@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: CGl Token
Platform: Ethereum
Language: Solidity

Date: June 25th, 2022

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 10
AUt FINAINGS oo e 11
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 23
® SOININt LiNtEr oo 25

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the CGI team to perform the Security audit of the smart
contract code. The audit has been performed using manual analysis as well as using
automated software tools. This report presents all the findings regarding the audit
performed on June 25th, 2022.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The CGI Token is an ERC1155 token which has functionalities like minting, burning,
pause/unpause, blacklist addresses, and bridge using messageProxy.

The CGI Token contract inherits the ERC1155PresetMinterPauser, ERC1155Supply,
Strings, ERC1155Holder, ERC2981 standard smart contracts from the
OpenZeppelin library.

These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for CGlI
Token Smart Contract
Platform Ethereum / Solidity
File LiveCGlIToken.sol
File Sha1 Hash 6ec900b3f66f68c6fd9cf4fb5ab6555059953d2

Updated File Sha1 Hash | 8992389217¢c9¢9c0404dcec1128e5877d34403ec

Audit Date June 25th, 2022

Revision Date June 29th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Token Name: CGI Token
e ERC1155 and ERC2981 compliance
e This contract has functions like: bridge, post
message, Interface support, etc.
e Minting and burning ability
e in-built royalty

Ownership Control: YES, This is valid.
e Owner can add a new address to the
blacklist.
e Owner can remove addresses from the
blacklist.

e Owner can also set other state variables

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

All issues have been acknowledged / resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in CGIl Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the CGI Token.

The CGI Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a CGI Token smart contract code in the form of an Etherscan weblink. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. so it’s not easy to understand its

programming logic.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | mint write Passed No Issue
3 | mintBatch write Passed No Issue
4 [pause write Passed No Issue
5 | unpause write Passed No Issue
6 | supportsinterface write Passed No Issue
7 beforeTokenTransfer write Passed No Issue
8 | totalSupply read Passed No Issue
9 | exists read Passed No Issue
10 | beforeTokenTransfer internal Passed No Issue
11 | onERC1155Received write Passed No Issue
12 | onERC1155BatchReceived write Passed No Issue
13 | supportsinterface read Passed No Issue
14 | royaltyInfo external Passed No Issue
15 | feeDenominator internal Passed No Issue
16 | setDefaultRoyalty internal Passed No Issue
17 | deleteDefaultRoyalty internal Passed No Issue
18 | setTokenRoyalty internal Passed No Issue
19 | resetTokenRoyalty internal Passed No Issue
20 | addBlacklist external Passed No Issue
21 | removeBlacklist external Passed No Issue
22 | uri read Passed No Issue
23 | setURI external Passed No Issue
24 | setMessageProxy external Passed No Issue
25 | setTargetChainHash external Passed No Issue
26 | setTargetContract external Passed No Issue
27 | bridge external Passed No Issue
28 | postMessage external Passed No Issue
29 [mint internal Passed No Issue

30 | _mintBatch internal | High gas consuming | Refer Audit
loops, Findings

Infinite loops
possibility

31| burn internal Passed No Issue

32 | _burnBatch internal | High gas consuming | Refer Audit
loops, Infinite loops Findings

possibility

33 | setTokenRoyalty external Critical operation Refer Audit
lacks event log Findings

34 | resetTokenRoyalty internal Critical operation Refer Audit
lacks event log Findings

35 | setRoyaltyfeeNumerator external Critical operation Refer Audit
lacks event log Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

36 | supportsinterface read Passed No Issue

37 | beforeTokenTransfer internal Passed No Issue

38 | whenNotPaused modifier | Compile time error | Refer Audit
Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.
Medium

No Medium severity vulnerabilities were found.
Low

(1) High gas consuming loops:

function _mintBatch(

address to,

uint256[] memory ids,

uint256[] memory amounts,

bytes memory data
) internal virtual override {

for (uint256 i = @; i < ids.length; i++) {

if (lexists(ids[i]))
_setTokenRoyalty(ids[i], to, royaltyfeeNumerator);

}

super._mintBatch(to, ids, amounts, data);

The function _mintBatch has an unbound loop. This does not create a major security or
logical vulnerability, but it may hit the block’s gas limit if there are high numbers of entries

used in the loop. This is true for the _burnBatch function as well.

Resolution: the best practice is to set a limit on the number of entries that are expected.
On another hand, this can be safely acknowledged that only a limited number of tokens

will be minted in a batch.

