@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Bitindi Chain
Website: https://bitindi.org
Platform: Bitindi Chain Network
Language: Solidity

DEI(H January 9th, 2023

https://bitindi.org

Table of contents

(oo 11 o (] o 4
Project Background ... 4
AU S0P ..ttt e 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY .ot 7
Technical QUICK Stats ..o e 8
Code QUAIIRY ...eee e e 9
DOoCUMENTAtION ... 9
L LT o) D= o =T o [T o [9
ASIS OVEIVIEW ..o e 10
Severity DefinitioNS ... 13
AUt FINAINGS oo 14
@70 o T3 110170 o 21
(@ 0] V=1 1 T To [o] 0T) 22
DISCIAIMEIS ... e 24
Appendix
o Code FIow Diagram ... 25
o Shther RESUIS LOQGuiniii e 29
e Solidity staticanalysis ... 35
® SOININt LiNter .o 44

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by Bitindi Chain to perform the Security audit of the Bitindi
Chain protocol smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on January 9th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Bitindi Chain is an EVM compatible chain for DeFi with BPoC consensus.

e Bitindi is a layer 1 blockchain for DeFi, NFTs and gaming. It is built with GO, has
EVM support and uses BPoS consensus mechanism.

e The audit scope consists of system smart contracts of the Bitindi Chain. The system
smart contracts contribute heavily to the consensus mechanism.

e The system smart contracts performs actions such as Validations, system staking,

punishments, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Bitindi Chain System Smart Contracts

Platform Bitindi Chain Network / Solidity

File 1 Params.sol

File 1 Github Commit 8934bd3061e60c318df9964c3bce5cchaadfcd 15

File 2 Proposal.sol

File 2 Github Commit a275e201f5eaaa8d905c0f34f4d6ceac89a13dcd

File 3 Punish.sol

File 3 Github Commit 968edb382b8844a48e35896325784c802c5bb0b4

File 4 Validators.sol

File 4 Github Commit 2e735aa622a3645fefe04eb6bd0f381ee2b052ba

File 5 SafeMath.sol

File 5 Github Commit 43e71365448f47ce2bcabcdfc80a47223de5a048

File 6 Bridge.sol

File 6 Github Commit 5048350ff9ba9887de0fb0c82947649aed51744e

File 7 PeggedToken.sol

File 7 Github Commit fdc345f789750d4a19047524f7359a3717c01534

Audit Date January 9th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/bitindi/System-Contracts/blob/main/Params.sol
https://github.com/bitindi/System-Contracts/blob/main/Proposal.sol
https://github.com/bitindi/System-Contracts/blob/main/Punish.sol
https://github.com/bitindi/System-Contracts/blob/main/Validators.sol
https://github.com/bitindi/System-Contracts/blob/main/SafeMath.sol
https://github.com/bitindi/Bridge-Contracts/blob/main/Bridge.sol
https://github.com/bitindi/Bridge-Contracts/blob/main/PeggedToken.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

HPN Tokenomics
e Coin name: Bitindi Chain
e Coin symbol: BNI
e Decimal: 18
e Total Supply: 50 Million

e No more coins generated ever

YES, This is valid.

Validators.sol
e Maximum Validators: 21
e Minimal Staking Coin: 32 BNI

YES, This is valid.

Punish.sol
e The validator can be punished for misbehavior.
e \Validators can clean validator's punish records if one

restake in.

YES, This is valid.

Params.sol

e It holds parameters of other smart contracts

YES, This is valid.

Proposal.sol

e New validator has to be voted by over 50% of validators

YES, This is valid.

Bridge.sol
e Itallows ETH, BSC and Polygon assets to be exchanged
for the Bitindi chain assets
e This is a centralized solution and has heavy ownership

control.

YES, This is valid.

PeggedToken.sol
e BIP-20 token standard, which is similar to ERC20
e This is a centralized solution and the owner has full
control of token minting and burning.

e Unlimited tokens can be minted. so, use caution.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Bitindi Chain Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Bitindi Chain Protocol.

The Bitindi Chain team has not provided unit test scripts, which would not help to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Bitindi Chain smart contract code in the form of a Github link. The hash

of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://bitindi.org which provided rich

information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bitindi.org

AS-IS overview

Params.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [onlyMiner modifier Passed No Issue
3 | onlyNotInitialized modifier Passed No Issue
4 | onlylnitialized modifier Passed No Issue
5 | onlyPunishContract modifier Passed No Issue
6 [onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue
8 | onlyProposalContract modifier Passed No Issue

Proposal.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyMiner modifier Passed No Issue
3 | onlyNotlInitialized modifier Passed No Issue
4 | onlyInitialized modifier Passed No Issue
5 [onlyPunishContract modifier Passed No Issue
6 | onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue
8 | onlyProposalContract modifier Passed No Issue
9 [onlyValidator modifier Passed No Issue
10 | initialize external Infinite loops Refer Audit

possibility, Critical Findings
operation lacks
event log
11 | createProposal external Passed No Issue
12 | voteProposal external access only No Issue
Validator
13 | setUnpassed external access only No Issue
Validators Contract

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Punish.sol

Functions
Sl. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | onlyMiner modifier Passed No Issue
3 | onlyNotlnitialized modifier Passed No Issue
4 | onlylnitialized modifier Passed No Issue
5 | onlyPunishContract modifier Passed No Issue
6 | onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue
8 | onlyProposalContract modifier Passed No Issue
9 | onlyNotPunished modifier Passed No Issue
10 | onlyNotDecreased modifier Passed No Issue
11 | initialize external access only No Issue
Notlnitialized
12 | punish external | access only Miner No Issue
13 | decreaseMissedBlocksCounter external | access only Miner No Issue
14 | cleanPunishRecord external Critical operation Refer Audit
lacks event log Findings
15 | getPunishValidatorsLen read Passed No Issue
16 | getPunishRecord read Passed No Issue
Validators.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyMiner modifier Passed No Issue
3 | onlyNotlnitialized modifier Passed No Issue
4 | onlylnitialized modifier Passed No Issue
5 | onlyPunishContract modifier Passed No Issue
6 | onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue
8 | onlyProposalContract modifier Passed No Issue
9 | onlyNotRewarded modifier Passed No Issue
10 | onlyNotUpdated modifier Passed No Issue
11 | setContractCreator write Critical operation Refer Audit
lacks event log Findings
12 | initialize external Infinite loops Refer Audit
possibility, Critical Findings
operation lacks
event log
13 | stake external access only No Issue
Initialized
14 | createOrEditValidator external access only No Issue
Initialized

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

15 | tryReactive external access only No Issue
Initialized
16 | unstake external access only No Issue
Initialized
17 | withdrawStakingReward write Passed No Issue
18 | withdrawStaking external Passed No Issue
19 | withdrawProfits external Passed No Issue
20 | distributeBlockReward external Infinite loops Refer Audit
possibility Findings
21 | updateActiveValidatorSet write access only Miner No Issue
22 | removeValidator external | access only Punish No Issue
Contract
23 | removeValidatorincoming external | access only Punish No Issue
Contract
24 | getValidatorDescription read Passed No Issue
25 | getValidatorinfo read Passed No Issue
26 | getStakinglnfo read Passed No Issue
27 | getActiveValidators read Passed No Issue
28 | getTotalStakeOfActiveValidators read Passed No Issue
29 | getTotalStakeOfActiveValidators read Passed No Issue
Except
30 | isActiveValidator read Passed No Issue
31 | isTopValidator read Passed No Issue
32 | getTopValidators read Passed No Issue
33 | validateDescription write Passed No Issue
34 | tryAddValidatorToHighestSet internal Passed No Issue
35 | tryRemoveValidatorincoming write Passed No Issue
36 | addProfitsToActiveValidatorsBySt | write Passed No Issue
akePercentExcept
37 | tryJailValidator write Passed No Issue
38 | tryRemoveValidatorInHighestSet write Passed No Issue
39 | viewStakeReward read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.
Medium

