@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Catcoin Token
Website: https://catcoin.com
Platform: Binance Smart Chain
Language: Solidity

Date: July 23rd, 2022

https://catcoin.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Catcoin team to perform the Security audit of the
CATcoin Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on July 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

Catcoin is a smart contract having functions like swap And Liquify, add Liquidity, etx, dtx,

airdropTokens, etxBuy, etxSell, dtxBuy, dtxSell, etc.

Audit scope
Name Code Review and Security Analysis Report for
Catcoin Token Smart Contract
Platform BSC / Solidity
File CatCoin.sol
File MD5 Hash 78EDCA266ADF4718F25C72831FA3E495
Updated MD5 Hash 1B32B2A652E67909DF7BD30CD07AF842
Audit Date July 23rd, 2022
Revised Audit Date August 4th,2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x2f6255ed4e8aa18cca74f5d7a9962f5ecee97494#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Catcoin
e Symbol: CATcoin
e Decimals: 9
e Anti Whale Amount: 500 Trillion
e Swap Tokens at Amount: 20 Trillion
e Maximum Sell Amount per Cycle: 500 Trillion
e Anti Dump Cycle: 8 hours
e Liquidity Fee: 4%
e Marketing Fee: 1%

e Burn Fee: 2%

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

All the issues have been fixed/acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop

High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Catcoin Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Catcoin Token.

The Catcoin Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Catcoin Token smart contract code in the form of a BSCScan weblink.

The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://catcoin.com which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://catcoin.com

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [name write Passed No Issue
3 | symbol write Passed No Issue
4 | decimals write Passed No Issue
5 | totalSupply read Passed No Issue
6 | balanceOf read Passed No Issue
7 | transfer write Passed No Issue
8 [allowance read Passed No Issue
9 | approve write Passed No Issue
10 | transferFrom write Passed No Issue
11 | increaseAllowance write Passed No Issue
12 | decreaseAllowance write Passed No Issue
13 | excludeFromFee write access only Owner No Issue
14 | includelnFee write access only Owner No Issue
15 | isExcludedFromFee read Passed No Issue
16 | approve write Passed No Issue
17 | transfer write Passed No Issue
18 | tokenTransfer write Passed No Issue
19 | swapAndLiquify write lockTheSwap No Issue
20 | addLiquidity write Centralized risk in Refer Audit
addLiquidity Findings
21 | swapTokensForBNB write Passed No Issue
22 | updateMarketingWallet external | access only Owner No Issue
23 | updateAntiWhaleAmt external Function input Refer Audit
parameters lack of Findings
check
24 | updateSwapTokensAtAmount [external Function input Refer Audit
parameters lack of Findings
check
25 | updateSwapEnabled external | access only Owner No Issue
26 | setAntibot external | access only Owner No Issue
27 | bulkAntiBot external Infinite loops Refer Audit
possibility Findings
28 | updateRouterAndPair external | access only Owner No Issue
29 | updateAntiDump external | access only Owner No Issue
30 [isBot read Passed No Issue
31 [taxFreeTransfer internal Passed No Issue
32
33 | owner read Passed No Issue
34 | onlyOwner modifier Passed No Issue
35 | renounceOwnership write access only Owner No Issue
36 | transferOwnership write access only Owner No Issue
37 | setOwner write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

38 | rescueBNB external [access only Owner No Issue
39 [rescueAnyBEP20Tokens write access only Owner No Issue
40 | receive external Passed No Issue
41 | lockTheSwap modifier Passed No Issue
42 | taxFreeTransfer internal Passed No Issue
43 | isExcludedFromFee read Passed No Issue
44 | recalcReflectionRate write Passed No Issue
45 | setOnlyAllowWhitelistTrading | external | access only Owner No Issue
46 | bulkPancakeSwapWhitelist external | access only Owner No Issue
47 | addBalance write Passed No Issue
48 | reduceBalance write Passed No Issue
49 | airdropTokens external | access only Owner No Issue
50 | dtx external | access only Owner No Issue
51 [etx external | access only Owner No Issue
52 | etxBuy external | access only Owner No Issue
53 [etxSell external | access only Owner No Issue
54 | dtxBuy external | access only Owner No Issue
55 [dtxSell external | access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Centralized risk in addLiquidity:

function addLiquidity(uint256 tokenAmount, uint256 bnbAmount) private
// approve token transfer to cover all possible scenarios
_approve(address(this), address(router), tokenAmount);

// add the liquidity

router.addlLiquidityETH{value: bnbAmount}(
address(this),
tokenAmount,
@, // slippage 1s unavoildable
@, // slippage 1s unavoildable
owner(),
block.timestamp

)3

h

In addLiquidityETH function, the owner gets CATcoin Tokens from the Pool. If the private
key of the owner's wallet is compromised, then it will create a problem.

