
Project: BloomBox Protocol
Platform: AVAX Network
Language: Solidity
Date: June 23rd, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 22

Audit Findings …………………………………………………………………………………… 23

Conclusion ………………………………………………………………………………………. 30

Our Methodology ………………………………………………………………………………... 31

Disclaimers ………………………………………………………………………………………. 33

Appendix

● Code Flow Diagram ……………………………………………………………………... 34

● Slither Results Log ………………………………………………………………………. 45

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by BloomBox to perform the Security audit of the
BloomBox Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on June 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The BloomBox Protocol is a Defi Program in which custom nodes can be created with

customization and approved users or the owner of the bloom node can start auto

compounding for the blooms by swapping their USDC.e tokens for some time period. It

has functions like claim, airdrop, deposit, initialize, withdraw, setURI, burn, mint,

mintBatch, addLiquidity, toggleSwap, liquidityReward, etc. The Bloomify contracts are

ERC1155 smart contracts with treasury functionality. These contracts inherits the

ERC721Upgradeable, OwnableUpgradeable, ReentrancyGuardUpgradeable,

PausableUpgradeable, IERC20, SafeERC20, Ownable, Initializable, ERC20Upgradeable,

IERC20Upgradeable, ERC20BurnableUpgradeable, SafeMathUpgradeable,

ERC1155URIStorageUpgradeable standard smart contracts from the OpenZeppelin

library. These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
BloomBox Protocol Smart Contracts

Platform AVAX / Solidity

File 1 BloomNFT.sol

File 1 MD5 Hash AB3989A8FB12421E22821BEFA5845ECC

File 2 BloomsManagerUpgradeable.sol

File 2 MD5 Hash 3597608CA88FA5568F3E40CC00A7596E

File 3 LiquidityPoolManager.sol

File 3 MD5 Hash 9A5856B7996B214CFAECF31A5E8BA4C4

File 4 Nectar.sol

File 4 MD5 Hash EA4F4C322AE91A3AB7EB975B3C46B6DB

File 5 OwnerRecovery.sol

File 5 MD5 Hash 8B0989C2653FEA5D3011C8A3F910E58C

File 6 OwnerRecoveryUpgradeable.sol

File 6 MD5 Hash BB367961A2F5B2AF9952A9809FE244A5

File 7 BloomTiers.sol

File 7 MD5 Hash 63BDA048D7B6B887A8977A4A2D79A988

File 8 WalletObserverUpgradeable.sol

File 8 MD5 Hash C3C5EDA54A383AE2327C807C33ABC4E8

File 9 Vault.sol

File 9 MD5 Hash 56BAD1A62944E50C5712D5A5410AE1EB

File 10 Bloomify-TreasuryUpgradeable.sol

File 10 MD5 Hash a360f615bce3faf0367bad8042ff3dba

File 11 Bloomify-FlowerUpgradeable.sol

File 11 MD5 Hash 5ec7e70e33cb5cfd31757e60e5afee18

File 12 Bloomify-WhitelistUpgradeable.sol

File 12 MD5 Hash a3d5598955989f8b190e0d2ec4216e98

Audit Date June 23rd,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BloomNFT.sol
● Name: BloomNFT

● Symbol: Bloom

YES, This is valid.

File 2 BloomsManagerUpgradeable.sol
● Standard Fee: 10

● Precision: 100

● Compound Delay: 24 hours

● Creation Minimum Price: 52000

YES, This is valid.

File 3 LiquidityPoolManager.sol
● LiquidityPoolManager has functions like:

afterTokenTransfer, swapAndLiquify, etc.

YES, This is valid.

File 4 Nectar.sol
● Tax on Transfers: 10%

YES, This is valid.

File 5 OwnerRecovery.sol
● OwnerRecovery has functions like:

recoverLostAVAX, recoverLostTokens.

YES, This is valid.

File 6 OwnerRecoveryUpgradeable.sol
● OwnerRecoveryUpgradeable has functions like:

recoverLostAVAX, recoverLostTokens.

