
Project: Catcoin Token
Website: https://catcoin.com
Platform: Binance Smart Chain
Language: Solidity
Date: July 23rd, 2022

https://catcoin.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Catcoin team to perform the Security audit of the
CATcoin Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on July 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Catcoin is a smart contract having functions like swap And Liquify, add Liquidity, etx, dtx,

airdropTokens, etxBuy, etxSell, dtxBuy, dtxSell, etc.

Audit scope

Name Code Review and Security Analysis Report for
Catcoin Token Smart Contract

Platform BSC / Solidity

File CatCoin.sol

File MD5 Hash 78EDCA266ADF4718F25C72831FA3E495

Updated MD5 Hash 1B32B2A652E67909DF7BD30CD07AF842

Audit Date July 23rd, 2022

Revised Audit Date August 4th,2022

https://bscscan.com/address/0x2f6255ed4e8aa18cca74f5d7a9962f5ecee97494#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Catcoin

● Symbol: CATcoin

● Decimals: 9

● Anti Whale Amount: 500 Trillion

● Swap Tokens at Amount: 20 Trillion

● Maximum Sell Amount per Cycle: 500 Trillion

● Anti Dump Cycle: 8 hours

● Liquidity Fee: 4%

● Marketing Fee: 1%

● Burn Fee: 2%

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.
All the issues have been fixed/acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Catcoin Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Catcoin Token.

The Catcoin Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Catcoin Token smart contract code in the form of a BSCScan weblink.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://catcoin.com which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://catcoin.com

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name write Passed No Issue
3 symbol write Passed No Issue
4 decimals write Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 excludeFromFee write access only Owner No Issue
14 includeInFee write access only Owner No Issue
15 isExcludedFromFee read Passed No Issue
16 _approve write Passed No Issue
17 _transfer write Passed No Issue
18 _tokenTransfer write Passed No Issue
19 swapAndLiquify write lockTheSwap No Issue
20 addLiquidity write Centralized risk in

addLiquidity
Refer Audit

Findings
21 swapTokensForBNB write Passed No Issue
22 updateMarketingWallet external access only Owner No Issue
23 updateAntiWhaleAmt external Function input

parameters lack of
check

Refer Audit
Findings

24 updateSwapTokensAtAmount external Function input
parameters lack of

check

Refer Audit
Findings

25 updateSwapEnabled external access only Owner No Issue
26 setAntibot external access only Owner No Issue
27 bulkAntiBot external Infinite loops

possibility
Refer Audit

Findings
28 updateRouterAndPair external access only Owner No Issue
29 updateAntiDump external access only Owner No Issue
30 isBot read Passed No Issue
31 taxFreeTransfer internal Passed No Issue
32
33 owner read Passed No Issue
34 onlyOwner modifier Passed No Issue
35 renounceOwnership write access only Owner No Issue
36 transferOwnership write access only Owner No Issue
37 _setOwner write Passed No Issue

38 rescueBNB external access only Owner No Issue
39 rescueAnyBEP20Tokens write access only Owner No Issue
40 receive external Passed No Issue
41 lockTheSwap modifier Passed No Issue
42 taxFreeTransfer internal Passed No Issue
43 isExcludedFromFee read Passed No Issue
44 _recalcReflectionRate write Passed No Issue
45 setOnlyAllowWhitelistTrading external access only Owner No Issue
46 bulkPancakeSwapWhitelist external access only Owner No Issue
47 _addBalance write Passed No Issue
48 _reduceBalance write Passed No Issue
49 airdropTokens external access only Owner No Issue
50 dtx external access only Owner No Issue
51 etx external access only Owner No Issue
52 etxBuy external access only Owner No Issue
53 etxSell external access only Owner No Issue
54 dtxBuy external access only Owner No Issue
55 dtxSell external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

`
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Centralized risk in addLiquidity:

In addLiquidityETH function, the owner gets CATcoin Tokens from the Pool. If the private

key of the owner's wallet is compromised, then it will create a problem.

Resolution: Ideally this can be a governance smart contract. On another hand, the owner

can accept this risk and handle the private key very securely.

Status: Acknowledged.

(2) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Functions are listed below:

● bulkAntiBot

Resolution: Adjust logic to replace loops with mapping or other code structure.

Status: Acknowledged.

(3) Logical vulnerability:

On buy and sell, marketing and burn fees are not deducted correctly.

Resolution: We suggest correcting the fees distribution logic by calculating fees based on

the actual amount.

Status: Fixed.

Very Low / Informational / Best practices:

(1) Function input parameters lack of check:

Some functions require validation before execution.

Functions are:

● updateSwapTokensAtAmount

● updateAntiWhaleAmt

Resolution: We suggest using validation like variables should be greater than 0.

Status: Acknowledged.

(2) Unused event:

UpdatedRouter event is defined but not used in code.

Resolution: We suggest removing unused events.

Status: Acknowledged.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● excludeFromFee: The Owner can set an exclude account address.

● includeInFee: The Owner can set an account address.

● updateMarketingWallet: The Owner can update the marketing wallet address.

● updateAntiWhaleAmt: The Owner can update the Anti whale amount.

● updateSwapTokensAtAmount: The Owner can update swap tokens at the amount.

● updateSwapEnabled: The Owner can update swap enabled status.

● setAntibot: The Owner can set the antibot address and state.

● bulkAntiBot: The Owner can bulk anti bot account addresses and state.

● excludeFromReward: The Owner can exclude from the reward account.

● includeInReward: The Owner can include from the reward account.

● setOnlyAllowWhitelistTrading: The Owner can set whitelist trading allow status.

● bulkPancakeSwapWhitelist: The Owner can bulk pancake swap whitelist state.

● dtx: The Owner can reset buy and sell taxes.

● etx: The Owner can set buy and sell taxes percentage.

● etxBuy: The Owner can set the buy tax percentage.

● etxSell: The Owner can set the sell tax percentage.

● dtxBuy:The Owner can reset the buy tax percentage.

● dtxSell:The Owner can reset the sell tax percentage.

● updateRouterAndPair: The Owner can update the router address and pair address.

● updateAntiDump: The Owner can update maximum sell amount per cycle, time in

minutes.

● aidropTokens: The Owner can set an airdrop amount using the wallet address.

● rescueBNB: The Owner can access this function when BNB are sent to the contract

by mistake.

● rescueAnyBEP20Tokens: This Function to allow admin to claim *other* BEP20

tokens were sent to this contract (by mistake). The Owner cannot transfer out

Catcoin from this smart contract.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We had observed some issues in the smart contracts, but those issues

are not critical ones. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Catcoin Token

Slither Results Log

Slither log >> Catcoin.sol

Solidity Static Analysis

Catcoin.sol

Solhint Linter

Catcoin.sol

Catcoin.sol:6:1: Error: Compiler version ^0.8.7 does not satisfy the
r semver requirement
Catcoin.sol:46:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Catcoin.sol:81:5: Error: Function name must be in mixedCase
Catcoin.sol:99:1: Error: Contract has 28 states declarations but
allowed no more than 15
Catcoin.sol:182:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Catcoin.sol:392:29: Error: Avoid to make time-based decisions in your
business logic
Catcoin.sol:401:47: Error: Avoid to make time-based decisions in your
business logic
Catcoin.sol:497:13: Error: Avoid to make time-based decisions in your
business logic
Catcoin.sol:515:13: Error: Avoid to make time-based decisions in your
business logic
Catcoin.sol:661:31: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

