
Project: Forest Financial
Website: forest.financial
Platform: Avalanche Network
Language: Solidity
Date: July 12th, 2022

https://forest.financial

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….11

Technical Quick Stats …..……………………………………………………………………… 12

Code Quality ……………………………………………………………………………………. 13

Documentation ………………………………………………………………………………….. 13

Use of Dependencies …………………………………………………………………………… 13

AS-IS overview ………………………………………………………………………………….. 15

Severity Definitions ……………………………………………………………………………... 25

Audit Findings …………………………………………………………………………………… 26

Conclusion ………………………………………………………………………………………. 33

Our Methodology ………………………………………………………………………………... 34

Disclaimers ………………………………………………………………………………………. 36

Appendix

● Code Flow Diagram ……………………………………………………………………... 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Forest Financial to perform the Security audit of the
Forest Financial Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on July 12th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Forest Financial Protocol is a DaaS (DeFi as a Service) project which has functions

like receive, init, pause, unpause, burn, burnFrom, mint, etc.

● The Forest Financial contract inherits the Ownable, SafeMath, ERC721,

ERC721Enumerable, Pausable, Counters, ERC20, ERC20Burnable, Context,

ReentrancyGuard, Strings standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Forest Financial Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 Diamond.sol

File 1 MD5 Hash 3CAF206EA628FB54D6314513F117B80F

File 2 DiamondInit.sol

File 2 MD5 Hash 35E9532EF83D55D88154991AC26EA3E2

File 3 ForesterNFT.sol

File 3 MD5 Hash 307F8E342D7CAE07B459A73A0CCEE4E1

https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/Diamond.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/DiamondInit.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/ForesterNFT.sol

File 4 ForestToken.sol

File 4 MD5 Hash 4B88D9ACAA2369C47318EC525ADCABA3

File 5 RootsToken.sol

File 5 MD5 Hash B482D48733D34A12FB69C8E21E125633

File 6 DiamondCutFacet.sol

File 6 MD5 Hash 85257B2135726FDF21CD081C6054FAD9

File 7 DiamondLoupeFacet.sol

File 7 MD5 Hash C2A289958965B0DF4044CB2E8599EB54

File 8 OwnershipFacet.sol

File 8 MD5 Hash 7685EDBAD7E79C1EF5311A55916ADD06

File 9 CoreNFTManageFacet.sol

File 9 MD5 Hash 26DF920E00CFD7F06355DF15A83EBAF5

File 10 HeadquarterManageFacet.sol

File 10 MD5 Hash D875802A43BD3F3C05EB5EF5E3405CDE

File 11 ManagerFacet.sol

File 11 MD5 Hash 6946395A44F49B0CDF20E90038F0D099

File 12 ProtocolDataManageFacet.sol

File 12 MD5 Hash C35D12327EA5CACAC2D1100D600C01E1

Updated File 12 MD5 Hash 247C1E031C72B7F53FF96A825ABB6F95

File 13 RootsManageFacet.sol

File 13 MD5 Hash C4AE5DC44A6ED661522BA47040C34336

Updated File 13 MD5 Hash F843922A3E97273468DB6BE5B68BB258

File 14 YieldTreeManageFacet.sol

File 14 MD5 Hash 11F4604C2C4CB4223C0925319D60B3DC

Updated File 14 MD5 Hash C500A3325BD62DB977CFDFB5BEC0DACF

File 15 CoreNFTFacet.sol

File 15 MD5 Hash 96CC216CE9A88D64C8A36905D2A427E4

https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/ForestToken.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/RootsToken.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/DiamondCutFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/DiamondLoupeFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/OwnershipFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Manager/CoreNFTManageFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Manager/HeadquarterManageFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Manager/ManagerFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Manager/ProtocolDataManageFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Manager/RootsManageFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Manager/YieldTreeManageFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/NFT/CoreNFTFacet.sol