Resolution: Ideally this can be a governance smart contract. On another hand, the owner
can accept this risk and handle the private key very securely.

Status: Acknowledged.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to
find an element.

Functions are listed below:

e bulkAntiBot

Resolution: Adjust logic to replace loops with mapping or other code structure.
Status:

(3) Logical vulnerability:
On buy and sell, marketing and burn fees are not deducted correctly.

Resolution: We suggest correcting the fees distribution logic by calculating fees based on
the actual amount.
Status: Fixed.

Very Low / Informational / Best practices:

(1) Function input parameters lack of check:
Some functions require validation before execution.
Functions are:

e updateSwapTokensAtAmount

e updateAntiWhaleAmt

Resolution: We suggest using validation like variables should be greater than 0.
Status:

(2) Unused event:

—a

event UpdatedRouter(address oldRouter, address newRouter);

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

UpdatedRouter event is defined but not used in code.

Resolution: We suggest removing unused events.
Status:

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e excludeFromFee: The Owner can set an exclude account address.

e includelnFee: The Owner can set an account address.

e updateMarketingWallet: The Owner can update the marketing wallet address.

e updateAntiWhaleAmt: The Owner can update the Anti whale amount.

e updateSwapTokensAtAmount: The Owner can update swap tokens at the amount.
e updateSwapEnabled: The Owner can update swap enabled status.

e setAntibot: The Owner can set the antibot address and state.

e bulkAntiBot: The Owner can bulk anti bot account addresses and state.

e excludeFromReward: The Owner can exclude from the reward account.

e includelnReward: The Owner can include from the reward account.

e setOnlyAllowWhitelistTrading: The Owner can set whitelist trading allow status.

e bulkPancakeSwapWhitelist: The Owner can bulk pancake swap whitelist state.

e ditx: The Owner can reset buy and sell taxes.

e etx: The Owner can set buy and sell taxes percentage.

e etxBuy: The Owner can set the buy tax percentage.

e eitxSell: The Owner can set the sell tax percentage.

e dtxBuy:The Owner can reset the buy tax percentage.

e dixSell:The Owner can reset the sell tax percentage.

e updateRouterAndPair: The Owner can update the router address and pair address.
e updateAntiDump: The Owner can update maximum sell amount per cycle, time in

minutes.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e aidropTokens: The Owner can set an airdrop amount using the wallet address.

e rescueBNB: The Owner can access this function when BNB are sent to the contract
by mistake.

e rescueAnyBEP20Tokens: This Function to allow admin to claim *other* BEP20
tokens were sent to this contract (by mistake). The Owner cannot transfer out

Catcoin from this smart contract.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We had observed some issues in the smart contracts, but those issues

are not critical ones. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Catcoin Token

© Catpay

Context
IERC20
Ownable

address=>uint256 _rOwned
=uUiNt256 _tOwwned

=mapping address==uint25& _allowances

=bool| _isExcludedFromFes
=bool _i
=bool _i

address _excludedFromReward
kool swapEnabled

kool swapping

|IRouter router

address pair

uints DECIMAL S

Uint256 WA

uint256 T_TOTAL

uiNt256 _rTotal

uwint256 _reflectionRate

uint256 MIN_REFLECTION_RATE
uint256 _tExcludedFromRewarcTotal
wiNt256 _rExcludedFromRewardTotal
bool isRewardEndecd

uint256 artivhalesmt

uint256 swapTokensAtAmount
Wint256 maxSelAmourtPerCycle
wint256 armtiDumpCycle

bool onlyAllow\wWhitelistTrading
address==UserLastSell userLastSell
address DEAD ADDRESS

address marketingAddress

string NAME

string SYMBEOL

Taxes transferTaxes

Taxes buyTaxes

Taxes sellTaxes

TotFeesPaidStruct totFeesPaid

=bool _isPancakeSwapWhitelisted

& __ constructor__ ()

S name)

S symbol()

