
Project: Scrub Finance Protocol
Platform: Cronos Blockchain
Language: Solidity
Date: March 28th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 22

Our Methodology ………………………………………………………………………………... 23

Disclaimers ………………………………………………………………………………………. 25

Appendix

● Code Flow Diagram ……………………………………………………………………... 26

● Slither Results Log ………………………………………………………………………. 33

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Scrub Finance team to perform the Security audit of
the Scrub Finance Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 28th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Scrub Finance Contracts have functions like stake, withdraw, epoch, claimReward,

distributeReward, burn, add new pool, etc. The Scrub Finance contracts also inherits

ERC20Burnable, Math, IERC20, SafeERC20, ReentrancyGuard, SafeMath standard smart

contracts from the openzepelin library.

Audit scope

Name Code Review and Security Analysis Report for
Scrub Finance Protocol Smart Contracts

Platform Cronos / Solidity

File 1 Scrub.sol

File 1 MD5 Hash 9564259D43E0E0F9C224EAB74D8442C5

File 2 LBond.sol

File 2 MD5 Hash 4E3F2A179BB7DC86F6D39A038E4C8C2C

File 3 Lion.sol

File 3 MD5 Hash D64082C2269102AF48CB48063FA8E76A

File 4 Oracle.sol

File 4 MD5 Hash EAF11EC3474020A77AB343D97A681059

File 5 Tiger.sol

File 5 MD5 Hash 757F6EEC03D7B27976DE46FF41439FD0

File 6 Treasury.sol

File 6 MD5 Hash FAA81C6BABFCA92A368EFD808B1008F7

File 7 TigerRewardPool.sol

File 7 MD5 Hash 178D735ECCA38C1179A9032C372C29C8

Audit Date March 28th,2022

Revise Audit Date April 4th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Scrub.sol
● Withdraw Lockup Epochs: 6 epochs

● Reward Lockup Epochs: 3 epochs

YES, This is valid.

File 2 Oracle.sol
● Oracle can update 1-day EMA price from

Uniswap.

YES, This is valid.

File 3 LBond.sol
● Name: Lion Bonds

● Symbol: LBOND

● Decimals: 18

YES, This is valid.

File 4 Lion.sol
● Name: LION

● Symbol: LION

● Decimals: 18

● Burn Threshold: 1.1 LION

● Initial Launchpad Distribution: 0.4 million

LION

● Total Supply: 400001 LION

YES, This is valid.

File 5 Treasury.sol
● Period: 8 hours

● Bond supply for depletion floor: 100%

● Seigniorage Expansion Floor Percent: 35%

● Maximum Supply Contraction Percent: 3%

● Maximum Debt Ratio Percent: 35%

● Premium Threshold: 1.1

● Premium Percent: 70%

● Maximum Supply Expansion Percent: 4%

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

File 6 Tiger.sol
● Name: Lion Shares

● Symbol: TIGER

● Tax Rate: 1%

● Farming Pool Reward Allocation: 35,000

TIGER

● Community Fund Pool Allocation: 5000

TIGER

● Dev Fund Pool Allocation: 5000 TIGER

● Digits Dao Allocation: 5000 TIGER

● Initial Pool Supply: 100 TIGER

● Maximum Tax Rate: 1%

YES, This is valid.

File 7 TigerRewardPool.sol
● Total Rewards: 35,000 TIGER

● Running Time: 365 days

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.
All these issues have been resolved / acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Scrub Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Scrub Finance Protocol.

The Scrub Finance Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Scrub Finance Protocol smart contract code in the form of a File. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Scrub.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 masonExists modifier Passed No Issue
4 updateReward modifier Passed No Issue
5 notInitialized modifier Passed No Issue
6 initialize write Passed No Issue
7 setOperator external access only Operator No Issue
8 setLockUp external access only Operator No Issue
9 latestSnapshotIndex read Passed No Issue

10 getLatestSnapshot internal Passed No Issue
11 getLastSnapshotIndexOf read Passed No Issue
12 getLastSnapshotOf internal Passed No Issue
13 canWithdraw external Passed No Issue
14 canClaimReward external Passed No Issue
15 epoch external Passed No Issue
16 nextEpochPoint external Passed No Issue
17 getLionPrice external Passed No Issue
18 rewardPerShare read Passed No Issue
19 earned read Passed No Issue
20 stake write access only One