YES, This is valid.

File 7 WalletObserverUpgradeable.sol
● WalletObserverUpgradeable has functions like:

changeNectarImplementation,

changeLiquidityPoolManagerImplementation, etc.

YES, This is valid.

File 8 Vault.sol
● Vault has functions like: initialize, withdraw, etc.

YES, This is valid.

File 9 BloomTiers.sol
● BloomTiers has functions like: mint, mintBatch,

etc.

YES, This is valid.

File 10 TreasuryUpgradeable.sol
● TreasuryUpgradeable whitelisted users can

withdraw the desired amount of NCTR from the

Treasury to the desired address.

YES, This is valid.

File 11 FlowerUpgradeable.sol
● Maximum Perc: 100

● Minimum Number Of Refer For Team Wallet: 5

● Minimum Tier Level: 1

● Maximum Tier Level: 15

● Number Of Tiers: 16

● Deposit Tax: 10%

● Deposit Burn Percentage Nctr: 20%

● Deposit Flower Percentage Nctr: 60%

● Deposit Lp Percentage Nctr: 20%

● Deposit Lp Percentage Usdce: 20%

● Deposit Treasury Percusdce: 80%

● Compound Tax: 10%

● Compound Burn Percentage Nctr: 50%

● Compound Upline Percentage Nctr: 45%

● Compound Upline Percentage Usdce: 5%

● Claim Tax: 10%

● Team Wallet Downline Reward Percentage: 25%

YES, This is valid.

File 12 WhitelistUpgradeable.sol
● The WhitelistUpgradeable owner can add and

remove addresses to the whitelist.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 14 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the BloomBox Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the BloomBox Protocol.

The BloomBox team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are well commented on smart contracts. We suggest using Ethereum’s

NatSpec style for the commenting.

Documentation

We were given a BloomBox Protocol smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

BloomNFT.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal Passed No Issue
7 __Ownable_init_unchain

ed
internal Passed No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue
10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 __ERC721_init internal Passed No Issue
15 __ERC721_init_unchaine

d
internal Passed No Issue

16 supportsInterface read Passed No Issue
17 balanceOf read Passed No Issue
18 ownerOf read Passed No Issue
19 name read Passed No Issue
20 symbol read Passed No Issue
21 tokenURI read Passed No Issue
22 _baseURI internal Passed No Issue
23 approve write Passed No Issue
24 getApproved read Passed No Issue
25 setApprovalForAll write Passed No Issue
26 isApprovedForAll read Passed No Issue
27 transferFrom write Passed No Issue
28 safeTransferFrom write Passed No Issue
29 safeTransferFrom write Passed No Issue
30 _safeTransfer internal Passed No Issue
31 _exists internal Passed No Issue
32 _isApprovedOrOwner internal Passed No Issue
33 _safeMint internal Passed No Issue
34 _safeMint internal Passed No Issue
35 _mint internal Passed No Issue
36 _burn internal Passed No Issue
37 _transfer internal Passed No Issue
38 _approve internal Passed No Issue

39 _setApprovalForAll internal Passed No Issue
40 _requireMinted internal Passed No Issue
41 _checkOnERC721Receiv

ed
write Passed No Issue

42 _beforeTokenTransfer internal Passed No Issue
43 _afterTokenTransfer internal Passed No Issue
44 onlyBloomManagerOrOw

ner
modifier Passed No Issue

45 initialize external Passed No Issue
46 mintBloom external access only Bloom

Manager Or Owner
No Issue

47 burnBloom external access only Bloom
Manager Or Owner

No Issue

48 isApprovedOrOwner external Passed No Issue
49 setBloomNodes external access only Owner No Issue
50 setBaseURI external access only Owner No Issue
51 _baseURI internal Passed No Issue

BloomsManagerUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal Passed No Issue
7 __Ownable_init_unchain

ed
internal Passed No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue
10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 __Pausable_init internal Passed No Issue
15 __Pausable_init_unchain

ed
internal Passed No Issue

16 whenPaused modifier Passed No Issue
17 whenNotPaused modifier Passed No Issue
18 paused read Passed No Issue
19 _requireNotPaused internal Passed No Issue
20 _requirePaused internal Passed No Issue
21 _pause internal Passed No Issue
22 _unpause internal Passed No Issue

23 onlyNectar modifier Passed No Issue
24 getNectarImplementation read Passed No Issue
25 changeNectarImplementa

tion
write access only Owner No Issue

26 onlyBloomOwner modifier Passed No Issue
27 onlyApprovedOrOwnerOf

Bloom
modifier Passed No Issue

28 onlyValidName modifier Passed No Issue
29 initialize external Passed No Issue
30 renameBloom external access only Bloom

Manager Or Owner
No Issue

31 createBloomWithTokens external access only Valid
Name

No Issue

32 addValue external access only Bloom
Manager Or Owner

No Issue

33 startAutoCompounding external access only Bloom
Manager Or Owner

No Issue

34 autoCompound external access only Owner No Issue
35 autoClaim external access only Owner No Issue
36 emergencyClaim external access only Bloom

Manager Or Owner
No Issue

37 burn external access only Bloom
Manager Or Owner

No Issue

38 setNodeMinPrice external access only Owner No Issue
39 setCompoundDelay external access only Owner No Issue
40 setRewardPerDay external access only Owner No Issue
41 changeTierSystem external access only Owner No Issue
42 getBloomsByIds external Passed No Issue
43 calculateTotalDailyEmissi

on
external Passed No Issue

44 _emergencyReward write Passed No Issue
45 _getRewardsAndCompou

nd
write Passed No Issue

46 _cashoutReward write Passed No Issue
47 _logTier write Passed No Issue
48 _checkMultiplier read Passed No Issue
49 _isProcessable read Passed No Issue
50 _calculateReward read Passed No Issue
51 _rewardPerDayFor read Passed No Issue
52 _bloomExists read Passed No Issue
53 _isOwnerOfBlooms read Passed No Issue
54 _isApprovedOrOwnerOfB

loom
read Passed No Issue

55 _swapAndBurn write Passed No Issue
56 _routerSwap write Passed No Issue
57 _routerAddLiquidity write Passed No Issue
58 _deposit write Passed No Issue
59 _whitelistedDeposit write Passed No Issue

60 _nonWhitelistedDeposit write Passed No Issue
61 _unsubscribeNodeFromA

utoCompounding
write Passed No Issue

62 _removeNodeFromClaim
able

write Passed No Issue

63 _updateEmergencyStatu
s

write Passed No Issue

64 _autoclaimRewards write Passed No Issue
65 _resetRewardMultiplier write Passed No Issue
66 _burn internal Passed No Issue

LiquidityPoolManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 recoverLostAVAX external access only Owner No Issue
8 recoverLostTokens external access only Owner No Issue
9 onlyNectar modifier Passed No Issue
10 getNectarImplementation read Passed No Issue
11 changeNectarImplementa

tion
write access only Owner No Issue

12 initializeManager external Passed No Issue
13 afterTokenTransfer external access only Nectar No Issue
14 isLiquidityAdded external Passed No Issue
15 isLiquidityRemoved external Passed No Issue
16 swapAndLiquify write Passed No Issue
17 sendLPTokensTo write Passed No Issue
18 createPairWith write Passed No Issue
19 swapLeftSideForRightSid

e
write Passed No Issue

20 addLiquidityToken write Passed No Issue
21 getRouter external Passed No Issue
22 getPair external Passed No Issue
23 getLeftSide external Passed No Issue
24 getRightSide external Passed No Issue
25 isPair read Passed No Issue
26 isFeeReceiver external Passed No Issue
27 isRouter read Passed No Issue
28 getFeeAddresses external Passed No Issue
29 getFeePercentages external Passed No Issue
30 setAllowance write access only Owner No Issue