No medium severity vulnerabilities were found.
Low

No Low severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) SafeMath not used: - Validators.sol

distributeBlo

(Operations.Distribute)] =

remaining = remaining - _validatorPart;

_burnPart = reward #* burnPartPercent / 100080;
if(totalBurnt + burnPart <= burnStopAmount)

I
L

remaining :lremaining - _burnPart;
totalBurnt += burnPart;
if(_burnPart > 8) (8).transfer(burnPart);

In the "distributeBlockReward()" function, SafeMath library has not been used.

Resolution: We checked and no direct overflow/underflow is possible. But we suggest

using the safemath functions to avoid any possible reentrancy issues.

Status: We got confirmation from Bitindi chain team to acknowledge this issue, as

no direct overflow/underflow is possible.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Spelling mistake: - Validators.sol

if (staked[staker][validator].coins == 0) {

Spelling mistakes in comments.

“valiadtor” word should be “validator.”

Resolution: Correct the spelling.

Status: This is acknowledged by the Bitindi chain team

(3) Compile time error: - Proposal.sol

>=0.6.0 <0.8.0;

Proposal Params {

There is found typed number “3” in line number “6” of the contract code, it gives a compile

time error.

Resolution: We suggest removing 3 numbers from contract code line number 6.

Status: The Bitindi team has fixed this issue.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(4) Critical operation lacks event log:

Missing event log for:

Validators.sol

e initialize()

Proposal.sol

e initialize()

Punish.sol

e cleanPunishRecord()

Resolution: Please write an event log for listed events.

Status: This issue is acknowledged by the Bitindi chain, as these functions are

called by the system and not called again ever.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(5) Compile time error:

SOLIDITY COMPILER v’) G % BitindiChain/Validators.sol ¥

= Compile Validators.sol

Compile and Run script

Created,
Staked,

Unstaked,

There are import 4 contract files path are:
import "Params.sol";

import "Proposal.sol";

import "Punish.sol";

import "SafeMath.sol";

Resolution: Import contract file path should be:
import "./Params.sol";

import "./Proposal.sol";

import "./Punish.sol";

import "./SafeMath.sol";

Status: This issue is fixed while contract deployment

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(6) Infinite loops possibility:

Validators.sol

initialize(vals onlyMotInitialized {
proposal = Pro
sh = Punis

i=8; 1 < vals.length; i++) {

{vals[i] != (8), "I lid valic
lastRewardTime[vals[i]] = .timestamp;

distributeBlockReward(

only

operationsDone .number] [(Operations.Distribute)] =

Femalning = r

valida art 0 datorPartPercent /

remaining = remaining

_burnPart = rewar

if(totalBurnt + _bu

= remaining - _burnPart;

(@).transfer(_burnPart);

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

Status: This issue is acknowledged by the Bitindi chain team as this records will

never be more than 21

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(7) Please use the latest compiler version when deploying contracts:

SOLIDITY COMPILER v 3 8 q £ Validators.so

0.6.12+commit.27d51765

it
FUBLISN on SWarm

Compilation Details

This is not a severe issue, but we suggest using the latest compiler version at the time of
contract deployment, which is 0.8.17 at the time of this audit. Using the latest compiler

version is always recommended which prevents any compiler level issues.

Status: This issue is acknowledge

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e coinOut function in Bridge contract can let signer wallet to take all coins out.

e tokenOut function in the Bridge contract can let the signer wallet take all the tokens
out.

e transferOwnership function in Bridge and Pegged token smart contract can let the
owner to transfer the ownership to another wallet.

e mint function in the PeggedToken smart contract can let owner to mint tokens.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github link. And we have used all possible
tests based on given objects as files. We have observed some informational issues in the
smart contracts. But those are not critical ones. So smart contracts are good to go for

the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Bitindi Chain Protocol

Params Diagram

© Params

O hool inttialized

O address ValidatorContract Addr
O address PunishContract Addr
< address Proposal Addr

O uint16 Max"alidators

O uint64 StakingLockPeriod

O uintg4 WithdrawProfitPeriod

O yint256 MinimalStakingCaoin

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Validators

Params
irSafelMath for wint256

< address==Yalidator validatorinfo

< address==mapping address==Stakinginfo staked
O address current'ValidatorSet

© address highest'/alidatorsSet

O uint256 totalStake

O uint256 totalJailedHB

© uint stakerPartPercent

© uint validatorPartPercent

© uint burnPartPercent

© uint contractPartPercent

 uint burnStopAmount

2 uint totalBurmt

O address==address contractCreator

@ address=>mapping address==~uirt stakeTime

O address==uint lastRewardTime

O address==mapping uint==uirt reflectionPercentSum
© Proposal proposal

%4 Punigh punish

0 Uint256==mapping uintS=>bool operationsDone

@ setCentractCreator()

@ initialize()

@ @stake()

@ createCrEdit'alidator()

@ tryReactive()

@ unstake()

@ withdrawStakingReward()

@ withdrawStaking()

@ withdrawProfits()

@ ddistributeBlockReward()

@ update&ctive\/alidatorSet()

@ removealidator)

@ remove'/alidatorincoming()

@ O getvalidatorDescription()

@ Cgetvalidatorinfal)

2 QgetStakinginfo()

@ G getictive’/alicators()

@ QgetTotalStakeOfActiveValidators()
B O getTotalStakeOfActiveValidator sExcept()
o QisActiveValidator()

@ QjsTopValidator()

© QgetTop'alidators()

@ O validateDescription()
 tryAddalidator ToHighestSeti)

B tryRemove alidatorineaming()

B addProfitsToActiveValidatorsByStakePercentExcept()
B tryJailyalicator()

B tryRemovet/alicatorinHighestSet()

@ QuiewStakeReward()

T
I
|
I

for uint256

& Cymo()

Proposal Diagram

@ Funish

Params

O Uint256 punishThreshold

© uint256 removeThreshold

O Uint256 decreaseRate

< Validators validators

© address=>PunishRecord punishRecords
© address punish'alidators
 uint256=>hoal punished

< Uint256=>hool decreased

@ Proposal

Params

O Uirt256 proposallastingPeriod

O address=rhool pass

< bytes32==Proposalinfo proposals

2 address=>mapping kytes32=>"'otelnfo votes
< Yalidators validators

@ initialize()

@ punish{)

@ decreaseMissedBlocksCounter()
@ gleanPunishRecord()

© QgetPunishalidatorsLen()

©® Q.getPunishRecord()

@ initializel)

@ createProposal()
@ voteProposal()
@ setlnpassed()