File 16 RootsMainFacet.sol

File 16 MD5 Hash A01F77FF48C133A7924ADFE9B3E63366

Updated File 16 MD5 Hash FCE4B78C7B2EC603E123053C98E5804D

File 17 HeadquarterMainFacet.sol

File 17 MD5 Hash F7FDD622F09BDBA3E8A130ACE8DBB1A0

Updated File 17 MD5 Hash E413C0DB6D3B67DAC39388A4A367A1E4

File 18 PresaleFacet.sol

File 18 MD5 Hash E2DD4B139B331B58A0BDCB6DF5A820AB

Updated File 18 MD5 Hash 731F5A91A1CB0F851A1CA77175997456

File 19 YieldTreeClaimFacet.sol

File 19 MD5 Hash B831F09A07A87DCD38804B15358B8EC4

Updated File 19 MD5 Hash 28C15A609756F1231ED21B38C2DC23B7

File 20 YieldTreeFeeFacet.sol

File 20 MD5 Hash e6ade528fd36d6c1a66eeac27851d759

Updated File 20 MD5 Hash D21C63623842D445759BB4C56069F2D1

File 21 YieldTreeMainFacet.sol

File 21 MD5 Hash CFD5D813CC57F4FEEC130DFE6DE2BD26

Updated File 21 MD5 Hash CF9071CACFF351854BDE4B7BC8E79517

File 22 SellTax.sol

File 22 MD5 Hash DDF13A61F9363EE887F5D0C050B5B2C4

File 23 YieldTreeCompoundFacet.sol

File 23 MD5 Hash AE89ED472E6B93F9BCE66156C3B4F8BB

File 24 YieldTreeGetterFacet.sol

File 24 MD5 Hash 07F7CAE9B80C30373207487B02AF61E4

Audit Date July 12th,2022

https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/Roots/RootsMainFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/HeadquarterMainFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/PresaleFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/YieldTreeClaimFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/YieldTreeFeeFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/YieldTreeMainFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/implementations/SellTax.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/YieldTreeCompoundFacet.sol
https://github.com/ForestFinancial/ForestFinancialContracts/blob/main/contracts/facets/YieldTrees/YieldTreeGetterFacet.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Diamond.sol
● Diamond has functions like: fallback, etc.

YES, This is valid.

File 2 DiamondInit.sol
● DiamondInit has functions like: init.

YES, This is valid.

File 3 ForesterNFT.sol
● Name: Forester NFT

● Symbol: FORESTER

● ForesterNFT owners can add a new variant and

remove variant.

YES, This is valid.

File 4 ForestToken.sol
● Name: Forest Token

● Symbol: FOREST

● ForestToken owners can set tax requirements.

YES, This is valid.

File 5 RootsToken.sol
● Name: Roots Token

● Symbol: ROOTS

YES, This is valid.

File 6 DiamondCutFacet.sol
● DiamondCutFacet has functions like: diamondCut.

YES, This is valid.

File 7 DiamondLoupeFacet.sol
● Diamond Loupe Functions like: facets,

facetFunctionSelectors, etc.

YES, This is valid.

File 8 CoreNFTFacet.sol
● CoreNFTFacet has functions like: attaching a

CoreNFT to a YieldTree.

YES, This is valid.

File 9 HeadquarterManageFacet.sol YES, This is valid.

● HeadquarterManageFacet can set maximum

balance and maximum level balance.

File 10 OwnershipFacet.sol
● OwnershipFacet can transfer new Ownership.

YES, This is valid.

File 11 PresaleFacet.sol
● PresaleFacet has functions like: redeemPresale,

etc.

● PresaleFacet can redeem the caller of his Presale

items.

YES, This is valid.

File 12 RootsManageFacet.sol
● RootsManageFacet has functions like:

setRootsGrowthFactorCap, etc.

YES, This is valid.

File 13 CoreNFTManageFacet.sol
● CoreNFTManageFacet owner can set seed

NFTBoost value.

● CoreNFTManageFacet owner can set sapling NFT

Boost.

YES, This is valid.

File 14 HeadquarterMainFacet.sol
● HeadquarterMainFacet can minting a new

Headquarter.

● HeadquarterMainFacet can upgrade an existing

Headquarter.

YES, This is valid.

File 15 ManagerFacet.sol
● ManagerFacet owner can set gifting a YieldTree to

give address.

YES, This is valid.

File 16 ProtocolDataManageFacet.sol
● ProtocolDataManageFacet owner can set treasury

address, RewardPool address, ForestToken

address, etc.

YES, This is valid.

File 17 RootsMainFacet.sol
● RootsMainFacet owner can swap Forest to Roots

tokens and swapping Roots to Forest tokens.

YES, This is valid.

File 18 YieldTreeManageFacet.sol
● YieldTreeManageFacet owner can initialize yield

tree values.

● YieldTreeManageFacet owner can set forest price,

percentage in ether value, etc.

YES, This is valid.

