@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: OxyO2 Token

Coin Name: OXYQO2

Coin Ticker: KRPZA

Website: https://oxyo2.org
Platform: Binance Smart Chain
Language: Solidity

Date: July 10th, 2022

https://oxyo2.org

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 22
® SOININt LiNtEr oo 25

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the OxyO2 team to perform the Security audit of the
OxyO2 Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on March 24th, 2022.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

OXYO2 is a decentralized cryptocurrency which will be used as a utility token
among the oxyO2 ecosystem.

The maximum supply of OXYO2 is 1 billion, which will be minted and distributed
among potential oxyO2 users during various processes.

oxyO2 will use the finest and safest payment process to increase financial security
and transparency.

OxyO2 is a standard BEP20 token smart contract.

This audit only considers the OxyO2 token smart contract, and does not cover any

other smart contracts on the platform.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
OxyO2 Token Smart Contract

Platform BSC / Solidity

File OxyO2.sol

Online Code Link:

0x53940d46a35162255511ff7cade811891d49533¢

Audit Date

July 10th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/token/0x53940d46a35162255511ff7cade811891d49533c#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: oxyO2
e Symbol: KRPZA
e Decimals: 18
e Total Supply: 1 Billion

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in OxyO2 Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the OxyO2 Token.

The OxyO2 Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a OxyO2 Token smart contract code in the form of a BSCScan Web

Link.The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | recoverBEP20 write Removed

3 | snapshot write access only Owner No Issue
4 [pause write access only Owner No Issue
5 | unpause write access only Owner No Issue
6 beforeTokenTransfer internal Passed No Issue
7 afterTokenTransfer internal Passed No Issue
8 mint internal Passed No Issue
9 burn internal Passed No Issue
10 | paused read Passed No Issue
11 | whenNotPaused modifier Passed No Issue
12 | whenPaused modifier Passed No Issue
13 | pause internal Passed No Issue
14 | unpause internal Passed No Issue
15 | owner read Passed No Issue
16 | onlyOwner modifier Passed No Issue
17 | renounceOwnership read access only Owner No Issue
18 | transferOwnership write access only Owner No Issue
19 | transferOwnership internal Passed No Issue
20 | name read Passed No Issue
21 | symbol read Passed No Issue
22 | decimals read Passed No Issue
23 | totalSupply read Passed No Issue
24 | balanceOf read Passed No Issue
25 | transfer write Passed No Issue
26 | allowance read Passed No Issue
27 | approve write Passed No Issue
28 | transferFrom write Passed No Issue
29 | increaseAllowance write Passed No Issue
30 | decreaseAllowance write Passed No Issue
31 | transfer internal Passed No Issue
32 | mint internal Passed No Issue
33 [burn internal Passed No Issue
34 | approve internal Passed No Issue
35 | beforeTokenTransfer internal Passed No Issue
36 | afterTokenTransfer internal Passed No Issue
37 | permit write Passed No Issue
38 [nonces read Passed No Issue
39 | DOMAIN SEPARATOR external Passed No Issue
40 | useNonce internal Passed No Issue
41 | checkpoints read Passed No Issue
42 | numCheckpoints read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

43 | delegates read Passed No Issue
44 | getVotes read Passed No Issue
45 | getPastVotes read Passed No Issue
46 | getPastTotalSupply read Passed No Issue
47 | checkpointsLookup read Passed No Issue
48 | delegate write Passed No Issue
49 | delegateBySig write Passed No Issue
50 | maxSupply internal Passed No Issue
51 | mint internal Passed No Issue
52 | burn internal Passed No Issue
53 | afterTokenTransfer internal Passed No Issue
54 | delegate internal Passed No Issue
55 [moveVotingPower write Passed No Issue
56 | writeCheckpoint write Passed No Issue
57 | add write Passed No Issue
58 [subtract write Passed No Issue
59 [snapshot internal Passed No Issue
60 [getCurrentSnapshotld internal Passed No Issue
61 [balanceOfAt read Passed No Issue
62 | totalSupplyAt read Passed No Issue
63 | beforeTokenTransfer internal Passed No Issue
64 | valueAt read Passed No Issue
65 | updateAccountSnapshot write Passed No Issue
66 | updateTotalSupplySnapshot write Passed No Issue
67 | updateSnapshot write Passed No Issue
68 | lastSnapshotld read Passed No Issue
69 [burn write Passed No Issue
70 | burnFrom write Passed No Issue
71 | withdrawCoin write Removed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.
Very Low / Informational / Best practices:

(1) Critical operation lacks event log:

Missing event log for: recoverBEP20

Resolution: We suggest writing an event log for listed events.
Status: Fixed

(2) Function input parameters lack of check:

Variable validation is not performed in the function “recoverBEP20”.

