
Project: Eyeverse
Website: https://eyeverse.world
Platform: Ethereum
Language: Solidity
Date: January 13th, 2023

https://eyeverse.world

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………. 6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Eyeverse to perform the Security audit of the Eyeverse
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on January 13th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Eyeverse: A world of darkness and little light, a world of mystery and many realms

that fight. Where the Eye Kings are superior beings with roundtables of Eye Lords.

Eye Lords that lead armies of Night Watchers and Day Watchers ruling all The

Watched.

● Eyeverse Contract is an NFT smart contract, having functions like burn, mint,

stake, unStake, claim, etc.

Audit scope

Name Code Review and Security Analysis Report for
Eyeverse System Smart Contracts

Platform Ethereum / Solidity

File 1 EyeVerseWrap.sol

File 1 MD5 Hash B2DEEB2B298EC0BA0BF5E3B84CD056F6

File 2 NFTStaker.sol

File 2 MD5 Hash D2CF4E659F6BA6AF75F80472FCDA464E

Audit Date January 13th, 2023

https://goerli.etherscan.io/address/0x675db9248A462CE3481a9708B0C63E01A7959260#code
https://goerli.etherscan.io/address/0xf58277E944930EeD2D5eF6494B36FC7ECaf3E29f#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 EyeVerseWrap.sol
● Name: EyeVerseWrap

● Symbol: EVW

Ownership Control:
● Owner can set a new baseURI.

● Owner can set a new extension.

Allowed Operator Control:
● Operator can set an approval for all addresses.

● Operator can approve all operator addresses.

● Operator can transfer a token from sender address to

receiver address.

YES, This is valid.

File 2 NFTStaker.sol
● Rewards Per Day: 0.000000000000000003 GS

● Minimum Lock Time: 1 day

Ownership Control:
● Only the NFT owner can lock tokens.

● Only staker can release tokens.

● Owner can set a new reward Per day.

● Owner can set a minimum lock time.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Eyeverse Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Eyeverse Protocol.

The Eyeverse team has not provided unit test scripts, which would not help to determine

the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given an Eyeverse smart contract code in the form of a goerli.etherscan.io link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://eyeverse.world which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://eyeverse.world

AS-IS overview

EyeVerseWrap.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 supportsInterface read Passed No Issue
9 tokenOfOwnerByIndex read Passed No Issue

10 totalSupply read Passed No Issue
11 tokenByIndex read Passed No Issue
12 _beforeTokenTransfer internal Passed No Issue
13 _addTokenToOwnerEnumeration write Passed No Issue
14 _addTokenToAllTokensEnumerati

on
write Passed No Issue

15 _removeTokenFromOwnerEnum
eration

write Passed No Issue

16 _removeTokenFromAllTokensEn
umeration

write Passed No Issue

17 checkOwnerShipOld modifier Passed No Issue
18 checkOwnerShipNew modifier Passed No Issue
19 singleMintWrap write check OwnerShip

Old
No Issue

20 multiplrMintWrap write Infinite loops
possibility

Refer Audit
Findings

21 singleUnwrap write check OwnerShip
New

No Issue

22 multiplrUnWrap write Infinite loops
possibility

Refer Audit
Findings

23 _beforeTokenTransfer internal Passed No Issue
24 supportsInterface read Passed No Issue
25 setBaseURI write access only Owner No Issue
26 setBaseExtension write access only Owner No Issue
27 tokenURI read Passed No Issue
28 setApprovalForAll write access only Allowed

Operator Approval
No Issue

29 approve write access only Allowed
Operator Approval

No Issue

30 transferFrom write access only Allowed
Operator Approval

No Issue

31 safeTransferFrom write access only Allowed
Operator Approval

No Issue

32 safeTransferFrom write Passed No Issue
33 onlyAllowedOperator modifier Passed No Issue
34 onlyAllowedOperatorApproval modifier Passed No Issue
35 _checkFilterOperator internal Passed No Issue

NFTStaker.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 setMinimumLockTime external access only Owner No Issue
9 stake write Infinite loops

possibility
Refer Audit

Findings
10 multipleStake write Passed No Issue
11 unStake write Infinite loops

possibility
Refer Audit

Findings
12 multipleUnStake write Passed No Issue
13 calculateDays read Passed No Issue
14 getReward read Passed No Issue
15 setRewardPerDay external access only Owner No Issue
16 claim write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) Infinite loops possibility:

EyeVerseWrap.sol

NFTStaker.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

EyeVerseWrap.sol

● multiplrMintWrap() - tokenId.length.

● multiplrUnWrap() - tokenId.length.

NFTStaker.sol

● multipleStake() - tokenId.length.

● multipleUnStake() - tokenId.length.

Resolution: Adjust logic to replace loops with mapping or other code structure.

Very Low / Informational / Best practices:

(1) Spelling mistake: NFTStaker.sol

Spelling mistake in constructor comments.

“CHNGE” word should be “CHANGE”.

Resolution: Correct the spelling.

(2) Immutable variables:

Some variables are set only in the constructor and then remain unchanged. So those can

be defined as immutable.

Variables are:

NFTStaker.sol

● rewardToken
● nftToken

EyeVerseWrap.sol

● oldContract

Resolution: We suggest defining these variables as immutable.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

EyeVerseWrap.sol

● singleMintWrap: Old NFT token owner can wrap new token.

● singleUnwrap: New NFT token owner can unwrap old token.

● setBaseURI: EyeVerseWrap owner can set a new base URI.

● setBaseExtension: EyeVerseWrap owner can set a new base extension.

● setApprovalForAll: EyeVerseWrap Operator can set an approval for all addresses.

NFTStaker.sol

● setRewardPerDay: NFTStaker owner can set rewards per day.

● setMinimumLockTime: NFTStaker owner can set minimum lock time for unstake.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a goerli.etherscan.io link. And we have used

all possible tests based on given objects as files. We have not observed any major issue in

the smart contracts. So smart contracts are good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Eyeverse Protocol

EyeVerseWrap Diagram

NFTStaker Diagram

Slither Results Log
Slither Log >> EyeVerseWrap.sol

Slither Log >> NFTStaker.sol

Solidity Static Analysis
EyeVerseWrap.sol

NFTStaker.sol

Solhint Linter

EyeVerseWrap.sol

EyeVerseWrap.sol:1280:18: Error: Parse error: missing ';' at '{'
EyeVerseWrap.sol:1302:18: Error: Parse error: missing ';' at '{'
EyeVerseWrap.sol:1308:69: Error: Parse error: mismatched input '('
expecting {';', '='}
EyeVerseWrap.sol:1334:106: Error: Parse error: mismatched input '('
expecting {';', '='}
EyeVerseWrap.sol:1345:18: Error: Parse error: missing ';' at '{'
EyeVerseWrap.sol:1363:48: Error: Parse error: mismatched input ';'
expecting '('
EyeVerseWrap.sol:1366:18: Error: Parse error: missing ';' at '{'
EyeVerseWrap.sol:1374:67: Error: Parse error: mismatched input '('
expecting {';', '='}

NFTStaker.sol

NFTStaker.sol:245:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:265:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:637:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:657:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:681:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:898:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:917:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:933:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:948:18: Error: Parse error: missing ';' at '{'
NFTStaker.sol:978:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

