
Project: Charity Token
Website: charitytoken.online
Platform: Polygon Network
Language: Solidity
Date: June 14th, 2022

https://charitytoken.online

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Charity Token to perform the Security audit of the Charity
Token Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on June 14th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

Charity Token Pty Ltd is Independently owned and operated. Located in beautiful Australia,

they have the goal to bridge shortcomings of the Charity and Foreign Aid Sector by

streamlining the payments and grant facilitation process to create a "new standard" of

issuance. One that is transparent, accountable, public and efficient.

Charity Token, or “ChaT” for short, is a governance token that serves the following

purposes within the ecosystem:

● Allows transactions in conjunction with the smart contract.

● Provides governance on the Charity Token platform.

● Makes the “Charity for All” reward pool and reflection mechanism possible.

● ls will be ONLY currency accepted when paying for Charity Token NFTs and NF As.

● ANY smart contract can be programmed to utilize Charity token as the native

currency.

Audit scope

Name Code Review and Security Analysis Report for
Charity Token Protocol Smart Contracts

Platform Polygon / Solidity

File 1 CharityFactory.sol

File 1 MD5 Hash 3099B9672CE9AA7B80A348194BED7E65

Updated File 1 MD5 Hash 8A453937F660CB6EA89351A0CFC58F30

File 2 CharityToken.sol

File 2 MD5 Hash 5D5F79DDF49822D8185E22959CF00835

Updated File 2 MD5 Hash 1DF87B062F064B9DC94D05C0D6400851

Audit Date June 14th,2022

Revise Audit Date September 23rd,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 CharityToken.sol
● Name: CharityToken

● Symbol: CHAT

● Decimals: 18

● Maximum Transaction Amount: 1 Trillion

● Number Of Tokens To Exchange For Charity: 1

Million

● Total supply: 8100 million

YES, This is valid.

File 2 CharityFactory.sol
● CharityFactory has functions like:

createOrganization, allOrganizationsLength, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.
All the issues have been resolved / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Charity Token Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Charity Token Protocol.

The Charity Token team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are well commented on smart contracts. We suggest using Ethereum’s

NatSpec style for the commenting.

Documentation

We were given a Charity Token Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://charitytoken.online which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://charitytoken.online

AS-IS overview

CharityToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only

Owner
No Issue

5 transferOwnership write access only
Owner

No Issue

6 _transferOwnership internal Passed No Issue
7 lockTheSwap modifier Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue

10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 rate read Passed No Issue
13 balanceOf read Passed No Issue
14 transfer write Passed No Issue
15 allowance read Passed No Issue
16 approve write Passed No Issue
17 transferFrom write Passed No Issue
18 increaseAllowance write Passed No Issue
19 decreaseAllowance write Passed No Issue
20 isExcluded read Passed No Issue
21 totalFees read Passed No Issue
22 deliver write Passed No Issue
23 reflectionFromToken read Passed No Issue
24 tokenFromReflection read Passed No Issue
25 excludeAccount external access only

Owner
No Issue

26 includeAccount external access only
Owner

No Issue

27 removeAllFee write Passed No Issue
28 restoreAllFee write Passed No Issue
29 isExcludedFromFee read Passed No Issue
30 _approve write Passed No Issue
31 _transfer write Passed No Issue
32 swapTokensForEth write lockTheSwap No Issue
33 sendETHToCharity write charityFactory

variable check
Refer Audit

Findings

34 manualSwap external access only
Owner

No Issue

35 manualSend external access only
Owner

No Issue

36 burnTokens external access only
Owner

No Issue

37 _tokenTransfer write Passed No Issue
38 _transferStandard write Passed No Issue
39 _transferToExcluded write Passed No Issue
40 _transferFromExcluded write Passed No Issue
41 _transferBothExcluded write Passed No Issue
42 _takeCharity write Passed No Issue
43 _reflectFee write Passed No Issue
44 _getValues read Passed No Issue
45 _getTValues write Passed No Issue
46 _getRValues write Passed No Issue
47 _getRate read Passed No Issue
48 _getCurrentSupply read Passed No Issue
49 _getTaxFee read Passed No Issue
50 _getMaxTxAmount read Passed No Issue
51 _getETHBalance read Passed No Issue
52 _setTaxFee external access only

Owner
No Issue

53 _setCharityFee external access only
Owner

No Issue

54 _setCharityFactory external access only
Owner

No Issue

55 _setMaxTxAmount external access only
Owner

No Issue

56 _setUniswapV2Router external access only
Owner

No Issue

57 _setUniswapV2Pair external access only
Owner

No Issue

CharityFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Context_init internal access only

