. sol#666)
- reflector.tallyito,_tD\ned[to]; TESTINGTIME .sol#
- reflector.cashout{reflectorGas) (TESTINGTIME.sol#6
Event emitted after the call(s):
- OwnershipTransferred{_owner,new0wn TESTINGTIME .sol#290)
Reference: https:ffglthub.CDWJC|,tlcfsllthn|f\lklfDAtactor Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
TESTINGTIME.setLpPair{address,bool) {TESTINGTIME.sol#473-485) uses timestamp for comparisons
Dangerous comparisons:
- timeSinceLastPair != 0 (TESTINGTIME.sol#478)
- reguire{bool,string)(block.timestamp - timeSincelLastPair = 2592 Cannot set a new pair this week!) {TESTINGTIME.s
ol#4a79)
TESTINGTIME. transfer(address,address,uint256) (TESTINGTIME.sol#565-619) uses timestamp for comparisons
Dangerous comparisons:
- lastSwap + contractSwapTimer < block.timestamp (TESTINGTIME.sol#607)
Reference: https://github.com/crytic/slither/wiki/Detector- Documentation#block- timestamp
INFO:Detectors:
TESTINGTIME.setLpPair{address,bool) {TESTINGTIME.sol#473-485) compares to a boolean constant:
-enabled false (TESTINGT IHE sol#474)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
INFO:Detectors:
TESTINGTIME. basicTransfer{address,address,uint256) (TESTINGTIME.sol#6] i er used and should be removed
Reference: https://github.com/cr tlcfsllthélf\lklftétéctar Documentationd

a private and confidential document. No part of this document should
closed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO: Detectors

Function Cashie
Parameter TESTINGTIME.
Parameter TESTINGTIME.
Parameter TESTINGTIME.
Parameter TESTINGTIME.
Parameter TESTINGTIME.
Parameter TESTINGTIME.
Parameter TESTINGTIME.
Function
ction

TESTINGTIME .w
TESTINGTIME .w
TESTINGTIME.
TESTINGTIME.
TESTINGTIME.
TESTINGTIME.
TESTINGTIME.
TESTINGTIME.
TESTINGTIME. tal |
TESTINGTIME. taxRates
TESTINGTIME. ratios
TESTINGTIME.maxBuyT
TESTINGTIME .max5ellTa
TESTINGTIME .maxTransfe
TESTINGTIME.masterTax
TESTINGTIME. tcfacll
_EE_IHG_IIE.
https

E

imals

INFO:Detectors:
Reentrancy in TESTINGTIME.

External calls:

- contractSwap(
_taxWallets.
_taxwWallets.
External calls sendi

_tra

https
INFD Detectors

81.addLiquidity(a

) is too similar to IRo
(TESTINGTIME.sol#50)
le TESTINGTIME.se tIlltlc
1t15112c|5|accr*ss address).
Variable TESTINGTIME.setRatios
TINGTIME.se etRatios{uintl6,uint
https github.com/
INFO: Detectors
TESTINGTIME.s1ithe
- DEAD

axes

EE_IRG_IFE.Scl#E?
loyment
/slither/wiki/De

is too complex

tector-Documentation#incorrect-versions-of-solidity

TESTINGTIME.sol#116
TESTINGTIME.sol#11
Settings(

Settings
Settings
Settings

c|t15|1r‘ (TESTINGTIME.sol#369) is not in
antiGas (TESTINGTIME.so is not in mixedCase
c|t181 ck (TESTINGTIME.sol#369) is not in mixedCase
Ec IIG IIE sol#3 is not in mixedCase
is not in mixedCase
is not in
is

mixedCase

mixedCase
not in mixedCas

TESTINGTIME.sol
_EE_IHG_IFE.SL
) is not in
is

not in
not in
mixedCase
not in mixedCase
7) is not in UPPER_CASE_WITH_UNDERSCORES
is not in UPPER_CASE_WITH_UNDERSCORES
TESTINGTIME.sol#148) is not in UPPER_CASE_WITH_UNDERSCORES
{TESTINGTIME.sol#141) is not in UPPER_CASE_WITH_UNDERSCORES
TESTINGTIME.sol#143) 1 t in UPPER_CASE_WITH_UNDERSCORES
(TESTINGTIME.sol#) is not in mi Case
is not in mixedCase
is not in UPPER_CASE_WITH_UNDERSCORES
is not in UPPER_CASE_WITH_UNDERSCORES
is not in UPPER_CASE_WITH_UNDERSCORES
is not in UPPER_CASE_WITH_UNDERSCORES
is not in mixedCase
is not in mixedCase
/wiki/Detector-Documentation#conformance-to-solidity

STING ir-'E.s-: :

TESTINGTIME.sol#
TESTINGTIME.sol#1

_EE_IRG_IFE.S
TESTINGTIME.s

xes
Taxes
ElvlS“F
ts (T

-naming

nsfer(TESTINGTIME.sol#

565
(TESTINGTIME .sol#611
f ingBalan TESTINGTIME.sol#756)
team. transfer(teamBalance) {TESTINGT IIE sol#759)
eth:
nBalance
dLigquidityETH