Status:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Compile time error:

“LiveCGIToken: must have admin role”
)i
}
o m 60 modifier whenNotPaused() {
s e 61 require(!paused(), "ERC1155Pausable: token transfer while paused”);
}
function uri(uint256 _id)
v tif
68 virtual
- —
54 hasRole(DEFAULT ADMIN ROLE, msgSender()),
e sne 55 "LiveCGIToken: must have admin role®
56)i
57
58 }
59
cross multiple lines). M 60 modifier whenNotPaused() {
61 require(!paused(), "ERC1155Pausable: token transfer while paused");
- y ol 62 :
I 63 }
51 | modifier whenMotPaused() { 54
| & (Relevant source part starts here and spans across multiple lines 65 function uri{uint256 _id)
66
67

Overriding modifier is missing the "override" specifier.

Resolution: We suggest removing the whenNotPaused() modifier to avoid this error.

This modifier is already defined in the Pausable contract.

Very Low / Informational / Best practices:

(1) Unlocked Compiler Version:
The contract uses the "A" prefix specifier, using the Unlocked compiler version. Unlocked
compiler version code of the smart contract, and that gives permission to the users to

compile it one higher than a particular version.

Resolution: We suggest that the compiler version is unlocked instead of the locked
compiler version. The following line of code can be added to the project:

pragma solidity 0.8.10;

Status:

(2) Critical operation lacks event log:
Missing event log for:

e setRoyaltyfeeNumerator

e resetTokenRoyalty

e setRoyaltyfeeNumerator

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: Please write an event log for listed events.
Status:

(3) Double check the name of the token

m
A
on

Token Tracker:

The token tracker in the block explorer shows ERC1155. Just to double confirm that it

should appear as a CGl Token, or your main brand keyword.

Status: Fixed.

(4) External contracts are used, which are not in the audit scope.

This smart contract uses external contract addresses, which are _messageProxy and
targetContract. These smart contracts are not part of this audit scope and thus not audited.

The owner should ensure that those contracts are safe and audited.

Status: Fixed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e addBlacklist: Admin can add a new address in the blacklist.

e removeBlacklist: Admin can remove address from the blacklist.
e setMessageProxy: Admin can set a message proxy address.

e setTargetChainHash: Admin can set target chain hash code.

e setTargetContract: Admin can set target contract address.

e setTokenRoyalty: Admin can set token royalty id.

e resetTokenRoyalty: Admin can reset token royalty id.

e setRoyaltyfeeNumerator: Admin can set royalty fee numerator.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of an Etherscan weblink. And we have used all
possible tests based on given objects as files. We have not observed any major issues.

So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - CGI Token

@© uvecormoken

ERC11550resetitinterPaussr
ERC11555upply
ERG1155Hokder

ERCa81

nStrings for uini256

 siring _bassUrl
© MessageProxy messageProxy
o b targetChainHash
© address targetCentract
© S8 rorskestumerskr