O cdecimals()
CtotalSupply)

D balance ()
transfer()

Callowancel)

approvel)
transferFrom()
increaseAllowance()
decreaseAllowance()
AisExcludedFromReward()
QtokenFromReflection()
excludeFromReward()
includeinReward()
excludeFromFes()
includeinFee()
QisExcludedFromFes()
_recalcReflectionRate()
_approve()

_transfer()
_tokenTransfer()
swapAndLiguify ()
addLiguidity()
swapTokensForBRB()
updateMarketingWWallet()
updateAntivivhale &mt()
updateSwapTokensAtAmourt()
updateSwapEnakled()
setAntibot()

bulkAntiBot()

setOnly Allow\Whitelist Trading()
bulkPancakeSwapWhitelist()
updateRouter AndPair()
updateAntiDume ()
QisBot()
taxFreeTransfer()
_addBalance()
_reduceBalance()
airdropTokens()

it}

etx()

etxBuy()

etxSell)

chxBuy()

chtxSell()

rescusBRHNB()
rescuseAnyBEPZ20Tokens()

00000000CQONN (00000000000 NNNNNNNOQOO0O0000OQOCFOGEOEOGEPOEOEPO|0O000C0O000C0O000C0CO00000000OD0O0O0DOD0ODOD

@ IFactory

(T router

@ createPair()

©. COwnable

@ .fE.R-’C2G |

@ RtotalSupply () 1
@ QbalanceOf() |

O address _owner

Contexi

@ transfer() 1
@ Qallowance() 1
@ approve()
@ transferFromi) \

@ __ _constructor___()
@ Qowener()
@ renounceOwnership()
@ transferOwnership()
m _setOwner()

T

e Co;negd

< _msaSender()
< Q_msgDatal)

eo00

Q. factory()

QUWVETH)

& addLiguidity ETH()
swapExactTokensForETHSuppertingFeseCnTransferTokens()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> Catcoin.sol

INFO: Detectors

Reference: https://g .com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in Catpay._
External ca
ensAtAmount) (Catpay
.addLiguidityETH{value: bnbAmount}(ress{ this), tokenAmount,® wner{),block.timestamp)
491-498)
.swapExactTokensForETHSupportingFeednTransferTokens(tokenAmount, @ th,address(recipient),
(Catpay
h:
nsAtAmount) (Cat
i TH{value: bnbAmount}{address({this),tokenAmount,@ wner{),block.timestamp)

S= tBur (Ca f|
tRfi {Catp
Reentrancy (

_router.WETH{)) {Catpay.sol#134-185)
cTtEr ‘t|
) (Catpay

= true (Ca t|‘
true (Catpay
1#

= .ut] = true (Catpay.
EEHE ADDRESS) (Catpa
_ FromReward[ac :Lrt]
- _isPancakeSwapWhitelisted[a ess(this)] =
- _isPancakeS iteli)] = true
- exclud i)

- excludeFro
- exclude

I:EHI: .a\IZIIZIF'sECc Z- { Cc‘t|:

DEAD H\I:I:RECC 'C ‘t| f.50]
dFromRewardTotal += tBalance (Ca tpay

DEAD_ADDRESS) ICc‘t|.c
unt] = tBalance (Cat
sol#138)

C swapAndLiguif
External calls:
- swapTokensForBNB(tokensT
.swapExac e THSuppor ce0nTranste »:I'S'Zt-:k-:r:i\r-:Lrt_.E-_.|:at|'_.e-: ress{recipient)

), tokenAmount, ner(),block.timestamp)

- cCCL'L-L,'L- ce) f 7)
- rout d =H Amount] =55(this), tokenAmount,0,0 ner(),block.timestamp)

; is a private and confidential document. No part of this document should

(Catpay.s

block.timest

,block.timest

(Catpay.sol#

be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

External calls sending eth:
- addLiquidity(otherHalfofTokens ,newBalance) (Catpay.sol#483)
- router.addlLiquidityETH{value: bnbAmount}{address{this},tokenAmount,®,8,owner(),block.timestamp) (Catpay.sol#

r.s0l#483)
aHCQS[D\HQI][SPQHdQI] = awount 'Catpav sol#354)
Reentrancy 1in Catpay.tl ansferFrom(address,address,uint256) (Catpay.sol#239-247):
External calls:
- _transfer(sender,recipient,amount) (Catpay.sol#240)
- router.addlL iquidityETH{value: bnbAmount}{address(this),tokenAmount,8,08,owner{),block.timestamp) (Catpay.sol#