@ F;arams

@ bool inttialized

< address ValidatorContractAddr
2 address PunishContractAcldr
2 address ProposalAddr

O uint1 & Max\Validstors

© uinté4 Stakingl ockPeriod

@ uint64 WithdrawProfitPeriod

O uirt256 MinimalStakingCain

s

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Validators

Params
irSafelMath for wint256

< address==Yalidator validatorinfo

< address==mapping address==Stakinginfo staked
O address current'ValidatorSet

© address highest'/alidatorsSet

O uint256 totalStake

O uint256 totalJailedHB

© uint stakerPartPercent

© uint validatorPartPercent

© uint burnPartPercent

© uint contractPartPercent

 uint burnStopAmount

2 uint totalBurmt

O address==address contractCreator

@ address=>mapping address==~uirt stakeTime

O address==uint lastRewardTime

O address==mapping uint==uirt reflectionPercentSum
© Proposal proposal

%4 Punigh punish

0 Uint256==mapping uintS=>bool operationsDone

@ setCentractCreator()

@ initialize()

@ @stake()

@ createCrEdit'alidator()

@ tryReactive()

@ unstake()

@ withdrawStakingReward()

@ withdrawStaking()

@ withdrawProfits()

@ ddistributeBlockReward()

@ update&ctive\/alidatorSet()

@ removealidator)

@ remove'/alidatorincoming()

@ O getvalidatorDescription()

@ Cgetvalidatorinfal)

2 QgetStakinginfo()

@ G getictive’/alicators()

@ QgetTotalStakeOfActiveValidators()
B O getTotalStakeOfActiveValidator sExcept()
o QisActiveValidator()

@ QjsTopValidator()

© QgetTop'alidators()

@ QualidateDescription()

O tryAddalidator ToHighestSet()

B tryRemove\/ alicatorincoming()

B addProftsToActive\ValidatorsByStakePercentExcept()
H tryJailalidator()

® tryRemove/ alicatorinHighestSet()

@ QiewStakeReward()

T
I
|
I

for uint256

& Cymo()

Punish Diagram

@ Punish

@ Proposal

Params

O Uint256 proposallastingPeriod

© address=rhool pass

O bytes32==Proposalinfo proposals

O address=>mapping bytes32=>"atelnfo votes
< Yalidators validators

@ initialize()

@ createProposal()
@ voteProposal()
@ zetUnpassed()

Params

O Uint256 punishThreshold

2 uint256 removeThreshold

O uint256 decreaseRate

> Walidators validators

© address==PunishRecord punishRecords
2 address punish'alidators

> Uint256==boal punished

© uint256=>hool decreased

© F.’arams

@ bool inttialized

© address Validator Contract Addr
O address PunishContract Addr
© address ProposalAddr

© uint16 MaxValidators

2 uint&4 Stakingl ockPeriod

@ uinté4 WithdrawProfitPeriod

2 uirt256 MinimalStakingCoin

@ inttialize()

@ punish()

@ decreaseMissedBlocksCounter()
@ cleanPunishRecord()

@ QgetPunishalidatorsLen()

@ QgetPunishRecord()

»

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Validators

Params
irSafelMath for wint256

< address==Yalidator validatorinfo

< address==mapping address==Stakinginfo staked
O address current'ValidatorSet

© address highest'/alidatorsSet

O uint256 totalStake

O uint256 totalJailedHB

© uint stakerPartPercent

© uint validatorPartPercent

© uint burnPartPercent

© uint contractPartPercent

 uint burnStopAmount

2 uint totalBurmt

O address==address contractCreator

@ address=>mapping address==~uirt stakeTime

O address==uint lastRewardTime

O address==mapping uint==uirt reflectionPercentSum
© Proposal proposal

%4 Punigh punish

0 Uint256==mapping uintS=>bool operationsDone

@ setCentractCreator()

@ initialize()

@ @stake()

@ createCrEdit'alidator()

@ tryReactive()

@ unstake()

@ withdrawStakingReward()

@ withdrawStaking()

@ withdrawProfits()

@ ddistributeBlockReward()

@ update&ctive\/alidatorSet()

@ removealidator)

@ remove'/alidatorincoming()

@ O getvalidatorDescription()

@ Cgetvalidatorinfal)

2 QgetStakinginfo()

@ G getictive’/alicators()

@ QgetTotalStakeOfActiveValidators()
B O getTotalStakeOfActiveValidator sExcept()
o QisActiveValidator()

@ QjsTopValidator()

© QgetTop'alidators()

@ O validateDescription()
 tryAddalidator ToHighestSeti)

B tryRemove alidatorineaming()

B addProfitsToActiveValidatorsByStakePercentExcept()
B tryJailyalicator()

B tryRemovet/alicatorinHighestSet()

@ QuiewStakeReward()

T
I
|
I

for uint256

& Cymo()

Validators Diagram

@ Punish

@ Proposal

Params

O Uint256 proposallastingPeriod

© address=rhool pass

O bytes32==Proposalinfo proposals

O address=>mapping bytes32=>"atelnfo votes
< Yalidators validators

@ initialize()

@ createProposal()
@ voteProposal()
@ zetUnpassed()

Params

O Uint256 punishThreshold

2 uint256 removeThreshold

O uint256 decreaseRate

& Validators validators

© address==PunishRecord punishRecords
2 address punish'alidators

> Uint256==boal punished

© uint256=>hool decreased

© F.’arams

@ bool inttialized

© address Validator Contract Addr
O address PunishContract Addr
© address ProposalAddr

© uint16 MaxValidators

2 uint&4 Stakingl ockPeriod

@ uinté4 WithdrawProfitPeriod

2 uirt256 MinimalStakingCoin

@ inttialize()

@ punish()

@ decreaseMissedBlocksCounter()
@ cleanPunishRecord()

@ QgetPunishValidatorsLeni)

@ QgetPunishRecord()

»

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> Params.sol

INFO:Detectors:
Pragma vers ion:= 6.0<0.8.0 (Params.sol#2) 1is too complex
: https ¥ .C ytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFD.DeteCtorS:
Constant Params.ValidatorContractA dr IPcrers sol#8-9) 1is not in UPPER_CASE_WITH_UNDERSCORES
Constant Params.Punish ract A { E B-11) is not in UPPER_CASE_WITH_UNDERSCORES
Params. is not in UPPER_CASE_WITH_UNDERSCORES
Params .Max 15 not in UPPER_CASE_WITH_UNDERSCORES
Params.Staki : .' is not in UPPER_CASE_WITH_UNDERSCORES
Params.Wi 0 (#28) 1is not in UPPER_CASE_WITH_UNDERSCORES
Pclcrs.llllrclctcklr‘c-ll rams .50 is not in UPPER_CASE_WITH_UNDERSCORES
erence: https://github.c y ic/slithe alkl Detector-Documentation#conformance-to-solidity-naming-conventions
INFD Detectors
uses literals with

- clluct fa
Parars.slltk~r(:rst|Lu antVariables() (Params. : uses literals with
- PLIiS|C |t\c A Beee 1 lpclch.S-lﬁl -11
i (uses Lliterals with too many
BFE82 (Params.sol#12-13)
cumentation#too-many-digits

INFD Detectors

Params.initializet #5) constant
Reference: https github.com/crytic/ slltl vik i/Detector-Documentation#state-variables-that-could-be
INFO:S1lither: Params sol analyzed (1 contracts with ?5 detectors), 14 result(s) found