i

© addBlackist()
© removeBlacitetr)
JEra ==
| @ sewmin
— © setessageproxy()
= © sstlargetChaintiashl)
- © setTrgetCartract()
© biidge()
© posiitessage()
© _mnt()
. < _mintBstch()
- & Jum)
e © “bumBatchl)
) © astlokenroyaty()
. /| © resatrobenRoyatye)
os feehumetotor()
© Qsuppertsintertace()
< _beforeTorenTransterg) N
/, N
/ \ * for uint256
/ \ .
/ (@) ercissPresetiinterPauser| | N
/ Context) "
AccessCantroEnumeratle \
/ ERC11558ummabie \ (]
ERC1155Pousable
/ @) suings
/ © bytes2 MNTER_ROLE O bytests _HEX_SYMBOLS
/ / © bytesT2 PAUSER ROLE o
/ \ & QuiotexString()
/ / © unpausel) \
/ © Qguppertsiterface() A\
 _btoreTokenTranster) \
L / \ . (©) erci1sssupply
(©) =rc11ssHolger / / - ERC1135
ERC1155Recemer . / | \
& onERC!155Recerved) \ N L
onERC 1 SSBatchReceived() [\ \ e —
y \ \ © Qerists()
/ ©_beforeTokenTransfer()
/ v |
/ g (©) accesscontolEnumeranis |
/ IAccessCantrolEnmerable ‘|
/ AccessControl
y / (©) erciisspausavie (€)=rc1155Bumanie
/ / nEnumerableSet for EnumersbleSet Adrassset
/ ERC1155 ERC1155 ‘
/) 0 bytes esErumeratieSet AdtiessSet roleMembers | Fausable e
/ / © Quaupportsinertace() & _betoreTokenTranser() © bumgstch()
/ /) —
/ @ SigetRolelember Countf) \ | |
/ & _orantRoieq) |
/ revolieficie() | \ |
/ / / [k \
/ / . \ |
/ \for EnumerableSet. AddrassSet \
/ | v |
/ | | | Gontext
/ y / ' ERC1ES
/ / ' 1ERCH188
/ | ‘\ IERC1155MetadatalUR!
© Accsssconva ‘q | ngaiess for odress
Cantext {
mapging N
(©) =reaem o (@) Eoumerabiese e " mmmmnp::::’pwm-
IERG2981 EReies [@) Pausatie o stiing_ui
. ERC165 | W _edd() ° 0
- Jemovel) e i
() ErC1155Recs e e e ROLE (@) 4ccessCantoEnumenabie _cantarsq) | Context : :::E”““‘"""“"’
O Royatynto _deteutoyatyhfo | 2 ttes CBEPAULT ADMIN ROLE | QjengnG i y
erctes 0 yini256=-Royatyito t 0 laccessContol "o o b @ Qistarca0k
© Qsupportsrerface() © Qroyatyintof) Sy © QgeRoletienerCourt() X & gionatructor_{) © QsapprovedrorAi)
° Qg { jomsa © satelranstaifromt)
“ _setDefautRoyatty() / ; &f!“nm) | & safeBatchTransferFrom|)
< ZdeleteDetautRoyaty() R o
o @ “safeDatchTr
v:anTk:l:\ﬁnley() 9 _setuphok() , / © Qualues) / & “aeLRI)
' orartflole() / o)
| \ < _revokeRole() / / < ﬂmﬁcm
| ™ / / © ZournBatchy)
f * “setApprovalFaral()
I\ beforaTokenTransfer()
‘ ‘ / GOSaTeT(anNS e ACCptanceCheckl)
\ \ | _doSafeBatchTranster AcceptanceCheck()
\ N\ / /| m &_asSngetsnarray0
/ \

\
[«for address

g

~ |) 1 [~ p | 1
| ™~ ag (@) rccesscantol] T Wz I i @ ssone
| @) eroiss — @©) context | |@ercrissvetsaataur > QusContractl)
\ QhasRale() | CILCT
IERC165 IERC1155 © functionCal()
1] _msgSender() | .
| | © Qsupportsimerface() :mnﬂuﬂ © & _msgbata) | ° Qi < Vunmnnc-mh\«‘::‘ﬁ)
| © rencuncaRle() | funclcnDelegaieCall)
| / < QuerifyCalResul
/ /
| | /
\ | /
@) iercrrsorecener @ rercaen [Y,
IERC165 JERC168 | i /
7 | /
° 3 /
o onerer ° | /
\‘. "I | 7
| (@) rerciias
\ | | IERG165
A \ [© Qpaisnceof)
{ ® Qpalance0fBatch()
\ | ® setApprovalForAN)
| [_— © QusApprovedForAll()
AN [_— © safeTransferFrom()
— ® safeBatchlransferFram()

. IERG165

© Qeuppontertartace() |
’

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> LiveCGlIToken.sol

INFO:Detectors:
ERC1155PresetMinterPauser.constructor(string).uri (LiveCGIToken.sol#1082) shadows

- ERC1155.uri{uint256) (LiveCGIToken.sol#645-647) (function)

- IERC1155MetadatalURI.uri{uint256) (Liv CGI'Dken.sol#ﬂlS} (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
LiveCGIToken.setTargetContract({address)._targetContract (LiveCGIToken.sol#1237) lacks a zero-check on

- targetContract = _targetContract (LiveCGIToken.sol#1242)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Variable 'ERC1155._doSafeTransferAcceptanceCheck{address,address,address, UIHT‘EC,UIHT‘._,bthS' response (LiveCGIToken.sol#882
in ERC1155._doSafeTransferAcceptanceCheck({address,address,address,uint256,uint256,bytes) (LiveCGIToken.sol#873-892) potentiall
sed before declaration: response != IERC1155Receiv r.onERC1155Rece ived.selector \Li 2CGIToken.sol#
Variable 'ERC1155. doSafeTransferAcceptanceCheck(address,address,address,uint256,uint256, vaQS'.IQGSDH (LiveCGIToken.sol#886)
ERC1155. doSafeT IaHSTQIHCCthaHCQChQCklajjIQSS address, ajj|ass ulht;-_,UIHTAEC,vaQS' IL1 reCGIToken.sol#873-892) potentially
d before declaration: revert({string |nasonn |L1 ACGI Dknn sol#SS;W
Variable 'ERC1155._doSafeBatchTrans
ol#984)' 1in ERC1155 oSafeBatchTr nsfélHCCAptGHCAChécklajjléss aﬂjléss,ajjléss uint2 r[] uint r[] bvtés- {Liw /eCGIT Dkén 531
915) potentially used before declaration: response != IERC1155Rece or . onERC1155BatchReceived. selector {LiveCGIToken.sol#906
variable 'ERC1155._doSafeBatchTransferAcceptanceCheck(address,address,address,uint256[],uint256[],bytes).reason (LiveCGIToken.
#909)' in ERC1155. doSafeBatchTr nsf9|Hcceptancecheckiaddress,address,address,uint“ [],uint256[],bytes) (LiveCGIToken.sol#894
5) potantlallv used before declaration: revert(string)(reason) (LiveCGIToken.sol#91
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pre-declaration-usage-of-local-variables
INFO:Detectors:
EnumerableSet.values(EnumerableSet.AddressSet) (LiveCGIToken.sol#117-126) uses assembly