TESTINGTIME.sol#611)
value: liguidityBalanc

e} address(this),toLiquify block

_taxwWallets.liquidity,

ic/slithe eentrancy-vulnerabilities-4

dress,uint256).amountADes ired
,uir

nt2 SE_L1|t 256 ess,uint2

,uint256,uint2
ess, Lllt_EE_Ll

(TESTINGTIME
) .amountBDe

25
ute 255,48 t ,add

).aInitializer (TESTINGTIME.sol#358) is too similar to
r { Ec ILG IME.sol#358)

(uint16,uintl6,uintl6,uint16 L1|t1f=

16,uint16,uint16 L1|t1f'

ytic/ /slither/

lizers(TESTINGTIME.setIn

rardsToken1 (TEST ILG IME.sol#482) is too similar to TES

TESTINGTIME .sol#122-812) literals with too many

TESTINGTIME.sLith

EaD (TESTINGT IVE

‘literals with too many

- ZERO
https

INFD.Detectors:
renouncelwnership() should be
EC'IIG'IIE renounce
dress,uint2
TESTINGT IIE
ontractConti

approve(ad

et

appre
isBlacklisted(

TESTIN

ing()

TESTINGT IIE
setNewRouter(ress)
TESTINGTIME. S.tL
FromFees(a ess)
_EC ILG IIE lsEff

enabl

rad

isExclude
isExclu
- 'EC IIG IME . 1SEx lL

isExclu —|-rL1r1t5Iaccr‘s

romLimits |)
- TESTINGTIME. isExclud
getMaxTX() should be declar
TESTINGTIME
axWallet({) should
TESTINGTIME
https: i

etM

Refere

INFO:Slither: TESTINGTIME sol analyzed (8 contracts thh ?5 detectors), 89 result(s) found

INFO:SLlither:U

be disclosed to third party without prior written perm

igits

be declared :

ress,uint256) (TESTINGTIME.sol#314-
»/t»||cl

TESTINGTIME .sol#32

318)

»/t»rral
TESTINGTIME .sol#354-356)
»/t»||cl
Ec ILG IIE sol#378-391)
_EE_IHG_IFE.SC1#4EE—4?1}
external:
) (TESTINGTIME.sol#487
external:
) _Ec INGTIME.sol#491-493)

-489)

Documentat ion#public-function-that-could-be-declared-external

; is a private and confidential document. No part of this document should

on of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

CateFarm.sol

Security

Transaction origin: X

Use of tcorigin: "beorigin® is useful only in very exceptional cases. If you use it for authentication, you usually
want to replace it by "msg.sender”, because otherwise any contract you call can act on your behalf.
Pos: 557:15:

Check-effects-interaction: p 4

Potential violation of Checks-Effects-Interaction pattern in TESTINGTIME _(): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 234:4:

Block timestamp: b 4

Use of "block timestamp”: "block imestamp" can be influenced by miners to a certain degree. That means that a
miner can "choose" the block timestamp, to a certain degree, to change the outcome of a transaction in the mined
block.

Pos: 479:24:

Block timestamp: X

Use of "block timestamp”: "block timestamp™ can be influenced by miners to a certain degree. That means that a
miner can "choose" the block timestamp, to a certain degree, to change the outcome of a transaction in the mined
block.

Pos: 482:32:

Block timestamp: X

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree. That means that a
miner can "choose" the block timestamp, to a certain degree, to change the outcome of a transaction in the mined
block.

Pos: 740:16:

Gas & Economy

Gas costs: X

Gas requirement of function TESTINGTIME._taxRates is infinite: If the gas requirement of a function is higher than
the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 159:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs: b ¢

Gas requirement of function TESTINGTIME name is infinite: If the gas requirement of a function is higher than the
block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large areas of
storage (this includes clearing or copying arrays in storage)

Pos: 309:4:

Gas costs: X

Gas requirement of function TESTINGTIME_ allowance is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 312:4:

Gas costs:)4

Gas requirement of function TESTINGTIME setReflectionCriteria is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)

Pos: 430:4:

Gas costs: X

Gas requirement of function TESTINGTIME claimRewards is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 440:4:

Gas costs: 4

Gas requirement of function TESTINGTIME getRewardsRatios is infinite: If the gas requirement of a function is
higher than the block gas mit, it cannot be executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)

Pos: 808:4:

For loop over dynamic array:) 4

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values, have to be
used carefully. Due to the block gas limit, transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the complete contract to be stalled at a
certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many
items at maximum you can pass to such functions to make it successful.

Pos: 782:8:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 10:2:

ERC20:

ERC20 contract's "decimals" function should hawve "uint8" as return type
more

Pos: 307:4:

a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions: b 4

Cashier.updateRewardsTokens(address,address,address,address) : Potentially should be constant/view/pure but
1s not. Note: Modifiers are currently not considered by this static analysis.