INFO:Slither:Use h e ic. io al de r nd G b in

INFD Detectors:
validators.withdrawSta lePl .staker (Pr

- stake tIcIST er Stck1|‘ {
arence ;1t|LL.ccr c/ 2 «i/Detector-Documentation#missing-zero-address-validation
INFD Detectors
v tors. LlStIllLt Blulkﬁ»wcrfl = ,uinté) {Proposal.sol#817-878) has external calls inside : address({contractC

ki/Detector-Documentation/#calls-inside-a-loop
INFD Detectors
Reentrancy in lidators.unstake(address)
External calls:
- proposal.se tLlrass‘
E/t»||=1

- stakeTime[staker][w
= : https://github.co ytic/slithe C c cy-vulnerabilities-2
INFO:Detectors:
Reentrancy in PL|1s| punish({address)

Cy /alidators.rem
Externa 5115

ol,string){punish.cleanPunishRecord(vali).cle failed) (Proposal.sol#664
ed after the call(s):

cy in
External calls:
scl s»tLlrass‘“

k. tlr-SthL, {Proposal.sol#
k.timestamp) (P

Reentr

- LLLPCSSPF {) al.
Refere 3 Ittr //github.com/erytic/ her, ci/Detector-Documenta #ree y-vulnerabilities-3
INFO: Detectors
Proposal.createProposal(address,string) (Pre .50l#1317) uses timestamp for comparisons

osals[id].createTime =— @ P|-p:scl alrea exists) (Proposal.sol#13238)
Proposal. e al(bytes3) {Proposal.sol#1341-1396) timestamp for comparisons

osals[id].createTime ! . sal not exist) (Proposal.so
i cateT ime p salLastingPer

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:

Validators.onlyNotRewarded() (Proposal.sol#490-496) compares to a boolean constant:
-require({bool,string){operationsDone[block.number][uint3(0perations.Distribute)] == false,Block is already rewarded) (P

roposal.sol#491-494)

Validators.onlyNotUpdated() {Proposal.sol#498-505) compares to a boolean constant:
-require(bool,string){operationsDone[block.number][uint8(0perations.UpdateValidators)] == false,Validators already upda

ted) (Proposal. s0l#499-5

Reference: https: f/glthub CDWKC|vt1cf511thA|f\lklfDAtactDr Documentation#boolean-equality

INFO:Detectors:

SafeMath.mod({uint256,uint256) (Proposal.sol#133-135) is never used and should be removed

SafeMath.mod{uint2 6,u1nt4 6,5tring) (Proposal.sol#149-156) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

INFO:Detectors:

Pragma version==0 0.8.8 (Proposal.sol#2) is too complex

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

INFO:Detectors:

Constant Params.ValidatorContractAddr (Proposal.sol#164-165) is not in UPPER_CASE_WITH_UNDERSCORES

Constant Params.PunishContractaddr (Proposal.sol#166-1 is not in UPPER_CASE_WITH_UNDERSCORES

Constant Params.ProposalAddr (Proposal.sol#162-169) is not in UPPER_CASE_WITH_UNDERSCORES

Constant Params.MaxValidators (Proposal.sol#172) is not in UPPER_CASE_WITH_UNDERSCORES

Constant Params.StakingLockPeriod (Proposal.sol#174) is not in UPPER_CASE_WITH_UNDERSCORES

Constant Params.WithdrawProfitPeriod (Proposal.sol#176) 1is not in UPPER_CASE_WITH_UNDERSCORES

Constant Params.MinimalStakingCoin (Proposal.sol#177) is not in UPPER_CASE WITH UNDERSCORES

Event ValidatorswithdrawStakingRewardEv(address, address ,uint256,uint256) (Proposal.sol#488) is not in CapWords

Parameter validators.s=tCDntractC|=ator.'jﬂ|st-. contract IP|DpDSa1 sol#5108) is not in mixedCase

Parameter Validators.distributeBlockReward{address[],uint64[])._to (Proposal.sol#817) is not in mixedCase

Parameter Validators.distributeBlockR rd(address[],uint64[]). gass (Proposal.sol#817) is not in mixedCase

Parameter validators m?takeRewardLaddress,address}._staker (Proposal.sol#1224) is not in mixedCase

Parameter Validators.viewStakeReward(address,address)._ validator (Proposal.sol#1224) is not in mixedCase

Reference: https ffglthub CDWfCIvtlcfsllth°If\lklfDQtQCtDF Documentat ion#conformance-to- SDlljltv -naming-conventions

INFO:Detectors:
Reentrancy in Validators.distributeBlockReward({address[],uint64[]) (Proposal.sol#817-878):
External calls:
- address(0).transfer(_burnPart) (Proposal.sol#839)
State variables written after the call(s):
- lastRewardTime[val] = block.timestamp (Proposal.sol#858)
- reflectionPercentSum[val][lastRewardTime[val]] = lastRewardHold + {remaining * 1 / validatorInfol
val].coins) (Proposal.sol#861)
- reflectionPercentSum[val][lastRewardTime[val]] = lastRewardHold (Proposal.sol#365)
addProfitsToActivevalidatorsByStakePercentExcept(_wvalidatorPart,address(e)) 'FIDPDSal sol#875)
lidatorInfo[val].hbIncoming = validatoerInfo[wal]. |bIhc3w1ng add{per) (Proposal.sol#1148-1158)
lidatorInfo[last].hbIncoming = lidatorlnfo[last].thncowinq.addirewa1n} (Proposal.sol#1157-1159)
ralidatorInfo[val_scope_1].hbIncoming = validatorInfo[val_scope_1].hbIncoming.add{reward) (Proposal.sol#1175-

validatorInfo[last].hbIncoming = wvalidatorInfo[last].hbIncoming.add(remain) (Proposal.sol#1183-1185)
vent emitted after the call{
LogDistributeBlockReward(val, validatorPart,block tlﬁQStaﬁp, to,_gass) (Proposal.sol#877)
Reentrancy in Validators. stakAIadj|955| (Proposal. s0l#550
External calls:
- withdrawStakingReward{validator) {Proposal.sol#589)
2n . fer(d) (Proposal.sol#744)
State variables tten after the call{
- tryAddvalidatorTeHighestSet({validator,valInfo.ceins) (Proposal.sol#596)
- highestvalidatorsSet.push iProposal.sol#lD&l}
- highestvalidatorsSet[lowestIndex] = val (Proposal.sol#10887)
staked[staker][validator].coins = staked[staker][validator].coins.add(staking) (Proposal.sol#599-601)
totalStake = totalStake.add(staking) (Proposal.sol#602)
lInfo.coins alInfo.coins.add{staking) {Proposal.sol#592
lInfo.status = Status.Staked (Proposal.sol#594)
vent emitted after the call(s):
- LogAddToTopValidators(val,block.timestamp) iP|3p35a1 sol#1062)
- tryAddvalidator Jnghnst99tl'aliﬂatD| valInfo.coins) (Proposal.sol#5396)
LogAddToTopvalidators{val,block.timestamp) IP|DpDSa1 sol#1882)
- truujjhalijator'onghnstCAtl'alljato| valInfo.coins) (Proposal.sol#596)
LogRemoveFrom DPJalljatDIS'hlghﬁsthalljatDISEEt[ID\QSTIHdﬁf] block.timestamp) IPerDsal.sol#lDSB—
- tryAddvalidatorToHighestSet{validator,valInfo.coins) (Proposal.sol#536