- INLINE ASM (LiveCGIToken.sol#121-123)
EnumerableSet.values(EnumerableSet.UintSe (LiveCGIToken.sol#153-162) uses assembly

- INLINE ASM (L1iveCGIT Dkﬂh SDl#l
Address.verifyCallResult(b rte r ve assembly

- INLINE ASM (LiveCGIT Dkan sol#31
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
AccessControl._setRoleAdmin(bytes32,bytes32) (LiveCGIToken.sol#492-496) is never used and should be removed
Address. functionCall{address,bytes) (LiveCGIToken.sol#244-246) ed and should be removed
Address. functionCall{address,bytes,string) (LiveCGIToken. sol#248- 254) 1is never used and should be removed
Address . functionCallwithvalue{address,bytes,uint256) (LiveCGIToken.sol#2 ») is never used and should be removed

fe
o

Address.functioncall{address,bytes,string) (LiveCGIT okan sol#248-254) 1is never used and should be removed

Address . fuhctlohcall“lth4&1u°' jjIQSS bytes,uint veCGIToken.sol#2 ver used and should be removed
Address . functionCallWithvalue(address,bytes,uint ._,Stllhgl [LiveCGIT Dkan sol#264)i er used and should be removed
Address.functionDelegateCal dress, bvtés- {LiveCGIToken.sol#292- 294 is never us*j and should be removed

Address . functionDelegateCall({address,bytes ,string) (LiveCGIT Dk s 6) ever used and should be removed
Address. functionStaticCall{address, bthS' (L .s] er used and should be removed

Address . functionStaticCall({address,bytes,string) { 2. #281-2908) is never used and should be removed
Address.sendValue{address ,uint256) (LiveCGIToken.sols 4" i d should be removed

Address. u_|1TvCa11Rnsu1tlbool bytes,string) (Live 5) is n used and should be removed
Context._msgData() (LiveCGIT Dkan sol¢441 423) is never USQj an

ERC1155Pausable. beforeTokenTransfer{address,address,address,uint256[],uint25 [] bytes) (LiveCGIToken.sol# 1841) is never
d and should be removed
ERC1155PresetMinterPauser._beforeTokenTransfer({address,address,address,uint256[],uint256[],bytes) (LiveCGIToken.sol#1131-1140)

never used and should be removed

ERC2981._deleteDefaultRoyalty() (LiveCGIToken.sol#665-607) is never used and should be removed
ERC2981._setDefaultRoyalty(address,uint96) (LiveCGIToken.sol#598-603) is never used and should be removed
EnumerableSet alues(EnumerableSet.Set) (LiveCGIToken.sol#59-61) is never used and should be removed
EnumerableSet.add(EnumerableSet.Bytes32Set,bytes32) (LiveCGIToken.sol#68-70) is never used and should be removed
EnumerableSet.add(EnumerableSet.UintSet,uint256) (Liv Token. #133-) is n r used and should be rem
EnumerableSet.at(EnumerableSet.Bytes325et,uint256) leeCGI_oken.sol#S4—36) is n r used and should be rem
EnumerableSet.at(EnumerableSet.UintSet,uint256) (LiveCGIToken.sol#149-151) Ve
EnumerableSet.contains(EnumerableSet.AddressSet,address) (LiveCGIToken.sol#10 is never used and should be remov
Enuwerable?et.contains[Enuwerable?et.BytesBZSet,byt9554w fL1 nCGI'Dkan sol+) r used and should be removed
EnumerableSet.contains {EnumerableSet.UintSet,uint256) is never used and should be removed
EnumerableSet.length{EnumerableSet.Bytes325et) (LiveCGIT Dkﬂn s0l#80-82) is n - used and should be removed
EnumerableSet.length(EnumerableSet.UintSet) (LiveCGIToken.sol#145-147) is n uSQj and should be removed
EnumerableSet.r {EnumerableSet.Bytes325et,bytes32) (LiveCGIToken.sol# used and should be removed
EnumerableSet.remove(EnumerableSet.UintSet,uint256) (LiveCGIToken.sol#137-13 aver used and should be removec
EnumerableSet lues(EnumerableSet.AddressSet) (CGIToken.sol#117-12 ver used and should be removed
EnumerableSet lues(EnumerableSet.Bytes325et) (LiveCGIToken.sol#88-90) N - used and should be removed
EnuwnrablnCAt ;alunstnuwnl blacnt.Lintcntn (Liwv nCGI'Dknn 501 1““ 1r is ne used and should be removed