Similar variable names:

TESTINGTIME__approve(address,address,uint256) - Variables have very similar names "sender" and "spender”.
Note: Modifiers are currently not considered by this static analysis.
Pos: 322:16:

Similar variable names:

n

TESTINGTIME._approve(address,address,uint256) : Variables have very similar names "sender” and "spender".
Note: Modifiers are currently not considered by this static analysis.
Pos: 324:20:

No return:

Cashier getRatios(): Defines a return type but never explicitly returns a value.
Pos: 119:4:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e.g. invalid input or a failing external component.
Pos: 504:8:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e g. invalid input or a failing external component.
Pos: 518:8:

Guard conditions: ¢

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e.g. invalid input or a failing external component.
Pos: 783:12:

Data truncated: X

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1 since the
result is an integer again. This does not hold for division of (only) literal values since those yield rational
constants.

Pos: 748:30:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

CateFarm.sol

CateFarm.sol:6:1: Error: Compiler version >=0.6.0 <0.9.0 does not
satisfy the r semver requirement

CateFarm.sol:37:5: Error: Function name must be in mixedCase
CateFarm.sol:116:5: Error: Function name must be in mixedCase
CateFarm.sol:117:5: Error: Function name must be in mixedCase
CateFarm.sol:122:1: Error: Contract has 31 states declarations but
allowed no more than 15

CateFarm.so0l:126:5: Error: Explicitly mark visibility of state
CateFarm.sol:127:5: Error: Explicitly mark visibility of state
CateFarm.so0l:129:5: Error: Explicitly mark visibility of state
CateFarm.sol:137:30: Error: Constant name must be in capitalized
SNAKE CASE

CateFarm.so0l:139:29: Error: Constant must be in capitalized
SNAKE CASE

CateFarm.so0l:140:29: Error: Constant must be in capitalized
SNAKE CASE

CateFarm.so0l:141:28: Error: Constant must be in capitalized
SNAKE CASE

CateFarm.so0l:143:30: Error: Constant must be in capitalized
SNAKE CASE

CateFarm.sol:173:29: Error: Constant must be in capitalized
SNAKE CASE

CateFarm.sol:174:29: Error: Constant must be in capitalized
SNAKE CASE

CateFarm.sol:175: : Error: Constant name must be in capitalized
SNAKE CASE

CateFarm.sol:176:5: Error: Explicitly mark visibility of state
CateFarm.sol:176: : Error: Constant name must be in capitalized
SNAKE CASE

CateFarm.so0l:201:5: Error: Explicitly mark visibility of state
CateFarm.so0l:202:5: Error: Explicitly mark visibility of state
CateFarm.so0l:204:5: Error: Explicitly mark visibility of state
CateFarm.sol:214:5: Error: Explicitly mark visibility of state
CateFarm.sol:234:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
CateFarm.sol:304:32: Error: Code contains empty blocks
CateFarm.so0l:384:70: Error: Avoid to make time-based decisions
your business logic

CateFarm.so0l:384:99: Error: Code contains empty blocks
CateFarm.so0l:384:108: Error: Code contains empty blocks
CateFarm.so0l:385:36: Error: Code contains empty blocks
CateFarm.sol:385:45: Error: Code contains empty blocks
CateFarm.sol:462:9: Error: Variable name must be in mixedCase
CateFarm.so0l:479:25: Error: Avoid to make time-based decisions
your business logic

CateFarm.so0l:482:33: Error: Avoid to make time-based decisions
your business logic

CateFarm.sol:557:16: Error: Avoid to use tx.origin
CateFarm.sol:607:52: Error: Avoid to make time-based decisions
your business logic

CateFarm.sol:612:36: Error: Avoid to make time-based decisions
your business logic

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

O

:46: Error: Code contains empty blocks
:55: Error: Code contains empty blocks
8: Error: Code contains empty blocks
:67: Error: Code contains empty blocks
:44: Error: Code contains empty blocks
:53: Error: Code contains empty blocks
:54: Error: Code contains empty blocks
:63: Error: Code contains empty blocks
2:49: Error: Code contains empty blocks
:58: Error: Code contains empty blocks
3:75: Error: Variable "other" is unused
:13: : Avoid to make time-based decisions in

()}

1.sol:
.sol:
m.sol:
.sol:
.sol:
.sol:
.sol:
n.s501:¢
.sol:
.sol:
.s01l:6
.sol:
your business logic
CateFarm.sol:740:17: ror: Avoid to make time-based decisions in
your business logic
CateFarm. 752 : : Code contains empty blocks
CateFarm. 37 : Error: Code contains empty blocks
CateFarm.sol:789:60: Error: Code contains empty blocks
CateFarm. : :789:69: Error: Code contains empty blocks
Error: Function name must be in mixedC
CateFarm.sol: : Error: Function name must be in mixedC

Y O)Y O)Y O) O)Y O)Y O)Y O
o) Oy O O)Y O O Ul Ul
O O oY O WO

(o))
~J J
NN

~J o
N o
~J W

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