staker.transfer(staking) (Proposal.sol#7708)
vent emitted after the callis}):
LogWithdrawStaking(staker,validator,staking,block.timestamp) (Proposal.sol#772)
Reentrancy in Validators.withdrawStakingReward{address) (Proposal.sol#734-748):
External calls:
- msg.sender.transfer(reward) (Propesal.sol#744)
Event emitted after the call(s):
- thdrawStak ingRewardEv({msg.sender,validator,reward,block.timestamp) (Proposal.sol#745)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4
INFO:Detectors:
Punish. sllthnlCDnstluctDlCDnstanthallabIQSI} IP|DpDSa1 501+Llc 349) uses literals with too many digits:
- ValidatorContractAddr ¢ {Proposal.sol#1 165)
Punish.slitherConstructorConst () (P 3p05a1 sol#218-3 9) uses literals with too m digits:
- PunishContractAddr = BOFEA1 (Proposal.sol#l
Punish. sllthn|Constlucto|Consta|t ables{) { 49) uses literals with too many digits:
- ProposalAddr F (Proposal.sol#168-169)
Validators.withdrawStak 48) uses 11t9|als with too many digits:
- reward = stakingInTo coins * \ (Proposal.sol#743)
Validators.distributeBlockRew j'ajﬂlQSS[] u1ntf4[]- (Proposal.sol#817-878) uses literals with too many digits:
validatorPart = r rd - alljato|Pa|tPA|c9nt / 18 {Proposal.sol#8308)
validators .. j15t|lbutaslockﬁa\arjlajj|ass[] u1ntf4[]l 'PIDPDSal.SDl#Gla—oaG] uses literals with too many digits:
wa / 8 (Proposal.sol#334)

uses literals with too many digits:

- awt = amt * contractPartPercent /S 10 iProposal.sol#SED)
validators.distributeBlockReward{address[],uint64[]) (Proposal.sol#817-878) uses literals wi

- reflectionPercentSum[val][lastRewardTime[val]] = lastRewardHold + (remaining * 10 J/ validatorInfol[
val].coins) (Proposal.sol#861)
Validators.ulew?takeRewardEadd|ass ajleSS' (Proposal.sol#) uses literals wlth too many digits:

- stakingInfo.coins * 1 / 1@ PlopDSal sol#1
validators.slitherConstructor / les() { es literals with too many digits:

- 4a11jat0l(0ht\aCtHjjl = {Proposal.sol#164-165)
Validators.slitherConstructorConst able (al. 3) uses literals with too many digits:

- PunishContractaAddr = 31 {Proposal.sol#l 167)

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

P|'-:|:-:sal.slit|
- valida (#16
Proposal.slither C g 2 ite igits:

- Punish A 1 (Proposal.sols i
Proposal.slither Variable (Pr al. 4 409) uses literals w o many digits:

“Ic-:-:|-ss' sI ould I“

Reference: ps:/ ub . c ic/slithe :\1|‘1 /Detector-Documentationd Llll- -function-that-could-be-
INFO:S1lither: Proposal sol analyzed (5 contracts with 75 detectors) 74 result(s) found
INFO:Slither:Use https: rytic. to ge ccess to add onal de rs and

INFD Detector
Validators.withdrawSta |~"L|'“I 3

slltl-rfxlkl Detector -Documentation#missing-zero-address-validation
INFD.Detectors:
Validators.distributeBlockRes (5 = int64[]) (Punish.sol#859-92 has external calls inside 3 ress{contractCre
_to[i]11) t|c|sT») i 1#
= 8 |ttp //github Jerytic/sli tiki/Detector-Documentation/#calls-inside-a-loop
3 Detectors
in Validators.unstake(address) (Punish.sol#713
calls:
sal.setUnpass vcliuatcr} (Punish.sol#766)
calls sending
- \ltl-r"Stekil 3 v ") 'PLIIS| sol#7

- \lT'LIc\EtcPlI \ va #769)
- stakeTime .sen |][cll‘.ct |] rdTime[validator] (Punish.sol#784
- st k-'ir’-: cer] = IPLrlsI'.s-:
= i /c i / eentrancy-vulnerabilities-2
INFD Detectors
Reen trar"-,-‘ in Punish. pun ish(address) (Punish.sol#13208-1345)

alidator{val) {Punish.sol#133
alidatorIne g) {Punish.sol#1341)
- th -:ellls

Reentrancy validators.re
External calls:
- ¥ sal.setUnpasser
after
i k‘tU'EStcﬂ._.' {Punish.sol#
Reentrancy 1in i ors.tryReac ess) (Punish.sol#691-711)
External :
- reguire(bool,string){punish.cleanPunishRec (validator can failed) (Punish.so

Reentrancy in Validators.unstake(address) (Punish.sol#713-774):
External calls:

alidator) (Punish.sol#766)

th

) (Punish.sol#
tlr’-:star’p_: {Pun 'LS| sol#787
'.PLr'le' Y
Reentrancy in Pr al . =) {Punish.so
Externa
i) (Punish.sol#363)
(Punish.sol#364)
ion#reentrancy-vulnerabilities-3
ess,string) (Punish.sol#2) uses timestamp for comparisons

me == B,Pr al alre exists) {Punish.sol#318)
78) uses timestamp T mparisons

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors :
Vvalidators.only

unish.sols
validators.

INFD Detectors
Constant Params.Va
Constant Params.
Constant Params.
Constant Params.M
Constant Params.S5
Params.Wi
Params.

tl'-:r -.-Stak

MinimalStak in

Validators)

-Documentation#incorrect-version
is not in UPPER_CASE_
is not in UPPER_CASE_WITH_UNDERSCORES
UPPER_CASE_WITH_UNDERSCORES
is not in UPPER_CASE_WITH_UNDERSCORES
is not in UPPER_CASE_WITH_UNDERSCORES
is not in A

] == false,validators alre

s-of-solidity

WITH_UNDERSCORES

is not in CapW
Case

is not in
s n “t

ress[],uint64[]). IPu ish.so l-r.:F
sC1, Lutf-‘l[]. _gass (Punish.s
_staker {Punish.
lidator (Punist
cumentat Lon#c

mixe
in ri.

ventions

Proposal. slltl
~ punish
Proposal.slithe

uses litera 15 \lt|
81 (Punish.sols
uses literals with t

= 2§
Validators.

Validators.

cll-.ct.ls distri
- _burnPart = r
Validators.distributeBl
- amt = amt *
validators.distrib
flectionPe
Punish.

validators.slith

val id

validators.slit
- PunishCo

= 2§

{Punish.sol#169-1

alidatorpartp
ress[],uin tf-‘l[]
nPartPercent /

use s literals with

)) uses Lliterals with
{Punish.

IPu 1s|) uses literals wi

too many

too many digits:

+ (remaining -

uses Literals with

1 {Punish. 7

) uses lit»|cls \
.50 l‘rlrc 1

Punish. slltl

fal
slltl ercC
- PunishContra
.slitherConstr

Punish. nstruc

Punish

Refere

/ validatorInfol

INFO:Detectors:
setCo |t|c-'tCr"

torSet(a

hvalidat

- Punish
etPunishRec

- Punish

https

Refere

ed e/t-l na
'PL,I 'le

'ZFLrisI'.s-:l#lE-E-E—l
sol#1022-1082
external:

) {Punish.