Block
No Issue

21 withdraw write access only One
Block

No Issue

22 exit external Passed No Issue
23 claimReward write Passed No Issue
24 allocateSeigniorage external access only Operator No Issue
25 governanceRecoverUnsu

pported
external access only Operator No Issue

26 totalSupply read Passed No Issue
27 balanceOf read Passed No Issue
28 stake write Passed No Issue
29 withdraw write Passed No Issue
30 checkSameOriginReentra

nted
internal Passed No Issue

31 checkSameSenderReentr
anted

internal Passed No Issue

32 onlyOneBlock modifier Passed No Issue

LBond.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write access only Operator No Issue
3 burn write Passed No Issue
4 burnFrom write Passed No Issue
5 owner read Passed No Issue
6 onlyOwner modifier Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue

10 operator read Passed No Issue
11 onlyOperator modifier Passed No Issue
12 isOperator read Passed No Issue
13 transferOperator write access only Owner No Issue
14 _transferOperator internal Passed No Issue

Lion.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 owner read Passed No Issue
5 onlyOwner modifier Passed No Issue
6 renounceOwnership write access only Owner No Issue
7 transferOwnership write access only Owner No Issue
8 _transferOwnership internal Passed No Issue
9 operator read Passed No Issue

10 onlyOperator modifier Passed No Issue
11 isOperator read Passed No Issue
12 transferOperator write access only Owner No Issue
13 _transferOperator internal Passed No Issue
14 onlyTaxOffice modifier Passed No Issue
15 onlyOperatorOrTaxOffice modifier Passed No Issue
16 getTaxTiersTwapsCount read Passed No Issue
17 getTaxTiersRatesCount read Passed No Issue
18 isAddressExcluded read Passed No Issue
19 setTaxTiersTwap write access only Tax Office No Issue
20 setTaxTiersRate write access only Tax Office No Issue
21 setBurnThreshold write access only Tax Office No Issue
22 _getLionPrice internal Passed No Issue
23 _updateTaxRate internal Passed No Issue
24 enableAutoCalculateTax write access only Tax Office No Issue

25 disableAutoCalculateTax write access only Tax Office No Issue
26 setOracle write access only Operator

Or Tax Office
No Issue

27 setTaxOffice write access only Operator
Or Tax Office

No Issue

28 setTaxCollectorAddress write access only Tax Office No Issue
29 setTaxRate write access only Tax Office No Issue
30 setBurnTax write access only Tax Office No Issue
31 excludeAddress write access only Operator

Or Tax Office
No Issue

32 includeAddress write access only Operator
Or Tax Office

No Issue

33 mint write access only Operator No Issue
34 burn write Passed No Issue
35 burnFrom write access only Operator No Issue
36 transferFrom write Passed No Issue
37 _transferWithTax internal Passed No Issue
38 distributeReward external access only Operator No Issue
39 governanceRecoverUnsu

pported
external access only Operator No Issue

Oracle.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 operator read Passed No Issue
8 onlyOperator modifier Passed No Issue
9 isOperator read Passed No Issue

10 transferOperator write access only Owner No Issue
11 _transferOperator internal Passed No Issue
12 checkStartTime modifier Passed No Issue
13 checkEpoch modifier Passed No Issue
14 getCurrentEpoch read Passed No Issue
15 getPeriod read Passed No Issue
16 getStartTime read Passed No Issue
17 getLastEpochTime read Passed No Issue
18 nextEpochPoint read Passed No Issue
19 setPeriod external access only Operator No Issue
20 setEpoch external access only Operator No Issue
21 update external Passed No Issue
22 consult external Passed No Issue

23 twap external Passed No Issue

Tiger.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 operator read Passed No Issue
8 onlyOperator modifier Passed No Issue
9 isOperator read Passed No Issue

10 transferOperator write access only Owner No Issue
11 _transferOperator internal Passed No Issue
12 onlyTaxOffice modifier Passed No Issue
13 onlyOperatorOrTaxOffice modifier Passed No Issue
14 setTreasuryFund external access only Operator No Issue
15 setDevFund external Passed No Issue
16 unclaimedTreasuryFund read Passed No Issue
17 unclaimedDevFund read Passed No Issue
18 unclaimedDigitsDaoFund read Passed No Issue
19 claimRewards external Passed No Issue
20 transferFrom write Passed No Issue
21 _transferWithTax internal Passed No Issue
22 setTaxRate write access only Operator

