
Project: Sahara DAO Protocol
Website: saharadao.finance
Platform: Cronos Chain
Language: Solidity
Date: May 5th, 2022

https://saharadao.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….10

Technical Quick Stats …..……………………………………………………………………… 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Severity Definitions ……………………………………………………………………………... 22

Audit Findings …………………………………………………………………………………… 23

Conclusion ………………………………………………………………………………………. 28

Our Methodology ………………………………………………………………………………... 29

Disclaimers ………………………………………………………………………………………. 31

Appendix

● Code Flow Diagram ……………………………………………………………………... 32

● Slither Results Log ………………………………………………………………………. 52

● Solidity static analysis ….……………………………………………………………….. 60

● Solhint Linter …………………………………………………………………….……….. 77

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Sahara DAO to perform the Security audit of the Sahara
DAO Protocol smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on May 5th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Sahara DAO Contracts have functions like mint, redeem, recollateralize, addLiquidity, add,

set, withdraw, stake, setRewarder, getYTokenPrice, maxTotalSupply, etc. The Sahara DAO

contract inherits the ERC20, SafeERC20, Ownable, ReentrancyGuard, Address,

IUniswapV2Router02, SafeMath, Math, Initializable, IERC20, IUniswapV2Pair,

ERC20Burnable standard smart contracts from the OpenZeppelin library. These

OpenZeppelin contracts are considered community-audited and time-tested, and hence

are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Sahara DAO Protocol Smart Contracts

