
Project: Hyperon Chain
Website: hyperonchain.com
Platform: Hyperon Chain Network
Language: Solidity
Date: November 22nd, 2022

https://hyperonchain.com/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………. 6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 29

● Solhint Linter …………………………………………………………………….……….. 34

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Hyperon Chain to perform the Security audit of the
Hyperon Chain protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on November 22nd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The audit scope consists of system smart contracts of the hyperon chain. The system

smart contracts contribute heavily to the consensus mechanism. The system smart

contracts performs actions such as Validations, system staking, punishments, etc.

Audit scope

Name Code Review and Security Analysis Report for
Hyperon Chain System Smart Contracts

Platform Hyperon Chain Network / Solidity

File 1 Validators.sol

File 2 Staking.sol

File 3 Punish.sol

File 4 Params.sol

Audit Date November 22nd, 2022

Revision 1 Date November 29th, 2022

Revision 2 Date February 8th, 2023

https://github.com/HyperonChainOfficial/SystemSmartContract/blob/main/Validators.sol
https://github.com/HyperonChainOfficial/SystemSmartContract/blob/main/Staking.sol
https://github.com/HyperonChainOfficial/SystemSmartContract/blob/main/Punish.sol
https://github.com/HyperonChainOfficial/SystemSmartContract/blob/main/Params.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

HPN Tokenomics
● Coin name: HyperonChain

● Coin symbol: HPN

● Decimal: 18

● Total Supply: 120 Million

● No more coins generated ever

YES, This is valid.

File 1 Validators.sol
● Maximum Validators: 21

● Staking Lock Period: 10 days

● Minimal Staking Coin: 32 HPN

● Maximum Reward: 12 Million HPN

● Block reward generated from transaction fees.

● Validators will receive 15% of the block reward

YES, This is valid.

File 2 Staking.sol
● 85% of block reward goes to staking smart contracts,

where it will be distributed to master voters, staking

voters and no-staking voters.

● Owner can take all the HPN out of the staking smart

contract. Use this function with responsibility.

● This contract can be changed anytime by the owner until

the ownership is renounced.

YES, This is valid.

File 3 Punish.sol
● The validator can be punished for misbehavior.

● Validators can clean validator's punish records if one

restake in.

YES, This is valid.

File 4 Params.sol
● It holds parameters of other smart contracts

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 1 low and some very low level issues.
All the issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Hyperon Chain Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Hyperon Chain Protocol.

The Hyperon Chain team has not provided unit test scripts, which would not help to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Hyperon Chain smart contract code in the form of a Github link. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://hyperonchain.com which provided

rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://hyperonchain.com/

AS-IS overview

Validators.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyNotRewarded modifier Passed No Issue
3 onlyNotUpdated modifier Passed No Issue
4 initialize external Infinite loops

possibility
No Issue

5 stake external Passed No Issue
6 createOrEditValidator external access only

Initialized
No Issue

7 tryReactive external access only
Initialized

No Issue

8 unstake external Passed No Issue
9 withdrawStaking external Passed No Issue

10 withdrawableReward read Passed No Issue
11 withdrawProfits external Passed No Issue
12 distributeBlockReward external Infinite loops

possibility
No Issue

13 updateActiveValidatorSet write access only Miner No Issue
14 removeValidator external access only Punish

Contract
No Issue

15 removeValidatorIncoming external access only Punish
Contract

No Issue

16 getActiveValidators read Passed No Issue
17 getTotalStakeOfActiveValidators read Passed No Issue
18 getTotalStakeOfActiveValidators

Except
read Passed No Issue

19 getTotalStakeOfHighestValidator
sExcept

read Passed No Issue

20 tryAddValidatorToHighestSet internal Passed No Issue
21 tryRemoveValidatorIncoming write Passed No Issue
22 addProfitsToActiveValidatorsBySt

akePercentExcept
write Passed No Issue

23 tryJailValidator write Passed No Issue
24 tryRemoveValidatorInHighestSet write Passed No Issue
25 getValidatorInfo read Passed No Issue
26 getStakingInfo read Passed No Issue
27 getActiveValidators read Passed No Issue
28 getTotalStakeOfActiveValidators read Passed No Issue
29 isActiveValidator read Passed No Issue
30 isTopValidator read Passed No Issue
31 getTopValidators read Passed No Issue
32 validateDescription read Passed No Issue