Or Tax Office
No Issue

23 excludeAddress write access only Operator
Or Tax Office

No Issue

24 includeAddress write access only Operator
Or Tax Office

No Issue

25 setTaxOffice write access only Operator
Or Tax Office

No Issue

26 setTaxCollectorAddress write access only Tax
Office

No Issue

27 distributeReward write access only Operator No Issue
28 burn write Passed No Issue
29 governanceRecoverUnsu

pported
external access only Operator No Issue

Treasury.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue

2 onlyOperator modifier Passed No Issue
3 checkCondition modifier Passed No Issue
4 checkEpoch modifier Passed No Issue
5 checkOperator modifier Passed No Issue
6 notInitialized modifier Passed No Issue
7 isInitialized read Passed No Issue
8 nextEpochPoint read Passed No Issue
9 getLionPrice read Passed No Issue

10 getLionUpdatedPrice read Passed No Issue
11 getReserve read Passed No Issue
12 getBurnableLionLeft read Passed No Issue
13 getRedeemableBonds read Passed No Issue
14 getBondDiscountRate read Passed No Issue
15 getBondPremiumRate read Passed No Issue
16 initialize write Passed No Issue
17 setOperator external access only Operator No Issue
18 setScrub external access only Operator No Issue
19 setLionOracle external access only Operator No Issue
20 setLionPriceCeiling external access only Operator No Issue
21 setMaxSupplyExpansionP

ercents
external access only Operator No Issue

22 setSupplyTiersEntry external access only Operator No Issue
23 setMaxExpansionTiersEnt

ry
external access only Operator No Issue

24 setBondDepletionFloorPe
rcent

external access only Operator No Issue

25 setMaxSupplyContraction
Percent

external access only Operator No Issue

26 setMaxDebtRatioPercent external access only Operator No Issue
27 setBootstrap external access only Operator No Issue
28 setExtraFunds external access only Operator No Issue
29 setMaxDiscountRate external access only Operator No Issue
30 setMaxPremiumRate external access only Operator No Issue
31 setDiscountPercent external access only Operator No Issue
32 setPremiumThreshold external access only Operator No Issue
33 setPremiumPercent external access only Operator No Issue
34 setMintingFactorForPayin

gDebt
external access only Operator No Issue

35 _updateLionPrice internal Passed No Issue
36 getLionCirculatingSupply read access only Operator No Issue
37 buyBonds external access only One

Block
No Issue

38 redeemBonds external access only One
Block

No Issue

39 _sendToScrub internal Passed No Issue
40 _calculateMaxSupplyExp

ansionPercent
internal Passed No Issue

41 allocateSeigniorage external access only One
Block

No Issue

42 excludeFromTotalSupply external access only Operator No Issue
43 includeToTotalSupply external access only Operator No Issue
44 governanceRecoverUnsu

pported
external access only Operator No Issue

45 ScrubSetOperator external access only Operator No Issue
46 ScrubSetLockUp external access only Operator No Issue
47 ScrubAllocateSeigniorage external access only Operator No Issue
48 ScrubGovernanceRecove

rUnsupported
external access only Operator No Issue

49 checkSameOriginReentra
nted

internal Passed No Issue

50 checkSameSenderReentr
anted

internal Passed No Issue

51 onlyOneBlock modifier Passed No Issue

TigerRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only Operator No Issue
5 set write access only Operator No Issue
6 getGeneratedReward read Passed No Issue
7 pendingTIGER external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue

10 deposit write Passed No Issue
11 withdraw write Passed No Issue
12 emergencyWithdraw write Passed No Issue
13 safeTShareTransfer internal Passed No Issue
14 setOperator external access only Operator No Issue
15 governanceRecoverUnsu

pported
external access only Operator No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log: TigerRewardPool.sol
Missing event log for:

● add

● set

● setOperator

Resolution: Write an event log for listed events.

Status: Fixed

Very Low / Informational / Best practices:

(1) Variables should be made immutable:

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Treasury.sol
lionPriceOne , startTime, lion , tiger , lbond

Tiger.sol
startTime, endTime, communityFundRewardRate , devFundRewardRate ,

digitsDaoRewardRate, digitsDaoFund.