31 shouldLiquify write access only Owner No Issue
32 updateSwapTokensToLiq

uidityThreshold
write access only Owner No Issue

33 feesForwarder write access only Owner No Issue

Nectar.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal Passed No Issue
3 __Ownable_init_unchain

ed
internal Passed No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 __ERC20Burnable_init internal Passed No Issue
11 __ERC20Burnable_init_u

nchained
internal Passed No Issue

12 burn write Passed No Issue
13 burnFrom write Passed No Issue
14 recoverLostAVAX external access only Owner No Issue
15 recoverLostTokens external access only Owner No Issue
16 onlyWalletObserver modifier Passed No Issue
17 getWalletObserverImple

mentation
read Passed No Issue

18 changeWalletObserverIm
plementation

write access only Owner No Issue

19 canMint modifier Passed No Issue
20 onlyFlowerManager modifier Passed No Issue
21 initialize external Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue
23 calculateTransactionTax internal Passed No Issue
24 calculateTransferTaxes read Passed No Issue
25 _afterTokenTransfer internal Passed No Issue
26 burnNectar external access only Flower

Manager
No Issue

27 mintNectar external access only Flower
Manager

No Issue

28 liquidityReward external access only Flower
Manager

No Issue

29 toggleSwap write Unused functions Refer audit
findings

30 mint write Passed No Issue

31 finishMinting write access only Flower
Manager

No Issue

32 setVaultAddress write access only Owner No Issue
33 setDevWallet external access only Owner No Issue
34 setFlowerManager external access only Flower

Manager
No Issue

35 canMint modifier Passed No Issue
36 onlyFlowerManager modifier Passed No Issue
37 initialize external Passed No Issue
38 _beforeTokenTransfer internal Passed No Issue
39 calculateTransactionTax internal Passed No Issue
40 calculateTransferTaxes read Passed No Issue
41 _afterTokenTransfer internal Passed No Issue
42 burnNectar external access only Flower

Manager
No Issue

43 mintNectar external access only Flower
Manager

No Issue

44 liquidityReward external access only Flower
Manager

No Issue

45 toggleSwap write access only Owner No Issue
46 mint write Condition has been

checked twice
Refer audit

findings
47 finishMinting write access only Flower

Manager
No Issue

48 setVaultAddress write Function input
parameters lack of

check

Refer audit
findings

49 setDevWallet external Function input
parameters lack of

check, Unused
functions

Refer audit
findings

50 setFlowerManager external Function input
parameters lack of

check

Refer audit
findings

OwnerRecovery.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue

6 _transferOwnership internal Passed No Issue
7 recoverLostAVAX external access only Owner No Issue
8 recoverLostTokens external access only Owner No Issue

OwnerRecoveryUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal Passed No Issue
3 __Ownable_init_unchain

ed
internal Passed No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 recoverLostAVAX external access only Owner No Issue
11 recoverLostTokens external access only Owner No Issue

BloomTiers.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal Passed No Issue
7 __Ownable_init_unchain

ed
internal Passed No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue
10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 __ERC1155URIStorage_i

nit
internal Passed No Issue

15 __ERC1155URIStorage_i
nit_unchained

internal Passed No Issue

16 uri read Passed No Issue
17 _setURI internal Passed No Issue
18 _setBaseURI internal Passed No Issue

19 onlyBloomReferral modifier Passed No Issue
20 onlyExistingId modifier Passed No Issue
21 initialize external Passed No Issue
22 mint external onlyBloomReferral No Issue
23 mintBatch external access only Owner No Issue
24 burn external onlyExistingId No Issue
25 burnBatch external access only Owner No Issue
26 setBloomReferral external access only Owner No Issue
27 setBaseURI external access only Owner No Issue
28 setURI external access only Owner No Issue
29 _beforeTokenTransfer write Passed No Issue

WalletObserverUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal Passed No Issue
7 __Ownable_init_unchain

ed
internal Passed No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue
10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 recoverLostAVAX external access only Owner No Issue
15 recoverLostTokens external access only Owner No Issue
16 onlyNectar modifier Passed No Issue
17 getNectarImplementation read Passed No Issue
18 changeNectarImplementa

tion
write access only Owner No Issue

19 onlyLiquidityPoolManager modifier Passed No Issue
20 getLiquidityPoolManagerI

mplementation
read Passed No Issue

21 changeLiquidityPoolMana
gerImplementation

write access only Owner No Issue

22 initialize external Passed No Issue
23 checkTimeframe modifier Passed No Issue
24 isNotDenied modifier Passed No Issue
25 changeNectarImplementa

tion
write access only Owner No Issue

26 changeLiquidityPoolMana
gerImplementation

write access only Owner No Issue

27 isPair internal Passed No Issue
28 beforeTokenTransfer external access only Nectar No Issue
29 getMaxTokenPerWallet read Passed No Issue
30 getTimeframeExpiresAfte

r
external Passed No Issue

31 getTimeframeCurrent external Passed No Issue
32 getRemainingTransfersO

ut
read Passed No Issue

33 getRemainingTransfersO
utWithSellAllowance

read Passed No Issue

34 getRemainingTransfersIn read Passed No Issue
35 getOverviewOf external Passed No Issue
36 getBoughtTokensOf read Passed No Issue
37 isWalletFull read Passed No Issue
38 isExcludedFromObserver read Passed No Issue
39 setMaxTokenPerWalletPe

rcent
write Percentage limit is

not set
Refer audit

findings
40 resetBoughtTokensOf external access only Owner No Issue
41 setTimeframeExpiresAfte

r
write access only Owner No Issue

42 setTimeframeQuotaIn write access only Owner No Issue
43 setTimeframeQuotaOut write access only Owner No Issue
44 denyMalicious external access only Owner No Issue
45 excludeFromObserver external access only Owner No Issue
46 totalSupply external Passed No Issue

Vault.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 initialize external Function input

parameters lack of
check

Refer audit
findings

7 withdraw write Function input
parameters lack of

check

Refer audit
findings

TreasuryUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyWhitelisted modifier Passed No Issue
3 __Whitelist_init internal Passed No Issue
4 addAddressesToWhitelist external access only Owner No Issue
5 removeAddressesFromW

hitelist
external access only Owner No Issue

6 initialize external Passed No Issue
7 withdrawNCTR external access only

Whitelisted
No Issue

8 withdrawUSDCe external access only
Whitelisted

No Issue

FlowerUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal Passed No Issue
3 __Ownable_init_unchain

ed
internal Passed No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize external Passed No Issue
11 updateDepositTax external access only Owner No Issue
12 updateDepositDistribution

Percentages
external access only Owner No Issue

13 updateCompoundTax external access only Owner No Issue
14 updateCompoundDistribu

tionPercentages
external access only Owner No Issue

15 updateClaimTax external access only Owner No Issue
16 updateTeamWalletDownli

neRewardPerc
external access only Owner No Issue

17 onlyBloomReferralNode modifier Passed No Issue
18 _calculatePercentagePart write Passed No Issue
19 _calculateTax write Passed No Issue
20 _getTierLevel read Passed No Issue
21 _getRewardEligibility read Passed No Issue
22 _routerSwap write Passed No Issue
23 _routerAddLiquidity write Passed No Issue
24 creditsAndDebits read Passed No Issue
25 isNetPositive read Passed No Issue

26 setUSDCeWallet external Passed No Issue
27 deposit external Passed No Issue
28 compoundRewards external access only Bloom

Referral Node
No Issue

29 claim external access only Bloom
Referral Node

No Issue

30 airdrop external access only Bloom
Referral Node

No Issue

WhitelistUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal Passed No Issue
3 __Ownable_init_unchain

ed
internal Passed No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 __Whitelist_init internal access by initializer No Issue
11 onlyWhitelisted modifier Passed No Issue
12 addAddressesToWhitelist external access only Owner No Issue
13 removeAddressesFromW

hitelist
external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

Nectar.sol

● setVaultAddress = _newVaultAddress

● setDevWallet = devWallet_

● setFlowerManager = _newFlowerManager

Vault.sol

● withdraw = _amount

● initialize = _nectar , _whitelist

Resolution: We advise to put validation : int type variables should not be empty and > 0 &

address type variables should not be address(0).