Platform Cronos / Solidity

File 1 Pool.sol

File 1 MD5 Hash E39F2C63B9F2B7DF9221FAA8CCDF7C75

Updated File 1 MD5 Hash BD5C77866255FA38D7E073BFD6A90141

File 2 SwapStrategyPOL.sol

File 2 MD5 Hash 1249FB016B7C21CAF703BC2578F27779

Updated File 2 MD5 Hash 16EB0491A7FCCCA0C0E74B589698C13C

File 3 SaharaDaoChef.sol

File 3 MD5 Hash 02321B441379C7C67FD26467057412FD

File 4 SaharaDaoStaking.sol

File 4 MD5 Hash 0A6662EB713D5C5F43F359435568E419

Updated File 4 MD5 Hash 72B0C357D32B9976F3F5BCC4A446EC2D

File 5 SaharaDaoZapMMSwap.sol

File 5 MD5 Hash 381F4A7BFEAF3253D098412BD2E9EEA0

File 6 Fund.sol

File 6 MD5 Hash A37372AC87DD651C420E505B52A70E88

File 7 MNGDaoFund.sol

File 7 MD5 Hash 911326C418887646F57EA59F56E02BBC

File 8 MNGDevFund.sol

File 8 MD5 Hash 6657AE95F3E95CFF955BF4620F9B9730

File 9 MNGReserve.sol

File 9 MD5 Hash 1AF612E73BBAD7E84B752FE5AFCDD66E

File 10 MNGTreasuryFund.sol

File 10 MD5 Hash BBB52629F52EA8A67CC5A6F56C4A606D

File 11 MockERC20.sol

File 11 MD5 Hash 94278D4A01D92E76EBDE914556B3A6A0

File 12 MockTreasury.sol

File 12 MD5 Hash EAB3F68107BE7B69CAFA290A0FD6FE83

File 13 MasterOracle.sol

File 13 MD5 Hash 26FFB8A6EB84AABF384A830DB4572C0A

File 14 UniswapPairOracle.sol

File 14 MD5 Hash 37801A23DE6F4571ADD278A4A062C1D5

File 15 XToken.sol

File 15 MD5 Hash E905290FA8FFB182588943AA4D60EAC6

File 16 YToken.sol

File 16 MD5 Hash FFA9BDAB9AEE9D07DB46CB3A23A34696

File 17 MMFX.sol

File 17 MD5 Hash C0CF1CBCC02763696123A46D401557D5

Updated File 17 MD5 Hash 664C0017F4BF8498B957DB667ED68580

File 18 MNG.sol

File 18 MD5 Hash D81DB17DEBEF1FDC4B7D1AF9441E5F57

Updated File 18 MD5 Hash 98BA05DE9BE689E4DE0C775A96137717

File 19 SaharaDaoTreasury.sol

File 19 MD5 Hash 0179F91AA5432801AB18BB46B9CA3D07

File 20 StratRecollateralize.sol

File 20 MD5 Hash BD1D0DE6A225D1268BD7BAA040B7CA3A

File 21 MD5 Hash F1600CDDAD4A8AB6F42455417FEA97CE

File 21 StratReduceReserveLP.sol

File 21 MD5 Hash DF023B3B9F8F23225BD08DA03ADC2255

Updated File 21 MD5 Hash 19390D3837AF290D881A7711AA462465

File 22 Timelock.sol

File 22 MD5 Hash 94F559046B7CB4335EE0F49341A23DA0

Audit Date May 5th,2022

Revise Audit Date May 9th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Pool.sol
● Refresh Cooldown: 1 hour

● Ratio StepUp: 0.2%

● Ratio StepDown: 0.1%

● Price Target: 1

● Price Band: 0.005

● YToken Slippage: 20%

● Redemption Fee: 0.5%

● Redemption Fee Maximum: 0.9%

● Minting Fee: 0.3%

● Minting Fee Maximum:0.5%

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 2 SwapStrategyPOL.sol
● Swap Slippage: 20%

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 3 SaharaDaoChef.sol
● Maximum Number Of Pools: 36

● Maximum Reward: 1 token per second

YES, This is valid.

File 4 SaharaDaoStaking.sol
● Rewards Duration: 1 week

● Lock Duration: 8 weeks

● Team Rewards: 20%

● Maximum Team Rewards: 20%

YES, This is valid.

File 5 SaharaDaoZapMMSwap.sol
● SaharaDaoZapMMSwap has functions

like: zap, swap, doSwapETH, etc

YES, This is valid.

File 6 Fund.sol
● Fund has functions like: allocation,

initialization, vestedBalance, claimable,

etc.

YES, This is valid.

File 7 MNGDaoFund.sol
● Allocation: 10%

● Vesting Duration: 3 Years

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 8 MNGDevFund.sol
● Allocation: 10%

● Vesting Duration: 2 Years

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 9 MNGReserve.sol
● MNGReserve has functions like: initialize,

setRewarder, setPool, transfer.

YES, This is valid.

File 10 MNGTreasuryFund.sol
● Allocation: 10%

● Vesting Duration: 3 Years

YES, This is valid.

File 11 MockERC20.sol
● MockERC20 has functions like: mint,

decimals.

YES, This is valid.

File 12 MockTreasury.sol
● MockTreasury has functions like: mock,

info.

YES, This is valid.

File 13 MasterOracle.sol
● MasterOracle has functions like:

getXTokenPrice, getYTokenPrice,

YES, This is valid.

getYTokenTWAP, etc.

File 14 UniswapPairOracle.sol
● Period: 60-minute TWAP (Time-Weighted

Average Price)

● Maximum Period: 48 Hours

● Minimum Period: 10 Minutes

● Leniency: 12 Hours

YES, This is valid.

File 15 XToken.sol
● XToken has functions like: setMinter, mint.

YES, This is valid.

File 16 YToken.sol
● The YToken contract inherits the

ERC20Burnable standard smart contracts

from the OpenZeppelin library.

YES, This is valid.

File 17 MMFX.sol
● Genesis Supply: 100

YES, This is valid.

File 18 MNG.sol
● The MNG contract inherits the YToken

contract.

YES, This is valid.

File 19 SaharaDaoTreasury.sol
● SaharaDaoTreasury has functions like:

balanceOf, requestFund, etc.

YES, This is valid.

File 20 StratRecollateralize.sol
● StratRecollateralize has functions like:

recollateralize, etc.

YES, This is valid.

File 21 StratReduceReserveLP.sol
● StratReduceReserveLP has functions

like: reduceReserve, swap.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 21 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Sahara DAO Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Sahara DAO Protocol.