File 19 YieldTreeClaimFacet.sol
● YieldTreeClaimFacet owner can claim rewards of

specific YieldTree.

YES, This is valid.

File 20 YieldTreeMainFacet.sol
● YieldTreeMainFacet can distribute the payment of

a YieldTree.

● YieldTreeMainFacet can minting a YieldTree.

YES, This is valid.

File 21 YieldTreeFeeFacet.sol
● YieldTreeFeeFacet owner can distribute the fee

payment.

● YieldTreeFeeFacet owner can pay fees of a

YieldTree.

YES, This is valid.

File 22 SellTax.sol
● The SellTax owner can set the tax percentage.

● The SellTax owner can set the address where the

tax funds will go to.

● SellTax owners can update or set an address in

the taxAddresses mapping. If set to true, tax has

to be paid if sent to that address.

YES, This is valid.

File 23 YieldTreeCompoundFacet.sol
● YieldTreeCompoundFacet can compound rewards

into a new YieldTree.

YES, This is valid.

File 24 YieldTreeGetterFacet.sol
● YieldTreeGetterFacet can return the total amount

of YieldTrees in existence.

● YieldTreeGetterFacet can return the total price in

Forest to buy YieldTree.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 24 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Forest Financial Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Forest Financial Protocol.

The Forest Financial team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Forest Financial Protocol smart contract code in the form of a Github

weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website links:

● Main Website: https://forest.financial

● NFTs Website: https://nft.forest.financial

● Presale Website: https://presale.forest.financial

which provided rich information about the project architecture.

https://forest.financial
https://nft.forest.financial
https://presale.forest.financial

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Diamond.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 fallback external Passed No Issue
3 receive external Passed No Issue

DiamondInit.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 init external Passed No Issue

ForesterNFT.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 whenNotPaused modifier Passed No Issue
3 whenPaused modifier Passed No Issue
4 paused read Passed No Issue
5 _requireNotPaused internal Passed No Issue
6 _requirePaused internal Passed No Issue
7 _pause internal Passed No Issue
8 _unpause internal Passed No Issue
9 onlyOwner modifier Passed No Issue
10 owner read Passed No Issue
11 _checkOwner internal Passed No Issue
12 renounceOwnership write access only Owner No Issue
13 transferOwnership write access only Owner No Issue
14 _transferOwnership internal Passed No Issue
15 supportsInterface read Passed No Issue
16 balanceOf read Passed No Issue
17 ownerOf read Passed No Issue
18 name read Passed No Issue
19 symbol read Passed No Issue
20 tokenURI read Passed No Issue
21 _baseURI internal Passed No Issue
22 approve write Passed No Issue

23 getApproved read Passed No Issue
24 setApprovalForAll write Passed No Issue
25 isApprovedForAll read Passed No Issue
26 transferFrom write Passed No Issue
27 safeTransferFrom write Passed No Issue
28 safeTransferFrom write Passed No Issue
29 _safeTransfer internal Passed No Issue
30 _exists internal Passed No Issue
31 _isApprovedOrOwner internal Passed No Issue
32 _safeMint internal Passed No Issue
33 _safeMint internal Passed No Issue
34 _mint internal Passed No Issue
35 _burn internal Passed No Issue
36 _transfer internal Passed No Issue
37 _approve internal Passed No Issue
38 _setApprovalForAll internal Passed No Issue
39 _requireMinted internal Passed No Issue
40 _checkOnERC721Receiv

ed
write Passed No Issue

41 _beforeTokenTransfer internal Passed No Issue
42 _afterTokenTransfer internal Passed No Issue
43 supportsInterface read Passed No Issue
44 tokenOfOwnerByIndex read Passed No Issue
45 totalSupply read Passed No Issue
46 tokenByIndex read Passed No Issue
47 _beforeTokenTransfer internal Passed No Issue
48 _addTokenToOwnerEnu

meration
write Passed No Issue

49 _addTokenToAllTokensEn
umeration

write Passed No Issue

50 _removeTokenFromOwn
erEnumeration

write Passed No Issue

51 _removeTokenFromAllTo
kensEnumeration

write Passed No Issue

52 _mint internal Passed No Issue
53 tokenURI read Passed No Issue
54 random internal Passed No Issue
55 getURIVariant internal Passed No Issue
56 addVariant write access only Owner No Issue
57 removeVariant write access only Owner No Issue
58 pause write access only Owner No Issue
59 unpause write access only Owner No Issue
60 _beforeTokenTransfer internal Passed No Issue
61 supportsInterface read Passed No Issue
62 safeMint write access only Owner No Issue

ForestToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 tokenURI read Passed No Issue
11 _baseURI internal Passed No Issue
12 approve write Passed No Issue
13 getApproved read Passed No Issue
14 setApprovalForAll write Passed No Issue
15 isApprovedForAll read Passed No Issue
16 transferFrom write Passed No Issue
17 safeTransferFrom write Passed No Issue
18 safeTransferFrom write Passed No Issue
19 _safeTransfer internal Passed No Issue
20 _exists internal Passed No Issue
21 _isApprovedOrOwner internal Passed No Issue
22 _safeMint internal Passed No Issue
23 _safeMint internal Passed No Issue
24 _mint internal Passed No Issue
25 _burn internal Passed No Issue
26 _transfer internal Passed No Issue
27 _approve internal Passed No Issue
28 _setApprovalForAll internal Passed No Issue
29 _requireMinted internal Passed No Issue
30 _checkOnERC721Receiv

ed
write Passed No Issue

31 _beforeTokenTransfer internal Passed No Issue
32 _afterTokenTransfer internal Passed No Issue
33 setTaxPercentage external access only Owner No Issue
34 setTaxAddress external access only Owner No Issue
35 setExcludedAddress external access only Owner No Issue
36 calculateTaxAmount read Passed No Issue
37 requiresTax read Passed No Issue
38 burn write Passed No Issue
39 burnFrom write Passed No Issue
40 setTaxRequirement external access only Owner No Issue
41 transferFrom write Passed No Issue
42 transfer write Passed No Issue

RootsToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 name read Passed No Issue
11 symbol read Passed No Issue
12 tokenURI read Passed No Issue
13 _baseURI internal Passed No Issue
14 approve write Passed No Issue
15 getApproved read Passed No Issue
16 setApprovalForAll write Passed No Issue
17 isApprovedForAll read Passed No Issue
18 transferFrom write Passed No Issue
19 safeTransferFrom write Passed No Issue
20 safeTransferFrom write Passed No Issue
21 _safeTransfer internal Passed No Issue
22 _exists internal Passed No Issue
23 _isApprovedOrOwner internal Passed No Issue
24 _safeMint internal Passed No Issue
25 _safeMint internal Passed No Issue
26 _mint internal Passed No Issue
27 _burn internal Passed No Issue
28 _transfer internal Passed No Issue
29 _approve internal Passed No Issue
30 _setApprovalForAll internal Passed No Issue
31 _requireMinted internal Passed No Issue
32 _checkOnERC721Receiv

ed
write Passed No Issue

33 _beforeTokenTransfer internal Passed No Issue
34 _afterTokenTransfer internal Passed No Issue
35 mint write access only Owner No Issue

DiamondCutFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 diamondCut external Passed No Issue

DiamondLoupeFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 facets external Passed No Issue
3 facetFunctionSelectors external Passed No Issue
4 facetAddresses external Passed No Issue
5 facetAddress external Passed No Issue
6 supportsInterface external Passed No Issue

CoreNFTManageFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 initCoreNFT external access only Owner No Issue
4 setSeedNFTBoost external access only Owner No Issue
5 setTreeNFTBoost external access only Owner No Issue
6 setSaplingNFTBoost external access only Owner No Issue
7 setPeltonNFTBoost external access only Owner No Issue

HeadquarterManageFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 initHeadquarters external access only Owner No Issue
4 setHeadquartersMaxBalance external access only Owner No Issue
5 setHeadquartersMaxLevel external access only Owner No Issue
6 setHeadquartersMaxYieldTre

esPerLevel
external access only Owner No Issue

7 setHeadquartersForestPrice external access only Owner No Issue

OwnershipFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 transferOwnership external Passed No Issue
3 owner external Passed No Issue

PresaleFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 notBlacklisted modifier Passed No Issue
3 redeemPresale write Passed No Issue
4 hasRedeemedPresale read Passed No Issue

RootsManageFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 initRoots external Discount limit not set Refer Audit

Findings
4 setRootsGrowthFactorCap external access only Owner No Issue
5 setRootsMaxDiscount external Discount limit not set Refer Audit

Findings

CoreNFTFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 ownsYieldTree modifier Passed No Issue
3 notBlacklisted modifier Passed No Issue
4 coreNFTOwnerCheck internal Passed No Issue
5 attachCoreNFT write access by owner of