ever used and should be removed

°t|1ngs tDHﬂfctllngIUIHt 5 (L iveCGIT DkQ .501+4 Elfl is never usnd ahd should be removed
Reference: https ffglthub CDWfCIvTICfsllthQIf\lklfDQTQCTDF Documentation#dead-code

INFO:Detectors:
Pragma version”8.8.0 (LiveCGIToken.sol#3) necessitates a version too recent to be trusted. Consider deploying with 8.6.12/8.7.
solc-0.8.0 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.sendValue(address,uint256) (LiveCGIToken.sol#237-
- (success) = recipient.call{value: amount}{) (L CGIToken.sol#240)
Low level call in Address.functionCallwithva luafajj|ess,bytes,uint ,s5tring) (LiveCGIToken.sol#264-
- (success,returndata) = target.call{value: value}(data) (LiveCGIToken.sol#273)
Low level call in Address.functionStaticCall{address,bytes,string) (LiveCGIToken.sol#281-290):
- (success,returndata) = target. StathCallldata' IL1 reCGIToken.sol#288)
Low level call in Address.functionDelegateCall{address,bytes,string) (LiveCGIToken.sol#296-305):
- (success,returndata) = target. jAIAgatacdllldatal IL1 reCGIToken.sol#303)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-le el-calls
INFO:Detectors:
Parameter ERC2981.royaltyInfo(uint256,uint256)._tokenId (LiveCGIToken.sol#576) is not in mixedCase
Parameter ERC2981.r valtthTD'Ulht 5, uin ._salePrice (L1iveCGIT Dkeh.SDlr TE} is not in mixedCase
parameter LiveCGIToken.addBlacklist(a d|955|. user (LiveCGIToken.sol#1167) is not in mixedCase
Parameter LiveCGIToken.remov ﬂBlaCkllSt'ajjIQSS'. user {LiveCGIToken.sol#1176) is not in mixedCase
Parameter LiveCGIToken.uri{uint2 ._id (LiveCGIToken.sol#l) is not in mixedCase
Parameter LiveCGIToken.setMessageProxy{address)._messageProxy (LiveCGIToken.sol#1221) is not in mixedCase
Parameter LiveCGIToken.setTargetChainHash(bytes32). targetChainHash (LiveCGIToken.sol#1228) is not in mixedCase
Parameter LiveCGIToken.setTargetContract(ress). targetContract (LiveCGIToken.sol#) is not in mixedCase

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ithe LK) ctor-
(25 contracts with

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

LiveCGIToken.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address.functionCallWithValue(address,bytes,uint256,string): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 264:4:

Low level calls:

Use of "delegatecall": should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.

more

Pos: 303:50:

Gas & Economy

Gas costs:

Gas requirement of function LiveCGlToken.postMessage is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1267:4:

Gas costs:

Gas requirement of function LiveCGlToken.supportsinterface is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1369:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 1331:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions:

MessageProxy.postOutgoingMessage(bytes32,address,bytes) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 1144:4:

Constant/View/Pure functions:

LiveCGIToken._beforeTokenTransfer(address,address,address,uint256[],uint256[],bytes) :
Potentially should be constant/view/pure but is not. Note: Modifiers are currently not considered

by this static analysis.

more
Pos: 1384:4:

Similar variable names:

LiveCGIToken._mint(address,uint256,uint256,bytes) : Variables have very similar names "to" and
"id". Note: Modifiers are currently not considered by this static analysis.
Pos: 1297:24:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 1395:8:

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
more

Pos: 621:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 589:32:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

LiveCGIToken.sol

LiveCGIToken. 23:18: : error: missing
LiveCGIToken. 3:22: : error: missing

LiveCGIToken. 1:18: : error: missing
LiveCGIToken. :846:22: : error: missing

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