Resolution: We suggest using a validation for the address type variables that should not
be address(0).
Status: Fixed

(3) Owner cannot drain BNB:
withdrawCoin function is used to drain BNB of the contract but as the contract does not

accept BNB, the owner cannot drain BNB from the contract.

Resolution: We suggest adding the fallback function to accept BNB.
Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. To make the smart contract 100% decentralized, we suggest renouncing ownership
in the smart contract once its function is completed.

Following are Admin functions:

e stakersbl: The Owner can blacklist a wallet address.

e stakersubl: The Owner can remove a wallet address from the blacklist.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have not observed any major issues. So, it’s good to go to

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ SafeCast

Qolint224()
Qtolint1 26()

Code Flow Diagram - OxyO2 Token

QUoLints6()
QrolintE4()

@ Strings

Qtolint32()
Qallint15() oy
© Quostring()

© QiaHexsString()

518 _HEX_SYMBOLS

000000000000

|

@) ecpsa

@) matn /

® ooz

RC20
ERC20Burnable
ERC20Snapshot
Ownable
Pausabie
ERC20Permit
ERC20Votes

——1| ® _construetor__()
_ © recoverBEP200)
~ © snapshot()
- © pause()
® uny

< _mint()
© Tburn()

)
< _beforeTakenTransfer()
© afterTakenTransfer()

(©) ercaovetes \

ERC20Permit

O byles3? DELEGATION TYPEHASH \
O adoress=-address _delegates \
O address=snul_checkpoints
O Checkpoi _lofalSupplyCheckpoints:
© Qeheckpoints()
© QumCheckpornts() \

(€) erca08umable

Cantext
ERC20

® burn)
© burnFrom()

& QfinaupperBound()
J

[© Qaelegates()
= Q_throwErrar)) | | | © QgetVates() \
< QiryRecovert) D | / | | © QuetPastyates() \
recover() © Qaverngel) | / | | QgetPastTotalSuppiy() \
£ SoBhSeneates sageash e / | I Q_checkpointsLookus() \
© QoTypedDataHash() / | delegate()
\ © delegateBySia()
| < Q_maysupply() |
| | < _mintg) |
/ | > Tourn{)
‘ / | || © CaferTokenTransrery |
/ | | | © Zeegatery
/ | \ move\atingPawer() ‘
| _wilteCheckpoint()
‘ / Q_add()
/ \ Q_subtract()
L / \ \
/ | |/ |
(©) Pausavis | |
Context | A |
| /
© bool _paused / |
© _constructor_() |
® Qpausedy) / |
© _pause() /]
< _unpause() | |
7 i / L
/ / | / .
/ L £ (©) erc20snapshot
(€ ErcaoPermit FReze
/ Arrays for uint256
RC20 for Coun
/ / JERG20Permit nCounters for Counters Counter
/ / ExEa © adress==Snapshots _accountBalanceSnapshots
/ O Snapshofs totalSupplySnapshots
/ o Counters for Counters, Counter \ O Courtiers Courter _currentsnapshotia
/ / © address=>Courters.Courter _nonces © _snapshot()
O bytes32 PERMIT_TYPEHASH © Q_getCurrentSnapshatid()
/ © QpalanceOrALD)
1:;'{‘“““"'70 © QuotalSupplyAt()
et \ & beforeTakenTranster()
© QDOMAN_SEPARATOR(A\ 2 QyahieAl
S 0 B _updateAccountSnapshot{)
/ / © _useNonce() \ ® _upclateTotalSupplySnapshot()
77 \ = “updateSnapshot)
' / y \ | ® _sastSnapsnotiog)
/ 4 /b \ o ' "
L /o \ S ™ | v
! © Ownable / \ ‘ \ |‘ '
‘ \
Context \ K | \
/ ' \ . \ |
[O sddress _owner / |\ forCounters Counter | ' forCounters Counter "
[© _constructor_() / ' \ ! |
i ® Qowner() J ! |
| © renounceOwnership) ' : |
| © transferOwnership() / N ! |
< _transfesOwnership() / | L N
N J @ ERG20
/) N Gontext
/ | \ IERC20
| y IERC20Metadata
/ | '
| { \ Yo
\ v O ddress=-unt2s6 _balances
v O 20 ess=>mapping address=ouni2s6 _alowances
[@© err2 i O k256 totaSupply
| W O string _name
\ | O bytes32 _CACHED_DOMAMN_ L O gtring _symbol
\ | O uint256 _CACHED_CHAIN_ID (:) Counters
\ O address _CACHED_THS . fERCzoRerme . Qramed) -
O bytes32 HASHED_NAME = Qomrentd Qaymbol()
\ O bytes32 HASHED_VERSION © permtt) S ey ® Qecmaing
\ Clbyies T2 TP L iASH © Qnonces() © decremert() © QotaiSuppiy()
© QDOMAN_SEPARATOR()
constructor_() = < reset() © Qpalanceof()
\ Q_domainSeparator'/4() @ transfer()
\ Q_buidDomainSe parator () ® Qalowance()
\ © @ hashTypedData\4() ® approve()
\ © transterFrom()
\ \ © increase Alowancel)
\ © decreaseAlowance()
© _transter()
\ \ & ()
\ © _burn()
\ © _approve()
\ \ > “beforeTokenTransfer()
. A © afterTokenTransfer()