The Sahara DAO team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Sahara DAO Protocol smart contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://saharadao.finance which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://saharadao.finance

AS-IS overview

Pool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 info external Passed No Issue
9 usableCollateralBalance read Passed No Issue

10 calcMint read Passed No Issue
11 calcRedeem read Passed No Issue
12 calcExcessCollateralBala

nce
read Passed No Issue

13 refreshCollateralRatio read Passed No Issue
14 mint external Passed No Issue
15 redeem external Passed No Issue
16 collect external Passed No Issue
17 recollateralize external Passed No Issue
18 checkPriceFluctuation internal Passed No Issue
19 toggle write access only Owner No Issue
20 setCollateralRatioOptions write access only Owner No Issue
21 toggleCollateralRatio write access only Owner No Issue
22 setFees write access only Owner No Issue
23 setMinCollateralRatio external access only Owner No Issue
24 reduceExcessCollateral external access only Owner No Issue
25 setSwapStrategy external access only Owner No Issue
26 setOracle external access only Owner No Issue
27 setYTokenSlippage external access only Owner No Issue
28 setTreasury external Function access

control lacks
management

Refer Audit
Findings

29 transferToTreasury internal Passed No Issue

SwapStrategyPOL.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue

3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 lpBalance read Passed No Issue
8 execute external Passed No Issue
9 swap internal Passed No Issue

10 addLiquidity internal Passed No Issue
11 cleanDust external access only Owner No Issue
12 changeSlippage external access only Owner No Issue

SaharaDaoChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 poolLength read Passed No Issue
8 pendingReward external Passed No Issue
9 updatePool write Passed No Issue

10 massUpdatePools write Passed No Issue
11 deposit write Passed No Issue
12 withdraw write Passed No Issue
13 harvest write Passed No Issue
14 withdrawAndHarvest write Passed No Issue
15 emergencyWithdraw write Passed No Issue
16 harvestAllRewards external Passed No Issue
17 checkPoolDuplicate internal Passed No Issue
18 add write access only Owner No Issue
19 set write access only Owner No Issue
20 setRewardPerSecond write access only Owner No Issue
21 setRewardMinter external Passed No Issue

SaharaDaoStaking.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue

6 _transferOwnership internal Passed No Issue
7 addReward write Function input

parameters lack of
check

Refer Audit
Findings

8 approveRewardDistributor external Function input
parameters lack of

check

Refer Audit
Findings

9 _rewardPerToken internal Passed No Issue
10 _earned internal Passed No Issue
11 lastTimeRewardApplicable read Passed No Issue
12 rewardPerToken external Passed No Issue
13 getRewardForDuration external Passed No Issue
14 claimableRewards external Passed No Issue
15 totalBalance external Passed No Issue
16 unlockedBalance external Passed No Issue
17 earnedBalances external Passed No Issue
18 lockedBalances external Passed No Issue
19 withdrawableBalance read Passed No Issue
20 stake external Passed No Issue
21 mint external Passed No Issue
22 withdraw write Passed No Issue
23 getReward write Passed No Issue
24 emergencyWithdraw external Critical operation

lacks event log
Refer Audit

Findings
25 withdrawExpiredLocks external Critical operation

lacks event log
Refer Audit

Findings
26 _notifyReward internal Passed No Issue
27 notifyRewardAmount external Passed No Issue
28 recoverERC20 external access only Owner No Issue
29 updateReward modifier Passed No Issue
30 receive external Passed No Issue

SaharaDaoZapMMSwap.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 zap external Passed No Issue
8 receive external Passed No Issue
9 swap internal access only Owner No Issue

10 doSwapETH internal Passed No Issue
11 approveToken internal Passed No Issue

12 calculateSwapInAmount internal Passed No Issue
13 addZap external access only Owner No Issue
14 removeZap external access only Owner No Issue

Fund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 initialize external initializer No Issue
9 allocation read Passed No Issue

10 vestingStart read Passed No Issue
11 vestingDuration read Passed No Issue
12 currentBalance read Passed No Issue
13 vestedBalance read Passed No Issue
14 claimable read Passed No Issue
15 transfer external access only Owner No Issue

MNGDaoFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 allocation write Passed No Issue
3 vestingStart write Passed No Issue
4 vestingDuration write Passed No Issue
5 initialize external initializer No Issue
6 allocation read Passed No Issue
7 vestingStart read Passed No Issue
8 vestingDuration read Passed No Issue
9 currentBalance read Passed No Issue

10 vestedBalance read Passed No Issue
11 claimable read Passed No Issue
12 transfer external access only Owner No Issue

MNGDevFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue
4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

MNGReserve.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 _setInitializedVersion write Passed No Issue
7 initialize external Passed No Issue
8 setRewarder external Passed No Issue
9 setPool external Passed No Issue

10 transfer external Passed No Issue

MNGTreasuryFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue
4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

MockERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 _afterTokenTransfer internal Passed No Issue
20 mint write Passed No Issue
21 decimals read Passed No Issue

MockTreasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 mock write Passed No Issue
3 info read Passed No Issue

MasterOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue

4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 getXTokenPrice read Passed No Issue
8 getYTokenPrice read Passed No Issue
9 getXTokenTWAP read Passed No Issue

10 getYTokenTWAP read Passed No Issue

UniswapPairOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setPeriod external access only Owner No Issue
3 update external Passed No Issue
4 twap external Passed No Issue
5 spot external Passed No Issue
6 currentBlockTimestamp internal Passed No Issue
7 currentCumulativePrices internal Passed No Issue

XToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 onlyMinter modifier Passed No Issue
5 setMinter external Passed No Issue
6 mint external access only Minter No Issue

YToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 maxTotalSupply internal Passed No Issue

MNG.sol

Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 maxTotalSupply internal Passed No Issue

MMFX.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 setMinter external Passed No Issue
4 mint external Unlimited Minting Refer Audit

Findings

StratRecollateralize.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 recollateralize external access only Owner No Issue
3 receive external Passed No Issue

StratReduceReserveLP.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 reduceReserve external access only Owner No Issue
8 swap internal Passed No Issue

SaharaDaoTreasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue

4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 balanceOf read Passed No Issue
8 requestFund external Passed No Issue
9 addStrategy external access only Owner No Issue

10 removeStrategy external access only Owner No Issue
11 allocateFee external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log: SaharaDaoStaking.sol
Missing event log for:

1. withdrawExpiredLocks

2. emergencyWithdraw.

Resolution: Write an event log for listed events.

(2) Function input parameters lack of check: SaharaDaoStaking.sol
Variable validation is not performed in the functions below :

1. addReward

2. approveRewardDistributor.

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

(3) Function access control lacks management: Pool.sol
The Treasury address is used to transfer fees. The treasury address can be set only once

but anyone can execute the setTreasury function.

Resolution: The owner has to make sure to set treasury before anyone sets it.

Status: Acknowledged.

Very Low / Informational / Best practices:

(1) Unlimited Minting: MMFX.sol
Minter can mint unlimited tokens.

Resolution: We suggest putting a minting limit.

(2) SPDX license identifier Missing: MockTreasury.sol
SPDX license identifier not provided in source file.

Resolution: We suggest adding an SPDX license identifier.

(3) HardCoded address: WethUtils.sol

These addresses have been set to static addresses and cannot be changed after

deploying.

Resolution: We suggest that the deployer should confirm before deploying contracts.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● toggle: Pool owner can turn on / off minting and redemption.

● setCollateralRatioOptions: Pool owner can configure variables related to Collateral

Ratio.

● toggleCollateralRatio: Pool owner can pause or unpause collateral ratio updates.

● setFees: Pool owners can set the protocol fees.

● setMinCollateralRatio: Pool owners can set the minimum Collateral Ratio.

● reduceExcessCollateral: Pool owners can transfer the excess balance of WETH to

FeeReserve.

● setSwapStrategy: Pool owner can set the address of Swapper utils.

● setOracle: Pool owner can set new oracle address.

● setYTokenSlippage: Pool owner can set yTokenSlipage.

● cleanDust: SwapStrategyPOL owner can clean dust.