33 getTotalStakeOfHighestValidator
sExcept

read Passed No Issue

34 emrgencyWithdrawFund write access onlyOwner No Issue
35 onlyMiner modifier Passed No Issue
36 onlyNotInitialized modifier Passed No Issue
37 onlyInitialized modifier Passed No Issue
38 onlyPunishContract modifier Passed No Issue
39 onlyBlockEpoch modifier Passed No Issue
40 onlyValidatorsContract modifier Passed No Issue
41 onlyProposalContract modifier Passed No Issue

Punish.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue
9 onlyNotPunished modifier Passed No Issue

10 onlyNotDecreased modifier Passed No Issue
11 initialize external access only NotInitialized No Issue
12 punish external access only Miner No Issue
13 decreaseMissedBlocksCou

nter
external access only Miner No Issue

14 cleanPunishRecord external access only Initialized No Issue
15 getPunishValidatorsLen read Passed No Issue
16 getPunishRecord read Passed No Issue

Staking.sol
Functions

Sl. Functions Type Observation Conclusion
3 setValidator Write access only owner No issue
4 setMinimumMasterStaking Write access only owner No Issue
5 setWithdrawLockPeriod Write access only owner No Issue
6 getSettings Read Passed No Issue
7 getValidatorSummary Read Passed No Issue
8 getStakers Read Passed No Issue
9 getWalletSummary Read Passed No Issue

10 getWalletStakingSummary Read Passed No Issue
11 unWalletStakingSummary Read Passed No Issue
12 emergencyWithdraw Write access only owner No Issue
13 stake Write Passed No Issue
14 stakeForMaster Write Passed No Issue
15 withdrawStakingReward Write Passed No Issue
16 unStake Write Passed No Issue
17 withdrawStaking Write Owner can take out all the

user's staked tokens.
Use this

function with
great

responsibility
18 distributeBlockReward Write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

(1) Invalid address pass: - Validators.sol

There is a function withdrawableReward(), to get _lastTransferTime. But the passed wallet

address is invalid. is should be _user instead of msg.sender.

Resolution: Change msg.sender to _user for get _lastTransferTime.

Status: This issue is fixed in the revised contract code

Medium

No medium severity vulnerabilities were found.

Low

(1) Owner can withdraw the user's staked coins.

The function withdrawStaking in staking contract lets the owner take all the user’s staked

coins. On another hand, it is helpful in recovering funds in case of contract malfunction.

Status: We got confirmation from the HyperOn team that this is a required feature
and they assured us to use this responsibly.

Very Low / Informational / Best practices:

(1) Same functionality found: - Validators.sol

There is an "unstake()" function that has the same required "unstakeAmount > 0" condition

checked in code.

Resolution: We suggest removing duplicate required conditions from code.

Status: This issue is fixed in the revised contract code

(2) Validators contract code size limit: - Validators.sol

Warning: Contract code size exceeds 24576 bytes (a limit introduced in Spurious Dragon).

This contract may not be deployable on mainnet. Consider enabling the optimizer (with a

low "runs" value!), turning off revert strings, or using libraries.

Resolution: We suggest removing unnecessary code blocks and optimizing the code.

Status: This issue is fixed in the revised contract code

(3) Unused event: - Validators.sol

LogWithdrawStaking() event is defined, but not used in code.

Resolution: We suggest removing unused events.

Status: This issue is fixed in the revised contract code

(4) Deprecated function use: - Validators.sol

In the initialize function, “now” has been deprecated. Use "block.timestamp" instead.

Resolution: We suggest using "block.timestamp" instead of "now".

Status: This issue is fixed in the revised contract code

(5) Function input parameters lack of check: - Validators.sol

Variable validation is not performed in below functions:

● stake

● unstake

● withdrawProfits

Resolution: We advise to put validation: address type variables should not be address(0).

Status: This issue is fixed in the revised contract code

(6) Spelling mistake: - Validators.sol

Spelling mistakes in comments.

“valiadtor” word should be “validator.”

Resolution: Correct the spelling.

Status: This issue is fixed in the revised contract code

(7) Critical operation lacks event log: - Validators.sol

Missing event log for:

● initialize()

● emrgencyWithdrawFund()

Resolution: Please write an event log for listed events.

Status: This issue is acknowledged in the revised contract code

(8) Infinite loops possibility:

Validators.sol

Validators.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

● initialize() - vals.length.