Pu 1s|

sol#1026-1032)

{Punish.sol#1266-127
ol#1377-1401)

ol#1483-1405)

.slltl»| -\1k1 De t»_

INFO:Slither: Pun'Lsh sol analyzed (5 contracts with 75 detectors), 74 result(s) 'Found

INFO:Slither:Use http

et acce to add onal a ors and

is a private and confidential document. No part of th
losed to third party without prior written pern

Email: audit@EtherAuthority.io

ocumentat ion#public- function-that-could-be-declared-external

: document should

on of EtherAuthority.

Slither Log >> Validators.sol

INFO:Detectors:
Validators.withdrawStaking({address).staker (Validators.sol#926) lacks a zero-check on
- staker.transfer({staking) ({validators.sol)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Validators.distributeBlockReward(address[], uintFJ[]\ {validators.sol#992-10853) has external calls inside a loop: address(contra
ctCreator[_to[1]]).transf amt) JalljaTDIS sol#1026)
Reference: https:ffgithub.cowa|ytlcfsllthe\fhlklfD tector-Documentation/#calls-1inside-a-loop
INFO:Detectors:
Reentrancy in Validators.unstake(address) (Validators.sol#846-907):
External calls
- proposal.setUnpassed({validator) (Vvalidators.sol#399)
External calls sending eth:
- withdrawStak ingReward(validator) (Vvalidators.sol#g882
- msg.sender.transfer({reward) (validators.sol#919
State variables written after the call(s):
- withdrawStak ingReward{validator) (Validators.sol#g962)
- stakeTime[msg.sender][validator] = lastRe Time[validator] (Validators.sol#91
- stakeTime[staker][validator] = @ (validators.sol#903)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in Punish.punish{address) (Validators.sol#435-460):
External calls:
validators.removeValidator(val) (Validators.sol#450)
lidators.rem alidatorIncoming{val) (Vvalidators.sol#456
vent emitted after the call(s):
- LogPunishvalidator(val,block.timestamp) ({validators.sol#459)
Reentrancy in Validators.removeValidator(address) (validators.sol#l
External calls:
- proposal.setUnpassed(val) (validators.sol#1882)
Event emitted after the call(s):
veValida 1,hb,block.timestamp) (Validators.sol#1683)
Reentrancy in V ators.tryReactive(address) (Validators.sol#324-844):
External calls:
- require(bool,string){punish.cleanPunishRecord(validator),clean failed) (Vvalidators.sol#839)

Reentrancy in Validators.unstake(address) (Validators.sol#846
External calls:
- proposal.setUnpassed{validator) (Validators.sol#899)
External calls sending eth:
- withdrawStakingReward(validator) (validators.sol#902
- msg.sender.transfer({reward) (Validators. 50179 9)
Event emitted after the call(s):
- LogUnstake(staker,validator,unstakeAmount,block.timestamp) (validators.sol#905)
- withdrawStakingRewardEv(msg.sender,validator,reward,block.timestamp) (validators.sol#
vithdr akingReward(validator) (validators.sol
Reentrancy in Proposal.voteProposal(bytes32,bool) (Validators.sol#323-
External calls:
validators.tryReactive(proposals[id].dst) (validators.sol#3
nt emitted after the call(s):
- LogPassProposal(id,proposals[id].dst,bloeck. timestamp) (Validators.sol#364)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Proposal.createProposal{address,string) (Validators.sol#299-321) uses timestamp for comparisecns
Dangerous comparison
- require(bool,string)({proposals[id].createTime 8,Proposal already exists) (Validators.sol#318)
Propesal.voteProposal{bytes32,bool) (validaters.sel#323-378) uses timestamp for comparisons
Dangerous comparisons:
- reqguire{bool,string){proposals[id].createTime != 8,Proposal not exist) (Validators.sol#323)
- require(bool,string)(block.timestamp < proposals[id].createTime + proposalLastingPeriod,Proposal expired) (Validators
.sol#333-336)
- proposals[id].reject == validators.getActiveValidators().length 7 2 + 1 (validators.sol#370-371)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
validators.onlyNotRewarded() (Validators.sol#665-671) compares to a boolean constant:
-require({bool,string){operationsDone[block.number][uint&({0perations.Distribute)] == false,Block is already rewarded) (V
alidators.sol#6 g)
validators. DhlvNDTijatlel {validators.sol#673-680) compares to a boolean constant:
uire(bool,string){operationsDone[block.number][uint3(0perations.Updatevalidators)] == false,validators already upda
ted) Ihalljatols 501+F*4—6735
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality

INFO:Detectors:
SafeMath.mod{uint256 ,u1nt256) (Validators.sol#134-136) 1s never used and should be removed
safeMath.mod{uint256,uint25 STIIH-I {validators. sol#l‘h-l‘«- is never used and should be remove
Reference: https://github. CDWKC|vtlcf511th°|/.lklfDAtactor Documentat ion#dead-code
INFO:Detectors:
Pragma version==0 <@.8.0 (Validators.sol#2) is too complex
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Constant Params.ValidatorContractAddr (validators.sol#165-166) is not in UPPER_CASE_WITH_UNDERSCORES
Constant Params.PunishContractAddr (Validators.sol#167-168) is not in UPPER_CASE_WITH_UNDERSCORES
Constant Params.ProposalAddr {Validators.sol#169-178) is not in UPPER_CASE WITH_ UNDERSCORES
Constant Params.MaxValidators (Validators.sol#173) is not in UPPER_CASE_WITH_UNDERSCORES
Constant Params.StakingLockPeriod (validators.sel#175) is net in UPPER_CASE_WITH_UNDERSCORES
Constant Params.WithdrawProfitPeriod (Validators.sel#177) is not in UPPER_CASE_WITH_UNDERSCORES
nstant Params.MinimalStakingCoin (Validators.sol#178) is not in UPPER_CASE_WITH_UNDERSCORES
ent ValidatorswithdrawStakingRewardEv({address ,address ,uint256,uint256) (Validators.sol#663) 1s not in CapWords
meter Validators.setContractCreator 255)._contract (Validators.sol#685) is not in mixedCase
Parameter Validators.distributeBlockr addr int6: ._to {validators.sol#992) is not in mixedCase
Parameter Validators jlstllbut=81 ward({addre in [1)._gass (Validators.sol#992) is not in mixedCase
Parameter Malxdatols _'C akeReward{address ,address). staker (Validators.sol#1399) 1s not in mixedCase
Parameter Validators akeR d{address, ajjléss-. alidator (validators.sol#1399) is not in mixedCase
Reference: https ffglthub CDWKC|,ticfslither!wikifDetectorfDocuwentation#confornanceftofsolidityfnaningfconventions
INFO:Detectors:
Reentrancy in Validators.distributeBlockReward{address[],uint64[]) (Validators.sol#992-1853)
External calls:
- address(0).transfer(_burnPart) (validators.sol#1014)
State var written after the call(s):
- lastRewardTime[val] = block.timestamp (Validators.sol#
- reflectionPercentSum[val][lastRewardTime[val]] = lastRewardHold + (remaining * 10 / validatorInfo[
val].coins) (validators.sol#1)]