● changeSlippage: SwapStrategyPOL owner can change slippage value.

● add: SaharaDaoChef owner can add a new LP to the pool.

● set: SaharaDaoChef owner can update the given pool's reward allocation point and

`IRewarder` contract

● setRewardPerSecond: SaharaDaoChef owner can set the reward per second to

be distributed.

● addReward: SaharaDaoStaking can add a new reward token to be distributed to

stakers.

● approveRewardDistributor: SaharaDaoStaking can modify approval for an address

to call notifyRewardAmount.

● recoverERC20: SaharaDaoStaking can be added to support recovering LP

Rewards from other systems such as BAL to be distributed to holders.

● setTeamWalletAddress: SaharaDaoStaking owner can set team wallet address.

● setTeamRewardPercent: SaharaDaoStaking owner can set team reward

percentage.

● addZap: SaharaDaoZapMMSwap owner can add new zap configuration.

● removeZap: SaharaDaoZapMMSwap owner can Deactivate a Zap configuration.

● transfer: Fund owners can transfer amounts.

● setPeriod: UniswapPairOracle owner can set the period.

● addStrategy: SaharaDaoTreasury owner can add new strategy.

● removeStrategy: SaharaDaoTreasury owner can remove the current strategy.

● allocateFee: SaharaDaoTreasury owner can allocate protocol's fee to stakers.

● recollateralize: StratRecollateralize owner recollateralize the minting pool.

● reduceReserve: StratReduceReserveLP owner can remove liquidity, buy back

YToken and burn.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, but

they were resolved in the revised smart contract code. So, the smart contracts are ready
for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Sahara DAO Protocol

Pool Diagram

SwapStrategyPOL Diagram

SaharaDaoChef Diagram

SaharaDaoStaking Diagram

SaharaDaoZapMMSwap Diagram

MNGDaoFund Diagram

MNGDevFund Diagram

MNGReserve Diagram

MNGTreasuryFund Diagram

Fund Diagram

MockERC20 Diagram

MockTreasury Diagram

MasterOracle Diagram

UniswapPairOracle Diagram

XToken Diagram

YToken Diagram

MNG Diagram

MMFX Diagram

StratRecollateralize Diagram

StratReduceReserveLP Diagram

SaharaDaoTreasury Diagram

Slither Results Log

Slither log >> Pool.sol

Slither log >> SwapStrategyPOL.sol

Slither log >> SaharaDaoChef.sol

Slither log >> SaharaDaoStaking.sol

Slither log >> MNGDaoFund.sol

Slither log >> MNGDevFund.sol

Slither log >> MNGReserve.sol

Slither log >> MNGTreasuryFund.sol

Slither log >> Fund.sol

Slither log >> MockERC20.sol

Slither log >> MockTreasury.sol

Slither log >> MasterOracle.sol

Slither log >> UniswapPairOracle.sol

Slither log >> XToken.sol

Slither log >> YToken.sol

Slither log >> MNG.sol

Slither log >> MMFX.sol

Slither log >> StratRecollateralize.sol

Slither log >> StratReduceReserveLP.sol

Slither log >> SaharaDaoTreasury.sol

Slither log >> SaharaDaoZapMMSwap.sol

Solidity Static Analysis

Pool.sol

SwapStrategyPOL.sol

SaharaDaoChef.sol

SaharaDaoStaking.sol

MNGDaoFund.sol

MNGDevFund.sol

MNGReserve.sol

MNGTreasuryFund.sol

Fund.sol

MockERC20.sol

MockTreasury.sol

MasterOracle.sol

UniswapPairOracle.sol

XToken.sol

YToken.sol

MNG.sol

MMFX.sol

StratRecollateralize.sol

StratReduceReserveLP.sol

SaharaDaoTreasury.sol

SaharaDaoZapMMSwap.sol

Solhint Linter

Pool.sol

Pool.sol:508:18: Error: Parse error: missing ';' at '{'
Pool.sol:731:18: Error: Parse error: missing ';' at '{'
Pool.sol:764:18: Error: Parse error: missing ';' at '{'
Pool.sol:813:18: Error: Parse error: missing ';' at '{'
Pool.sol:864:22: Error: Parse error: missing ';' at '{'