Status: This issue is acknowledged in the revised contract code

(9) Please use the latest compiler version when deploying contract: - Validators.sol and
Punish.sol

This is not a severe issue, but we suggest using the latest compiler version at the time of

contract deployment, which is 0.8.17 at the time of this audit. Using the latest compiler

version is always recommended which prevents any compiler level issues.

Status: This issue is acknowledged in the revised contract code

(10) Unlocked Compiler Version: - Validators.sol, Punish.sol

The contract uses the "^" prefix specifier, Use the Unlocked compiler version. Unlocked

compiler version code of the smart contract, and that gives permission to the users to

compile it one higher than a particular version.

Resolution: We suggest using that the compiler version is unlocked instead of the locked

compiler version. The following line of code can be added to the project:

pragma solidity 0.8.14;

Status: This issue is fixed in the revised contract code

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setStakingContract function in Validators contract. This sets a staking contract.

● emrgencyWithdrawFund function in Validators contract. This allows the owner to

withdraw all the funds from the validator smart contract.

● setValidator function in Staking contract. This sets the validator address in the

staking contract.

● setMinimumMasterStaking in staking contract: This sets minimum staking for

master.

● setWithdrawLockPeriod in staking contract: This sets a locking period to withdraw

staking.

● withdrawStaking in staking contract: This lets the owner drain all the funds from the

staking smart contract. Please use this function with responsibility.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github link. And we have used all possible

tests based on given objects as files. We have observed 1 high severity issue, 1 low

severity issue and some informational issues in the smart contracts. All the issues have

been fixed / acknowledged in the revised code. So, it’s good to go for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Hyperon Chain Protocol

Validators Diagram

Punish Diagram

Slither Results Log
Slither Log >> Validators.sol

Slither Log >> Punish.sol

Solidity Static Analysis
Validators.sol

Punish.sol

Solhint Linter

Validators.sol

Validators.sol:2:1: Error: Compiler version 0.8.14 does not satisfy
the r semver requirement
Validators.sol:19:1: Error: Contract has 18 states declarations but
allowed no more than 15
Validators.sol:77:29: Error: Constant name must be in capitalized
SNAKE_CASE
Validators.sol:81:5: Error: Explicitly mark visibility of state
Validators.sol:81:22: Error: Constant name must be in capitalized
SNAKE_CASE
Validators.sol:82:5: Error: Contract name must be in CamelCase
Validators.sol:88:5: Error: Explicitly mark visibility of state
Validators.sol:97:29: Error: Constant name must be in capitalized
SNAKE_CASE
Validators.sol:119:5: Error: Explicitly mark visibility of state
Validators.sol:178:5: Error: Event name must be in CamelCase
Validators.sol:204:39: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:223:24: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:285:47: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:310:51: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:369:63: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:407:57: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:409:55: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:433:37: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:561:59: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:593:77: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:619:61: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:685:13: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:712:35: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:724:52: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:755:46: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:863:45: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:883:41: Error: Avoid to make time-based decisions in
your business logic

Validators.sol:886:13: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:912:50: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:977:39: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:983:17: Error: Variable name must be in mixedCase
Validators.sol:1022:54: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:1030:9: Error: Visibility modifier must be first in
list of modifiers

Punish.sol

Punish.sol:2:1: Error: Compiler version 0.8.12 does not satisfy the r
semver requirement
Punish.sol:23:5: Error: Explicitly mark visibility of state
Punish.sol:25:5: Error: Explicitly mark visibility of state
Punish.sol:28:5: Error: Explicitly mark visibility of state
Punish.sol:29:5: Error: Explicitly mark visibility of state
Punish.sol:77:38: Error: Avoid to make time-based decisions in your
business logic

Staking.sol

Staking.sol:2:1: Error: Compiler version 0.8.12 does not satisfy the
r semver requirement
Staking.sol:48:5: Error: Explicitly mark visibility of state
Staking.sol:99:56: Error: Avoid to make time-based decisions in your
business logic
Staking.sol:108:31: Error: Avoid to make time-based decisions in your
business logicStaking.sol:133:44: Error: Avoid to make time-based
decisions in your business logic
Staking.sol:156:57: Error: Avoid to make time-based decisions in your
business logic
Staking.sol:166:59: Error: Avoid to make time-based decisions in your
business logic
Staking.sol:180:34: Error: Avoid to make time-based decisions in your
business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