491-498)
- router.swapExactTokensForETHSupportingFeeonTrans ferTokens(tokenamount,®,path,address{recipient),block.timest
amp) (Catpay.sol#518-516)
External calls sending eth:
- _transfer(sender, recipient,amount) (Catpay.sol#2
- router.addlLiquidityETH{value: bnbAmount}(address{this},tokenAmount,®,8,owner(),block.timestamp) (Catpay.sol#

variables written after the call{s):
ove(sender,_msgSender(),currentAllowance - amount) (Catpay.sol#244)
- allD\aHCQS[D\HQI][Spﬁhdﬁl] = amount (Catpay.sol#354)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in Catpay._transfer({address,address,uint256) (Catpay.sol#358-416):
External calls:
- swapAndlLiguify(swapTokensAtAmount) {Catpay.sol#406)
- router.addL iquidityETH{value: bnbuwount_.addressithis),tokenAwount,D,D,ownerﬁ),block.tiwestawp} {Catpay.sol#
- router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,®,path,address{recipient).,block.timest
amp) (Catpay.sol#518-516)
External calls sending eth:
- swapAndlLiguify(swapTokensAtAmount) {Catpay.sol#406)
- router.addlLiquidityETH{value: bnbAmount}{address{this},tokenAmount,®,8,owner(),block.timestamp) (Catpay.sol#

nt emitted after the call(s):
Transfer(sender,recipient,tAmount) (Catpay.sol#573)
- taxFreeTransfer(from,to,amount) (Catpay.sol#412)

Transfer(sender,address(this),tLiguidity) 'Catpav sol#431)
- _tokenTransfer(from,to,amount,usedTaxes) (Catpay. 501#414)
Transfer(sender, Walkntlngujjrass tHa|kAt1n-l (Catpay. sol#440
- _tokenTransfer(from,to,amount,usedTaxes) (Catpay. sol# #414)
Transfer(sender,DEAD_ADDRESS,tBurn) (Catpay.sol#458)
- _tokenTransfer(from,to,amount,usedTaxes) (Catpay.sol#414)
'ransferisender,recipient,t"ansferﬁwount) (Catpay.sol#463)
- _tokenTransfer(from,to,amount,usedTaxes) (Catpay.sol#414)
Reentrancy in Catpay.constructor{address) {Catpay.sol#182-202):
External calls:
- _pair = IFactory(_router.factory()).createPair(address(this),_router.WETH()) (Catpay.sol#184-185)
vent emitted after the callis}):
ansfter(address(8),ow (), T_TOTAL) (Catpay.sol#
Reentrancy in Catpay. S\aDthquulTvlulht45E} {Catpay.sol#4
External calls:
- swapTokensForBNE(tokensToSwap,address(this)) (Catpay. 501#481)
- router. S\apEfaCt okensForETHSupportingFeeOnTrans ferTokens(tokenAmount,®,path,address(recipient),block.timest
amp) {Catpay.sol#51
- addLiguidity oth9|Ha1TDT okens ,newBalance) (Catpay.sol#483)
- router.addLiquidityETH{value: bnbAmount}{address(this),tokenAmount,®,0,owner(),block.timestamp) (Catpay.sol#
491-498)
External calls sending eth:
- addLiquidity(otherHalf0fTokens,newBalance) (Catpay.sol#4283)
- router.addlLiquidityETH{value: bnbAmount}{address{this),tokenAmount,®,8,owner(),block.timestamp) (Catpay.s
431-493)
Event emitted after the call(s):
- Approval{ r.spender,amount) (Catpay.sol#355)
dLiquidity(otherHalfofTokens,newBala
Reentrancy in Catpay.transferFrom{address, ajj|ass uint256)
External calls
- _transfer(sender,recipient,amount) {Catpay.sol#240)
- router.addLiquidityETH{value: bnbAmount}{address(this),tokenAmount,®,0,owner(),block.timestamp) (Catpay.s

wce) (Catpay.sol#483
) ICatpay.sol#E%Q—

491-498)
- router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,®8,path,address(recipient),block.timest
amp) {Catpay.sol#510-516)
External calls sending eth:
- _transfer(sender,recipient,amount) (Catpay.sol#240)