SwapStrategyPOL.sol

SwapStrategyPOL.sol:488:18: Error: Parse error: missing ';' at '{'

SaharaDaoChef.sol

SaharaDaoChef.sol:356:18: Error: Parse error: missing ';' at '{'

SaharaDaoStaking.sol

SaharaDaoStaking.sol:57:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:70:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:82:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:99:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:111:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:207:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:230:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:256:18: Error: Parse error: missing ';' at '{'
SaharaDaoStaking.sol:607:18: Error: Parse error: missing ';' at '{'

SaharaDaoZapMMSwap.sol

SaharaDaoZapMMSwap.sol:557:18: Error: Parse error: missing ';' at '{'
SaharaDaoZapMMSwap.sol:590:18: Error: Parse error: missing ';' at '{'
SaharaDaoZapMMSwap.sol:639:18: Error: Parse error: missing ';' at '{'
SaharaDaoZapMMSwap.sol:690:22: Error: Parse error: missing ';' at '{'
SaharaDaoZapMMSwap.sol:1338:18: Error: Parse error: missing ';' at
'{'

MNGDaoFund.sol

MNGDaoFund.sol:350:18: Error: Parse error: missing ';' at '{'

MNGDevFund.sol

MNGDevFund.sol:350:18: Error: Parse error: missing ';' at '{'

MNGReserve.sol

MNGReserve.sol:350:18: Error: Parse error: missing ';' at '{'

MNGTreasuryFund.sol

MNGTreasuryFund.sol:350:18: Error: Parse error: missing ';' at '{'

Fund.sol

Fund.sol:350:18: Error: Parse error: missing ';' at '{'

MockERC20.sol

FantasticTreasury.sol:277:18: Error: Parse error: missing ';' at '{'
FantasticTreasury.sol:310:18: Error: Parse error: missing ';' at '{'
FantasticTreasury.sol:359:18: Error: Parse error: missing ';' at '{'
FantasticTreasury.sol:410:22: Error: Parse error: missing ';' at '{

MockTreasury.sol

MockTreasury.sol:1:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement

MasterOracle.sol

MasterOracle.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
MasterOracle.sol:31:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
MasterOracle.sol:90:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

UniswapPairOracle.sol

UniswapPairOracle.sol:499:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:532:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:581:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:632:22: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:1035:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:1102:18: Error: Parse error: missing ';' at '{'

XToken.sol

XToken.sol:277:18: Error: Parse error: missing ';' at '{'
XToken.sol:310:18: Error: Parse error: missing ';' at '{'
XToken.sol:359:18: Error: Parse error: missing ';' at '{'
XToken.sol:410:22: Error: Parse error: missing ';' at '{'

YToken.sol

YToken.sol:277:18: Error: Parse error: missing ';' at '{'
YToken.sol:310:18: Error: Parse error: missing ';' at '{'
YToken.sol:359:18: Error: Parse error: missing ';' at '{'
YToken.sol:410:22: Error: Parse error: missing ';' at '{'

MNG.sol

MNG.sol:277:18: Error: Parse error: missing ';' at '{'
MNG.sol:310:18: Error: Parse error: missing ';' at '{'
MNG.sol:359:18: Error: Parse error: missing ';' at '{'
MNG.sol:410:22: Error: Parse error: missing ';' at '{'

MMFX.sol

MMFX.sol:277:18: Error: Parse error: missing ';' at '{'
MMFX.sol:310:18: Error: Parse error: missing ';' at '{'
MMFX.sol:359:18: Error: Parse error: missing ';' at '{'
MMFX.sol:410:22: Error: Parse error: missing ';' at '{'

StratRecollateralize.sol

StratRecollateralize.sol:360:18: Error: Parse error: missing ';' at
'{'

StratReduceReserveLP.sol

StratReduceReserveLP.sol:489:18: Error: Parse error: missing ';' at
'{'

SaharaDaoTreasury.sol

SaharaDaoTreasury.sol:355:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