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

reflectionPercentSum[val][lastRewardTime[val]] = lastRewardHold (Validators.sol#1084

addProfitsToActiveValidatorsByStakePercentExcept({_wvalidatorPart,address(8)) (validators. sol#1050)
validatorInfo[val].hbIncoming = validatorInfo[val]. IbIncow1ng add(per) (validators.sol#1323
alidatorInfo[last].hbIncoming alidatorInfo[last].hbIncoming.add{remain) (Validators. 531 £1332-1334)

validatorInfo[val_scope_1].hbIncoming = validatorInfo[val_scope_1].hbIncoming.add{reward) (validators.sol#135

validatorInfo[last].hbIncoming = validatorInfo[last].hbIncoming.add{remain) (validators.sol#1358-1360)
vent emitted after the callis):
- LogDistributeBlockReward(val, validatorPart,block.timestamp, to, gass) (Validators.sol#1652)
Reentrancy in Validators. stakAIajj|ASSI (Validators.sol#725-781):
External calls:
- withdrawStakingReward{validator) (validators.sol#764)
- msg.sender.transfer{reward) (validators.sol#919
State variables written after the call(s):
- tryAddvalidatorToHighestSet(validator,valInfo.coins) {Validators.sol#771)

- highestvalidatorsSet.push{val) (validators.sol#1236)

- highnsthalijatols?et[lo\astlndax] val (Validators.sol#1262)
staked[staker][validator].coins = stake j[stakn|][alljatol] coins.add({staking) {validators.sol#774-776)
totalStake = totalStake.add(staking) (validators.sol#777
valInfo.coins = valInfo.coins.add{staking) (validators. sol#76
valInfo.status = Status.Staked (Validators.sol#769)

vent emitted after the callis):
LogAddToTopvalidators(val,block.timestamp) (validators. sol#l

- tryAddvalidator Dnghéstcétl'allﬂatar, ralInfo.coins) 11jat3|s sol#771)
LogAddToTopvalidators(val,block.timestamp) (validators.sol# 138

- tryAddvalidator DnghQSTEETI'alljatDI, valInfo.coins) (Va lljato|s sol#771)

LogRemoveFromT Dphalljato|SIh1ghéstha11jato|s?et[lo\astlndAf] block.timestamp) {Validators.sol#125
- tryAddvalidatorToHighestSet(validator,valInfo.coins) (validators.sol#771)
LogStake(staker,validator,staking,block.timestamp) (Validators.sol#779)
Reentrancy in Jalidators.unstakeiaddress} (Validators.sol#846 IE
External calls:
- withdrawStak ingReward(validator) (Validators.sol#9
- msg.sender.transfer{reward) (validators.sol#9
State variables written after the call(s):
- stakeTime[staker][validator] = 0 ({Validators.sol#903)
Event emitted after the call(s):
- LogUnstake(staker,validator,unstakeAmount,block.timestamp) (Validators.sol#3965)

Reentrancy in Validators.withdrawStakingReward(address) (validators.sol#9089-923

External calls:

- msg.sender.transfer({reward) (validators.sol#919

Event emitted after the call(s):

- withdrawStakingRewardEv(msg.sender,validator, reward,block.timestamp) (validators.sol#920)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4
INFO:Detectors:
Proposal.slitherConstructorConstantvariables{) (validators. # -381) uses literals with too many digits:

- validatorContractAddr 0o 8 Ihalljatols solﬁlr‘ 166)
Proposal. sllthn|CDnst|uctolCDnstantballabIASIn (validators. 3 391) o o W too many dlglts:

- PunishContractAddr b o 81 (validators.sol#167-168)
Proposal. slitherConstructorConstantvariables) {validators. 3 -391) uses literals with too many digits:

- ProposalAddr = > (validators. #169-170)
Punish.slitherConstructorConstantVa 5) i ith too many digits:

- ValidatorContractAddr = efele] I"lljatols sol#165-166)
Punish.slithnlCDnstluct)lCDnstantballablns'- (validators.sol#39¢) uses literals with too many digits:

- PunishContractAddr = 81 (validators.sol#167-168)
Punish.slitherConstructorConstantV uses literals with too many digits:

- P|3p35alnjj| 2 (validators.sol#169-170)
validators thd itakin (ess5) i #) uses literals with too many digits:

ewa fo.c alleA|cnnt f peleleleleleleleleleleTeTe e e el (validators.sol#918)

Validators.distributeBlockRe ard(address[],uint64[]) (Validators.sol#992-1853) uses literals with too many digits:

- wvalidatorPart = r rd - lidatorPartPercent / 1¢ iballjatols sol# 10085)
Validators.distributeBlockRew (address[],uint64[]) (Validators.sol#992- rals with too many digits:

- _burnPart = reward * burnPartPercent / 1 {validaters.sol#1le
Validators.distributeBlockReward(address[],uint64[]) (Validators.sol#992- uses literals with too many digits:

- amt = amt * contractPartPercent / 18 (validators.sol#1025)

Ualldators.sllther(onst|ucto|ConstantVarlabl () (v £527-1410) uses literals with too many digits:
- ValidatorContractAddr = (validators.sol#165-166)
4a11jato|s sllthA|CDnst|uctD|Constantha|1ab195I\ fVal1dators.sol#E 418) uses literals with too many digits:

- PunishContractaddr = 0x0 ¢ FER1 (validators.sol#167-168)
Validators. SllthQICDhStIUCTDICDHStahtbal1ab1°5" 'JalljaTDlS s0l#527-1410) uses literals with too many digits:
- ProposalAddr = 8x000 6e eaee 2 (Validators.sol#169-178)
Reference: https://github. CDWfCIvtIC/SllthQI ik i/Detector-Documentat ion#too-many-digits
INFO:Detectors:
cleanPunishRecord(address) should be declaFAj nxté|na1
- Punish.cleanPunishRecord{address) { 11jato|s sol#492-516)
getPunishvalidatorsLen{) should be declared axtéu
- Punish.getPunishvalidatorsLen() Ihalljatols sol#5
getPunishRecord(address) should be declared external:
- Punish.getPunishRecord{address) (validators. 501. 522-524)
setContractCreator({address) should be declared externa
- Validators.setContractCreator{address) I"lljatals sol#6
updateActiveValidatorSet{address[],uint256) should be declared e xt
- Validators.updateActiv Aballjato|9etlajj|éss[] UIHTAEE}
getValidatorDescription(address) should be declared external:
- Validators.getValidatorDescription{address) (validators.sol#1091-1111)
getvalidatorInfo(address) should be declared external:
- Validators.getValidatorInfo({address) (Validators.sol#1113-1137)
getStakingInfo({address,address) should be declared external:
- Validators.getStakingInfo(address,address) (validators.sol#1139-1153)
getActiveValidators{) should be declared externa
- Validators.getActiveValidators({) (validators.sol#1155-1157)
getTotalStakeOfActivevalidators() should be declared external:
- Ualidators.get'otal?takeDfﬂctivevalidatorsi) {validators.sol#1159-1165)
getTopvalidators() should be declared externa
- Validators.getTopValidators() Ihalljatals s0l#1205-1207)
iewStakeReward({address,address) should be declared external:
- Validators.view?takeRewardiaddress,address) (Validators.sol#1399-1409)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-externa
INFO:Slither: Valldators sol analyzed (5 contracts with 75 detectors), 74 result(s) found
INFO:Slither:U https://crytic to acce to additional detectors and Github