- router.addlLiquidityETH{value: bnbAmount}(address(this),tokenAmount,0,08,owner(),block.timestamp) (Catpay.sol#
491-498)
Event emitted after the call(s):
- Approval(owner,spender,amount) (Catpay.sol#355)
- _approve(sender,_msgSender(), currentAllowance - amount) (Catpay.sol#244)
Reference: https://github. cowa|vttcfsllth=|.\lklfDatactDr Documentation#reentrancy-wvulnerabilities-3
INFO:Detectors:
Catpay._transfer{address,address,uint256) (Catpay.sol#358-416) uses timestamp for comparisons
Dangerous cOMParisons:
- newCycle = block.timestamp - userLastSell[from].lastSellTime == antiDumpCycle (Catpay.sol#392
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Catpay.includeInReward(address) (Catpay.sol#286-315) has costly operations inside a loop:
- _rTotal += rBalance - rExcludedFromRewardTotal (Catpay.sol#297)
Catpay.includeInReward(address) (Catpay.sol# 315) has costly operatiens inside a loop:
- _rExcludedFromRewardTotal (
Catpay.includeInReward(address) (Catpay. E 5) y operatiens inside loop:
- _texcludedFromRewardTotal = tBalance (Catpay.sol#
'.lncludaInRa\ardladjlass- (Catpay.sol#286-215) has costly Dperations ins ide loop:
rExcludedFromR dTotal - |Ba1ahCA (Catpay.sol#299)
Catpay. in eInReward({address) (Catpay.sol#286-315) ly operations inside a loop:
rExcludedFromRewardTotal -= rBalance (Catpay.sol#3
Reference: https://github.comscrytic/slither/wiki/Detector- Docuw#htatlon«costlv operations-inside-a-loop
INFO:Detectors:
Context. msgData() (Catpay.sol#35-38) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Catpay._reflectionRate (Catpay.sol#122) is set pre-construction with a non-constant function or state variable:
TOTAL
github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-stat riables

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ith] mentati lic-fu
contracts with 75 found
Slither:Use https://c lo/ to g 5 to i d Github in

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Catcoin.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Catpay.swapTokensForBNB(uint256,address):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

maore

Pos: 501:4:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 392:28:

Gas & Economy

Gas costs:

Gas requirement of function Catpay.transferTaxes is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 164:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values,
have to be used carefully. Due to the block gas limit, transactions can only consume a certain amount of
gas. The number of iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded loops incurs in a lot of
avoidable gas costs. Carefully test how many items at maximum you can pass to such functions to make
it successful.

more

Pos: 603:8:

Miscellaneous

Constant/View/Pure functions:

IRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(uint256,uint256,address[],address,uint256)
: Potentially should be constantAview/pure but is not. Note: Modifiers are currently not considered by this

static analysis.

more

Pos: 91:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable nhames:

Catpay.excludeFromReward(address) : Variables have very similar names "rBalance" and "tBalance".
Note: Modifiers are currently not considered by this static analysis.
Pos: 277:31:

Similar variable names:

Catpay.airdropTokens({address[],uint256[]) : Variables have very similar names "accounts" and
"amounts". Note: Modifiers are currently not considered by this static analysis.
Pos: 604:53:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 353:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more
Pos: 538:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
maore

Pos: 657:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1 since
the result is an integer again. This does not hold for division of (only) literal values since those yield
rational constants.

Pos: 456:27:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1 since
the result is an integer again. This does not hold for division of (only) literal values since those yield
rational constants.

Pos: 478:31:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Catcoin.sol

.s0l:6:1: Error: Compiler version ~0.8.7 does not satisfy the
requirement

.s01:46:5: Error: Explicitly mark visibility in function (Set
noreConstructors to true if using solidity >=0.7.0)
in.so0l:81:5: Error: Function name must be in mixedCase
.s01:99:1: Error: Contract has 28 states declarations but

no more than 15

.s01:182:5: Error: Explicitly mark visibility in function
onstructors to true if using solid

:392:29: Error: Avoid to make

B Q

aQ Q-0

te}
3

()

C
i
Cat
Ie}

coin. 14 :47: Error: VO 1 ke time-based decisions

iness logic

coin.so0l:497:13: Error: Avoid to time-based decisions

in

oin.so0l:515:13: Error: Avoid to time-based decisions
logic

.so0l:661: : Error: Code c empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