Scrub.sol
lion, share, treasury

TigerRewardPool.sol
poolEndTime, poolStartTime, feeAddress

Resolution: We suggest setting these variables as immutable.

Status: Acknowledged

(2) Make variables constant: PowderRewardPool.sol
runningTime, tSharePerSecond

Resolution: We suggest setting these variables as constant.

Status: Acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setOperator: The Scrub Operator can set the operator address.

● setLockUp: The Scrub Operator can set reward lockup epochs and withdraw

lockup epochs.

● allocateSeigniorage: The Scrub Operator can allocate Seigniorage amount.

● governanceRecoverUnsupported: The Scrub Operator can transfer the amount to

governance to recover unsupported addresses.

● mint: The LBond Operator can mints basis bonds to a recipient.

● burnFrom: The LBond Operator can burn an amount from an account.

● mint: The Lion Operator can mint LION to a recipient.

● burnFrom: The Lion Operator can burn an amount from an account.

● distributeReward: The Lion Operator can distribute to the launchpad.

● governanceRecoverUnsupported: The Lion Operator can transfer the amount to

governance to recover unsupported addresses.

● distributeReward: The Tiger Operator can distribute to the reward pool.

● governanceRecoverUnsupported: The Tiger Operator can transfer the amount to

governance to recover unsupported addresses.

● setOperator: The Treasury Operator can set the operator address.

● setScrub: The Treasury Operator can set a Scrub address.

● setLionOracle: The Treasury Operator can set a lion oracle address.

● setLionPriceCeiling: The Treasury Operator can set a lion price ceiling.

● setMaxSupplyExpansionPercents: The Treasury Operator can set maximum supply

expansion percentages.

● setSupplyTiersEntry: The Treasury Operator can set supply tiers entry value and

index.

● setMaxExpansionTiersEntry: The Treasury Operator can set Maximum expansion

tiers entry.

● setBondDepletionFloorPercent: The Treasury Operator can set bond depletion floor

percentage.

● setMaxSupplyContractionPercent: The Treasury Operator can set maximum supply

contraction percentage.

● setMaxDebtRatioPercent: The Treasury Operator can set maximum debt ratio

percentage.

● setBootstrap: The Treasury Operator can set bootstrap epoch.

● setExtraFunds: The Treasury Operator can set dao funds, dev funds.

● setMaxDiscountRate: The Treasury Operator can set maximum Discount Rate.

● setMaxPremiumRate: The Treasury Operator can set maximum Premium Rate.

● setDiscountPercent: The Treasury Operator can set a discount percentage.

● setPremiumThreshold: The Treasury Operator can be the premium threshold.

● setPremiumPercent: The Treasury Operator can be premium percentages.

● setMintingFactorForPayingDebt: The Treasury Operator can set the minting factor

for paying debt value.

● buyBonds: The Treasury Operator can buy bonds.

● allocateSeigniorage: The Treasury Operator can allocate Seigniorage.

● excludeFromTotalSupply: The Treasury Operator can exclude from total supply.

● includeToTotalSupply: The Treasury Operator can include total supply.

● governanceRecoverUnsupported: The Treasury Operator can transfer the amount

to governance to recover unsupported addresses.

● scrubSetOperator: The Treasury Operator can set Scrub operator address.

● scrubSetLockUp: The Treasury Operator can withdraw Lockup Epochs value,

reward Lockup Epochs value.

● scrubAllocateSeigniorage: The Treasury Operator can set Scrub allocate

seigniorage amount.

● scrubGovernanceRecoverUnsupported: The Treasury Operator can transfer the

Scrub governance to recover unsupported addresses.

● governanceRecoverUnsupported: The TigerRewardPool Operator can transfer the

amount to governance to recover unsupported addresses.

● set: The TigerRewardPool Operator can update the given pool's tSHARE allocation

point.

● add: The TigerRewardPool Operator can add a new lp to the pool.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Scrub Finance Protocol

Scrub Diagram

Oracle Diagram

LBond Diagram

Lion Diagram

Treasury Diagram

Tiger Diagram

TigerRewardPool Diagram

Slither Results Log

Slither log >> Scrub.sol

Slither log >> LBond.sol

Slither log >> Lion.sol

Slither log >> Oracle.sol

Slither log >> Tiger.sol

Slither log >> Treasury.sol

Slither log >> TigerRewardPool.sol

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