85-690
ernal:
Valid

ators.sol#10855-10

a private and confidential document. No part of this document should
closed to third party without prior written perm of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis
Params.sol
Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

mare

Pos: 24:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 29:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 44:8:

Guard conditions:

Use "assert(x}" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 49:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "reguire(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 57:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Proposal.sol
Security

Transaction origin:

Use of tx.origin: "borigin” is useful only in very exceptional cases. If you use it for authentication,
you usually want to replace it by "msg.sender”, because otherwise any contract you call can act on
your behalf.

more

Pos: 171:37:

Block timestamp:

Use of "blocktimestamp™: "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 769:49:;

Block timestamp:

Use of "blocktimestamp™ "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the blocktimestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 875:53:

Gas & Economy

Gas costs:

Gas requirement of function Proposal.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 74:4:

Gas costs:

Gas requirement of function Validators.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 74:4:

Gas costs:

Gas requirement of function Proposal.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 175:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function Validators.unstake is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 329:4:

Gas costs:

Gas requirement of function Validators.isActiveValidator is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 668:4:

Gas costs:

Gas requirement of function Validators.isTopValidator is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)
Pos: 678:4:

Gas costs:

Gas requirement of function Validators.getTopValidators is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 688:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 679:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas Limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

Pos: 869:16:

Miscellaneous

Similar variable names:

Validators.viewStakeReward(address,address) : Variables have very similar names "staked" and
" staker". Note: Modifiers are currently not considered by this static analysis.
Pos: 884:134:

Similar variable names:

Validators.viewStakeReward(address,address) : Variables have very similar names "staked" and
" staker". Note: Modifiers are currently not considered by this static analysis.
Pos: 887:45:

Guard condrtions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance {(apart from a bug in

your cade). Use "reqguire{x)” if x can be false, due to e.g. invalid input or a failing extarnal

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 519:78:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 888:19:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Punish.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin" is useful only in very exceptional cases. If you use it for authentication,
you usually want to replace it by "msg.sender”, because otherwise any contract you call can act on
your behalf.

more

Pos: 171:37:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 175:33:

Block timestamp:

Use of "block.timestamp": "block timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 326:36:

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 875:53;

Gas & Economy

Gas costs:

Gas requirement of function Proposal.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 74:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function Validators.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 74:4:

Gas costs:

Gas requirement of function Punish.decreaseMissedBlocksCounter is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)
Pos: 75:4:

Gas costs:

Gas requirement of function Validators.distributeBlockReward is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 475:4:

Gas costs:

Gas requirement of function Validators.isTopValidator is infinite: If the gas requirement of a

function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)
Pos: 678:4:

Gas costs:

Gas requirement of function Validators.getTotalStakeOfActiveValidators is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 642:4;

Gas costs:

Gas requirement of function Validators.isActiveValidator is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 668:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 800:12:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

Pos: 823:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

maore

Pos: 869:16:

Miscellaneous

Similar variable names:

Validators.viewStakeReward(address,address) : Variables have very similar names "staked" and

" staker". Note: Modifiers are currently not considered by this static analysis.
Pos: 887:45:

Similar variable names:

Validators.viewStakeReward(address,address) : Variables have very similar names "staked" and
"_staker". Note: Modifiers are currently not considered by this static analysis.
Pos: 887:52:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 888:19:

Validators.sol

Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it for authentication,
you usually want to replace it by "msg.sender”, because otherwise any contract you call can act on
your behalf.

nore

Pos: 171:37:

Block timestamp:

Use of "block timestamp": "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

Pos: 769:49:

Block timestamp:

Use of "blocktimestamp™: "blocktimestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 875:53:

Gas & Economy

(Gas costs:

Gas requirement of function Proposal.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 74:4:

Gas costs:

Gas requirement of function Validators.isTopValidator is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)
Pos: 678:4:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidabl s. Carefully test how many items at maximum
you can pass to such functions to make it successful.

Pos: 869:16:

Miscellaneous

Similar variable names:

Validators.viewStakeReward(ad s,address) : Variables have very similar names "staked" and
"_staker". Note: Modifiers are currently not considered by this static analysis.

Guard conditions:

m

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

component.

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of 0.1
since the result is an inte
nse yield rational cons
: 888:19:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Params.sol

Params.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement

Params.so0l:9:25: Error: Constant name must be in capitalized
SNAKE CASE
Params.sol: 2258 : Constant name must be in capitalized

SNAKE CASE
Params.sol: : : ror: Constant name must be in capitalized
SNAKE CASE

Params.sol:16: : : Constant must be in capitalized
SNAKE CASE

Params.sol: :28: Error: Constant name g be

SNAKE CASE

Params.sol:20: : Error: Constant name

SNAKE CASE

Params.sol:21: : Error: Constant name m in capitalized
SNAKE CASE

Proposal.sol

Proposal.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does
satisfy the r semver requirement

Proposal.sol:43:5: Error: Explicitly mark visibility of state
Proposal.so0l:94:56: Error: Avoid to make time-based decisions in your
business logic

Proposal.sol:128:44: Error: Avoid to make time-based decisions
your business logic

Proposal.sol:151:57: : Avoid to make time-based decisions
your business logic

Proposal.so0l:161:59: : Avoid to make time-based decisions
your business logic

Proposal.sol:175:34: : Avoid to make time-bas decisions
your business logic

Punish.sol

Punish.sol:2:1: Error: Compiler version

satisfy the emver requirement

Punish.sol: : Error: Explicitly mark visibility of state

: Error: Explicitly mark visibility of state

8: Error: Avoid to make time-based decisions in your

)

S
55
4:5
2

2

Punish.sol:
Punish.sol:
business lo

Q J NN
N W R

)

1

(

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Validators.sol

Validators.sol:
tisfy the r
lidators.
lowed no mor
Validators.
tateValidators
Validators.sol:
Validators.sol:
ValldatOLq

a
a
a
1

<

falldatOLD.
Avoid state
Validators.
Avoid state
Validators.
your business
Validators.
your business

Validators.sol
your business

ch

ch

sol:

sol:

sol:

sol:

sol:5

sol:

3:1: Error: Compiler >=0.6.0 <0.8.0 does not
ver requirement
l[:l: Error: Contra
e than 15
92555 BEFORE:
.501:136:9:
146: Error:
171 ¢
181:

loqip

sSem

ct has 19 declarations but

Explicitly mark
Error: Variable name must be in mixedCase
Event name must be in CamelCase

Avoid to use tx.origin
Avoid to make time-based

visibility of
=
5

38: Error:
3 Error: decisions in

Error: make time-based decisions in

Error: Possible
anges after transfer.
523:13: Error: Possible
after transfer.

»0: Error:

reentrancy vulnerabiliti

reentrancy vulnerabilities.
anges

35' Avoid to time-based decisions

l(‘)
566.46:
logic
.075.1:.4.

ogic

Error: Avoid time-based decisions

Error: Avoid time-based decisions

Software analysis result:

These software reported many false positive

results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