©) context 4

© Q_msgSender()

© Q_msgDatal)

_— . (@) rerczovetaoat

IERC20

| ® Qnameq)
* Qsymbel()
| © Qecimals()

@ rerezo

© QtotalSuppiy()

© transterFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> OxyO2.sol

INFO:Detectors:
oxy02.recoverBEP20(address,uint256) (oxy02.so0l#1534-1536) ignores return value by IERC20(tokenAddress).transfer(owner(),tokenAmount) (ox
02.501#1535)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer
INFO:Detectors:
ERC20Votes._writeCheckpoint(ERC28Votes.Checkpoint[], function{uint256,uint256) returns{uint256),uint256) (oxy02.so0l#1369-1383) uses a dan
erous strict eguality:

- pos = 0 && ckpts[pos - 1].fromBlock == block.number (oxy02.so0l#1378)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
ERC20Votes._moveVotingPower(address,address,uint256).newieight_scope_1 (oxy02.s0l#1363) is a local variable never initialized
ERC20Votes. moveVotingPower(address,address,uint256).oldWweight_scope_0 (oxy02.s0l#1363) 1s a local variable never initialized
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-local-variables

INFO:Detectors:

) potentially used bef

.-.u'ts[-.stflL

(255
points[dst],_

-:-:r|:e|'is-:|'s

uses timestamp for comparisens

sol#1284)

INFO:Detectors
ECDSA. tryRecove
- INLINE
- INLINE
ECDSA. tryR Ver
- INLINE
Reference: https
INFO:Detectors:

Math.max(u
Math.min{ui
SafeCast.
safeCast.
SafeCast.
SafeCast.
safeCast.
SafeCast
f int128(uint
intl6{uint2

com/crytic/slither/wiki/Detector-Documentation#de
version too nt to be
r-Documentation#incorrec
M ? 7 not in
_CACHED_CHATN i ixedCase
_CACHED_THIS not in mixedCase
_HASHED_NAM not in mix
“HASHED_VERS ! is not in

nventions

2) uses literals
8 ** decimals

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

OxyO2.sol
Security

Inline assembly: X

The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.

more

Pos: 331:12:

Block timestamp:

Use of "block timestamp™: "block timestamp"” can be influenced by miners to a certain degree.
That means that a miner can "choose" the block timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.

more

Pos: 1131:16:

Block timestamp:

Use of "block timestamp™: "block timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.

more

Pos: 1284:16:

Gas & Economy

Gas costs: X

Gas requirement of function ERC20.name is infinite: If the gas requirement of a function is higher
than the block gas Llimit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 932:4:

Gas costs: b4

Gas requirement of function oxyO?2 pause is infinite: If the gas requirement of a function is higher
than the block gas Limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1542:4:

Gas costs:

Gas requirement of function oxyO2 unpause is infinite: If the gas requirement of a function is
higher than the block gas Limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1546:4:

. a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas Llimit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 1481:8:

Miscellaneous

Constant/View/Pure functions:

SafeCast tolUint224(uint256) : Is constant but potentially should not be - Modifiers are
currently not considered by this static analysis.

more

Pos: 17:4:

Constant/View/Pure functions:

oxy02__mint(address, uint256) : Potentially should be constant/view/pure but is not. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 1567:4:

Constant/View/Pure functions:

oxy02__burn{address,uint256) : Potentially should be constant/view/pure but is not. Mote:
Modifiers are currently not considered by this static analysis.

more

Pos: 1574:4:

Similar variable names: x

oxyO2._burn(address,uint256) : Variables have very similar names "account" and "amount”. Note:
Moaodifiers are currently not considered by this static analysis.
Pos: 1578:20:

Similar variable names:) 4

oxyO02 _burn(address uint256) : Variables have very similar names "account" and "amount”. Note:
Modifiers are currently not considered by this static analysis.
Pos: 1578:29:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

more

Pos: 1522:8:

. a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Solhint Linter

OxyO2.sol

:603:18: Error: Parse error: missing ';
:611:18: Error: Parse error: missing
:997:18: Error: Parse error: missing

18: Error: Parse error: missing

4:18: Error: Parse error: missing
:18: Error: Parse error: missing
:18: Error: Parse error: missing

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

