
Project: CGI Token
Platform: Ethereum
Language: Solidity
Date: June 25th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 10

Audit Findings …………………………………………………………………………………… 11

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the CGI team to perform the Security audit of the smart
contract code. The audit has been performed using manual analysis as well as using
automated software tools. This report presents all the findings regarding the audit
performed on June 25th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The CGI Token is an ERC1155 token which has functionalities like minting, burning,

pause/unpause, blacklist addresses, and bridge using messageProxy.

● The CGI Token contract inherits the ERC1155PresetMinterPauser, ERC1155Supply,

Strings, ERC1155Holder, ERC2981 standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for CGI
Token Smart Contract

Platform Ethereum / Solidity

File LiveCGIToken.sol

File Sha1 Hash 6ec900b3f66f68c6fd9cf4fb5ab6555059953df2

Updated File Sha1 Hash 8992389217c9c9c0404dcec1128e5877d34403ec

Audit Date June 25th, 2022

Revision Date June 29th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Token Name: CGI Token

● ERC1155 and ERC2981 compliance

● This contract has functions like: bridge, post

message, Interface support, etc.

● Minting and burning ability

● in-built royalty

YES, This is valid.

Ownership Control:
● Owner can add a new address to the

blacklist.

● Owner can remove addresses from the

blacklist.

● Owner can also set other state variables

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.
All issues have been acknowledged / resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in CGI Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the CGI Token.

The CGI Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a CGI Token smart contract code in the form of an Etherscan weblink. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. so it’s not easy to understand its

programming logic.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write Passed No Issue
3 mintBatch write Passed No Issue
4 pause write Passed No Issue
5 unpause write Passed No Issue
6 supportsInterface write Passed No Issue
7 _beforeTokenTransfer write Passed No Issue
8 totalSupply read Passed No Issue
9 exists read Passed No Issue

10 _beforeTokenTransfer internal Passed No Issue
11 onERC1155Received write Passed No Issue
12 onERC1155BatchReceived write Passed No Issue
13 supportsInterface read Passed No Issue
14 royaltyInfo external Passed No Issue
15 _feeDenominator internal Passed No Issue
16 _setDefaultRoyalty internal Passed No Issue
17 _deleteDefaultRoyalty internal Passed No Issue
18 _setTokenRoyalty internal Passed No Issue
19 _resetTokenRoyalty internal Passed No Issue
20 addBlacklist external Passed No Issue
21 removeBlacklist external Passed No Issue
22 uri read Passed No Issue
23 setURI external Passed No Issue
24 setMessageProxy external Passed No Issue
25 setTargetChainHash external Passed No Issue
26 setTargetContract external Passed No Issue
27 bridge external Passed No Issue
28 postMessage external Passed No Issue
29 _mint internal Passed No Issue
30 _mintBatch internal High gas consuming

loops,
Infinite loops

possibility

Refer Audit
Findings

31 _burn internal Passed No Issue
32 _burnBatch internal High gas consuming

loops, Infinite loops
possibility

Refer Audit
Findings

33 setTokenRoyalty external Critical operation
lacks event log

Refer Audit
Findings

34 resetTokenRoyalty internal Critical operation
lacks event log

Refer Audit
Findings

35 setRoyaltyfeeNumerator external Critical operation
lacks event log

Refer Audit
Findings

36 supportsInterface read Passed No Issue
37 _beforeTokenTransfer internal Passed No Issue
38 whenNotPaused modifier Compile time error Refer Audit

Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) High gas consuming loops:

The function _mintBatch has an unbound loop. This does not create a major security or

logical vulnerability, but it may hit the block’s gas limit if there are high numbers of entries

used in the loop. This is true for the _burnBatch function as well.

Resolution: the best practice is to set a limit on the number of entries that are expected.

On another hand, this can be safely acknowledged that only a limited number of tokens

will be minted in a batch.

Status: Acknowledged.

(2) Compile time error:

Overriding modifier is missing the "override" specifier.

Resolution: We suggest removing the whenNotPaused() modifier to avoid this error.

This modifier is already defined in the Pausable contract.

Very Low / Informational / Best practices:

(1) Unlocked Compiler Version:

The contract uses the "^" prefix specifier, using the Unlocked compiler version. Unlocked

compiler version code of the smart contract, and that gives permission to the users to

compile it one higher than a particular version.

Resolution: We suggest that the compiler version is unlocked instead of the locked

compiler version. The following line of code can be added to the project:

pragma solidity 0.8.10;

Status: Acknowledged.

(2) Critical operation lacks event log:

Missing event log for:

● setRoyaltyfeeNumerator

● resetTokenRoyalty

● setRoyaltyfeeNumerator

Resolution: Please write an event log for listed events.

Status: Acknowledged.

(3) Double check the name of the token

The token tracker in the block explorer shows ERC1155. Just to double confirm that it

should appear as a CGI Token, or your main brand keyword.

Status: Fixed.

(4) External contracts are used, which are not in the audit scope.

This smart contract uses external contract addresses, which are _messageProxy and

targetContract. These smart contracts are not part of this audit scope and thus not audited.

The owner should ensure that those contracts are safe and audited.

Status: Fixed.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● addBlacklist: Admin can add a new address in the blacklist.

● removeBlacklist: Admin can remove address from the blacklist.

● setMessageProxy: Admin can set a message proxy address.

● setTargetChainHash: Admin can set target chain hash code.

● setTargetContract: Admin can set target contract address.

● setTokenRoyalty: Admin can set token royalty id.

● resetTokenRoyalty: Admin can reset token royalty id.

● setRoyaltyfeeNumerator: Admin can set royalty fee numerator.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of an Etherscan weblink. And we have used all

possible tests based on given objects as files. We have not observed any major issues.

So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - CGI Token

Slither Results Log
Slither Log >> LiveCGIToken.sol

Solidity Static Analysis
LiveCGIToken.sol

Solhint Linter

LiveCGIToken.sol

LiveCGIToken.sol:723:18: Error: Parse error: missing ';' at '{'
LiveCGIToken.sol:753:22: Error: Parse error: missing ';' at '{'
LiveCGIToken.sol:821:18: Error: Parse error: missing ';' at '{'
LiveCGIToken.sol:846:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