(2) Percentage limit is not set:-

WalletObserverUpgradeable.sol

The maxTokenPerWalletPercent 's max limit is not set. Owner can set it up to any number.

LiquidityPoolManager.sol

Owner can set the individual fee percentage to any number.

Resolution: We suggest adding a percentage max limit.

(3) Uninitialized variable:- Nectar.sol

These _customTaxRate ,_hasCustomTax , _isExcluded variables are used in contract but

not Initialized.

Resolution: We suggest initializing variables with values.

Very Low / Informational / Best practices:

(1) Unlimited Minting:- Nectar.sol

FlowerManager can mint unlimited tokens.

Resolution: We suggest putting a minting limit.

(2) Unused variables / event / functions:- Nectar.sol

Functions:

● toggleSwap

● setDevWallet

Events:

● SetTransferFee

● SetSellFee

Variables:

● devWallet

● swapEnabled

● _excluded

Resolution: Remove unused variables / events / functions from the code.

(3) Condition has been checked twice:- Nectar.sol

In the mint function , canMint modifier is used and also requires which checks minting

finished or not.

Resolution: We suggest removing either canMint modifier Or require to check minting is

finished inside the mint function.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● mintBloom: BloomNFT owner can mint bloom tokens.

● burnBloom: BloomNFT owner can burn bloom tokens.

● setBloomNodes: BloomNFT owner can set bloom nodes.

● setBaseURI: BloomNFT owner can set the base URI for Bloom nodes.

● renameBloom: BloomsManagerUpgradeable bloom owner can rename bloom.

● addValue: BloomsManagerUpgradeable bloom owner can add new value.

● startAutoCompounding: BloomsManagerUpgradeable bloom owner can start auto

compounding.

● autoCompound: BloomsManagerUpgradeable owner can auto compound.

● autoClaim: BloomsManagerUpgradeable owner can auto claim.

● emergencyClaim: BloomsManagerUpgradeable owner can authority to emergency

claim.

● burn: BloomsManagerUpgradeable bloom owner can burn tokens.

● setNodeMinPrice: BloomsManagerUpgradeable owner can set node minimum

price.

● setCompoundDelay: BloomsManagerUpgradeable owner can set compound delay.

● setRewardPerDay: BloomsManagerUpgradeable owner can set reward per day

amount.

● changeTierSystem: BloomsManagerUpgradeable owner can change tier system.

● setAllowance: LiquidityPoolManager owner can set allowance.

● shouldLiquify: LiquidityPoolManager owner should liquify.

● updateSwapTokensToLiquidityThreshold: LiquidityPoolManager owner can update

swap tokens to liquidity threshold.

● feesForwarder: LiquidityPoolManager owner can fees forwarder.

● burnNectar: Nectar FlowerManager owner can burn nectar.

● mintNectar: Nectar FlowerManager owner can mint nectar.

● liquidityReward: Nectar FlowerManager owner can liquidity reward.

● toggleSwap: Nectar FlowerManager owner can toggle swap.

● mint: Nectar FlowerManager owner can mint a token.

● finishMinting: Nectar FlowerManager owner can stop minting new tokens.

● setVaultAddress: Nectar owner can set vault address.

● setDevWallet: Nectar owner can set dev wallet address.

● setFlowerManager: Nectar FlowerManager owner can set flower manager address.

● recoverLostAVAX: OwnerRecovery owner can recover lost AVAX.

● recoverLostTokens: OwnerRecovery owner can recover lost tokens.