Initializing
No Issue

7 __Context_init_unchained internal access only
Initializing

No Issue

8 _msgSender internal Passed No Issue
9 _msgData internal Passed No Issue

10 __Ownable_init internal access only
Initializing

No Issue

11 __Ownable_init_unchaine
d

internal access only
Initializing

No Issue

12 onlyOwner modifier Passed No Issue
13 owner read Passed No Issue
14 _checkOwner internal Passed No Issue
15 renounceOwnership write access only

Owner
No Issue

16 transferOwnership write access only
Owner

No Issue

17 _transferOwnership internal Passed No Issue
18 validateSymbol modifier Passed No Issue
19 validateEthAmount modifier Passed No Issue
20 validateAmount modifier Passed No Issue
21 validateOrganization modifier Passed No Issue
22 initialize write Passed No Issue
23 createOrganization external access only

Owner
No Issue

24 allOrganizationsLength external Passed No Issue
25 donateTokens external totalEthDonations

not increased by
donateTokens

Refer Audit
Findings

26 _updateEthBalances internal Passed No Issue
27 _updateTokenBalances internal Passed No Issue
28 ethBalance external access only

Owner
No Issue

29 tokenBalance external access only
Owner

No Issue

30 withdrawEth external Passed No Issue
31 withdrawTokens external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) charityFactory variable check : CharityToken.sol

charityFactory variable is set to address(0) by default. sendETHToCharity function is used

to send contract balance to charityFactory without checking if it is set to some address or

not.

Resolution: We recommend that check the charityFactory variable inside the

sendETHToCharity method to ensure that the contract balance does not flow to the

address (0).

Status: Acknowledged.

(2) Unnecessary condition check: CharityToken.sol

In the transfer function, the else will execute the same functionality.

Resolution: We suggest removing extra else if to reduce the gas fee.

Status: Fixed

(3) totalEthDonations not increased by donateTokens: CharityFactory.sol

donateTokens is a payable function, but its msg.value is not added into totalEthDonations.

Hence the organizations won’t get distribution of the MATIC received by donateTokens.

Resolution: Confirm the logic.

Status: Acknowledged.

Very Low / Informational / Best practices:

(1) Unused events / variable / interface: CharityToken.sol

MinTokensBeforeSwapUpdated, SwapEnabledUpdated events are defined but not used in
code.

swapEnabled variable has been defined and used but it does not change to true ever.

So the use of this variable is meaningless.

IUniswapV2Router02.sol contains IUniswapV2Router01.sol. So no need to import that file
in CharityToken.sol.

Resolution: We suggest either removing all these unused variables and events or use

them in code.

Status: Fixed

(2) Empty function: CharityToken.sol

burnTokens function has been defined with empty code.

Resolution: We suggest either removing the empty function.

Status: Fixed

(3) All functions which are not called internally, must be declared as external. It is more

efficient as sometimes it saves some gas.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Status: Fixed

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices
https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● createOrganization: CharityFactory owners can create new organizations.

● _setUniswapV2Pair: CharityToken owners can set uniswapV2PairAddress.

● _setUniswapV2Router: CharityToken owners can set uniswapV2RouterAddress.

● _setMaxTxAmount: CharityToken owners can set max transaction amount.

● _setCharityFactory: CharityToken owners can set charityFactoryAddress.

● _setCharityFee: CharityToken owners can set charity fees.

● _setTaxFee: CharityToken owners can set tax fees.

● manualSend: CharityToken owners can send manual tokens.

● manualSwap: CharityToken owners can manual swap and send tokens.

● includeAccount: CharityToken owners can include accounts.

● excludeAccount: CharityToken owners can exclude accounts.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Charity Token Protocol

CharityFactory Diagram

CharityToken Diagram

Slither Results Log

Slither log >> CharityFactory.sol

Slither log >> CharityToken.sol

Solidity Static Analysis

CharityFactory.sol

CharityToken.sol

Solhint Linter

CharityFactory.sol

CharityFactory.sol:67:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:80:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:92:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:109:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:121:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:217:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:240:18: Error: Parse error: missing ';' at '{'
CharityFactory.sol:266:18: Error: Parse error: missing ';' at '{'

CharityToken.sol

CharityToken.sol:569:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:582:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:594:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:611:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:623:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:719:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:742:18: Error: Parse error: missing ';' at '{'
CharityToken.sol:768:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