● recoverLostTokens: OwnerRecoveryUpgradeable owner can recover lost tokens.

● mint: BloomTiers owner can mint tokens.

● mintBatch: BloomTiers owner can mint tokens batch vise.

● burnBatch: BloomTiers owner can burn batch vise.

● setBloomReferral: BloomTiers owner can set bloomReferral address to another

contract.

● setBaseURI: BloomTiers owner can set base URI.

● setURI: BloomTiers owner can set tokenURI of _tokenId to _tokenURI.

● changeNectarImplementation: WalletObserverUpgradeable owner can change

nectar implementations.

● changeLiquidityPoolManagerImplementation: WalletObserverUpgradeable owner

can change liquidity pool manager implementations.

● setMaxTokenPerWalletPercent: WalletObserverUpgradeable owner can set

maximum tokens per wallet percentage.

● resetBoughtTokensOf: WalletObserverUpgradeable owner can reset bought

tokens.

● setTimeframeExpiresAfter: WalletObserverUpgradeable owner can set time frame

expires.

● setTimeframeQuotaIn: WalletObserverUpgradeable owner can set time frame

quota in.

● setTimeframeQuotaOut: WalletObserverUpgradeable owner can set time frame

quota out.

● denyMalicious: WalletObserverUpgradeable owner can deny malicious.

● excludeFromObserver: WalletObserverUpgradeable owner can exclude from

observer.

● addAddressesToWhitelist: WhitelistUpgradeable owner can add addresses to

whitelist.

● removeAddressesFromWhitelist: WhitelistUpgradeable owner can remove

addresses from the whitelist.

● updateDepositTax: FlowerUpgradeable can update deposit tax with only Owner

rights.

● updateDepositDistributionPercentages: FlowerUpgradeable can update deposit

distribution percentages with onlyOwner rights.

● updateCompoundTax: FlowerUpgradeable can update compound tax with

onlyOwner rights.

● updateCompoundDistributionPercentages: FlowerUpgradeable can update

compound distribution percentages with onlyOwner rights.

● updateClaimTax: FlowerUpgradeable can update claim tax with onlyOwner rights.

● updateTeamWalletDownlineRewardPerc: FlowerUpgradeable can update reward

percentage for downline.

● compoundRewards: FlowerUpgradeable Bloom Referral Node can Distribute

compound rewards to the upline with Round Robin system.

● claim: FlowerUpgradeable Bloom Referral Node can claim from Bloom Treasury,

calculate taxes.

● airdrop: FlowerUpgradeable Bloom Referral Node can airdrop to any address and

save airdrop to Treasury.

● withdrawNCTR: TreasuryUpgradeable Whitelisted owner can withdraw desired

amount of NCTR from Treasury to desired address.

● withdrawUSDCe: TreasuryUpgradeable Whitelisted owner can withdraw desired

amount of USDC.e from Treasury to desired address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in smart

contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - BloomBox Protocol

BloomNFT Diagram

BloomsManagerUpgradeable Diagram

LiquidityPoolManager Diagram

Nectar Diagram

OwnerRecovery Diagram

OwnerRecoveryUpgradeable Diagram

BloomTiers Diagram

WalletObserverUpgradeable Diagram

Vault Diagram

TreasuryUpgradeable Diagram

FlowerUpgradeable Diagram

WhitelistUpgradeable Diagram

Slither Results Log

Slither log >> BloomNFT.sol

Slither log >> BloomsManagerUpgradeable.sol

Slither log >> LiquidityPoolManager.sol

Slither log >> Nectar.sol

Slither log >> OwnerRecovery.sol

Slither log >> OwnerRecoveryUpgradeable.sol

Slither log >> BloomTiers.sol

Slither log >> WalletObserverUpgradeable.sol

Slither log >> Vault.sol

Slither log >> TreasuryUpgradeable.sol

Slither log >> FlowerUpgradeable.sol

Slither log >> WhitelistUpgradeable.sol