Yield Tree
No Issue

6 detachForesterNFT write access by owner of
Yield Tree

No Issue

7 doesYieldTreeHaveCore
NFTAttached

internal Passed No Issue

8 isCoreNFTActive internal Passed No Issue
9 getCoreNFT read Passed No Issue
10 getCoreNFTBoost read Passed No Issue

HeadquarterMainFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 notBlacklisted modifier Passed No Issue
4 doesNotExceedMaxBalance modifier Passed No Issue
5 ownsHeadquarter modifier Passed No Issue
6 isUpgradeable modifier Passed No Issue
7 mintHeadquarter write Passed No Issue
8 upgradeHeadquarter write Passed No Issue
9 getHeadquarterForestPrice read Passed No Issue
10 getMaxYieldTreeCapacityOf read Passed No Issue
11 getHeadquarterBalance read Passed No Issue
12 getHeadquartersOf read Passed No Issue
13 getHeadquarter read Passed No Issue
14 getTotalHeadquarters read Passed No Issue

ManagerFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 hasSpaceForYieldTree modifier Passed No Issue
4 giftYieldTree external access only Owner No Issue
5 addAdmin external access only Owner No Issue
6 removeAdmin external access only Owner No Issue
7 onlyOwnerOrAdmin modifier Passed No Issue

ProtocolDataManageFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 initProtocolMetaData external access only Owner No Issue

4 setTreasury external access only Owner No Issue
5 setRewardPool external access only Owner No Issue
6 setForestToken external access only Owner No Issue
7 setRootsToken external access only Owner No Issue
8 setStableToken external access only Owner No Issue
9 setForesterNFT external access only Owner No Issue
10 setJoeRouter external access only Owner No Issue
11 setJoeFactory external access only Owner No Issue
12 setJoePair external access only Owner No Issue
13 setPriceFeed external access only Owner No Issue
14 initProcotolMetaData2 external access only Owner No Issue

RootsMainFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 notBlacklisted modifier Passed No Issue
3 swapForestToRoots write Passed No Issue
4 swapRootsToForest write Passed No Issue
5 getRootsBackingPrice read Passed No Issue
6 getRootsBuyPrice read Passed No Issue
7 getRootsSellPrice read Passed No Issue
8 getRootsTreasuryBalance read Passed No Issue
9 getRootsSupply read Passed No Issue

YieldTreeManageFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 initYieldTrees external access only Owner No Issue
4 setYieldTreesForestPrice external Fee and Percentage

limit not set
Refer Audit

Findings
5 setYieldTreesPercentageIn

Ether
external Fee and Percentage

limit not set
Refer Audit

Findings
6 setYieldTreesBaseRewards external access only Owner No Issue
7 setYieldTreesDecayAfter external access only Owner No Issue
8 setYieldTreesDecayTo external access only Owner No Issue
9 setYieldTreesDecayPerDay external access only Owner No Issue
10 setYieldTreesForestLiquidity

Percentage
external Fee and Percentage

limit not set
Refer Audit

Findings
11 setYieldTreesForestReward

PoolPercentage
external Fee and Percentage

limit not set
Refer Audit

Findings

12 setYieldTreesForestTreasur
yPercentage

external Fee and Percentage
limit not set

Refer Audit
Findings

13 setYieldTreesEtherLiquidity
Percentage

external Fee and Percentage
limit not set

Refer Audit
Findings

14 setYieldTreesEtherRewardP
ercentage

external Fee and Percentage
limit not set

Refer Audit
Findings

15 setYieldTreesEtherTreasury
Percentage

external Fee and Percentage
limit not set

Refer Audit
Findings

16 setYieldTreesForestFeePer
Month

external Fee and Percentage
limit not set

Refer Audit
Findings

17 setYieldTreesForestFeePer
Month

external Fee and Percentage
limit not set

Refer Audit
Findings

18 initYieldTreesPaymentDistri
bution

external access only Owner No Issue

YieldTreeClaimFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 notBlacklisted modifier Passed No Issue
3 ownsYieldTree modifier Passed No Issue
4 hasSpaceForYieldTree modifier Passed No Issue
5 claimRewardsOfYieldTree write Passed No Issue
6 claimRewardsOfAllYieldTre

es
write Passed No Issue

7 getYieldTreeRewards read Passed No Issue
8 getTotalYieldTreeRewards read Passed No Issue

YieldTreeMainFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 notBlacklisted modifier Passed No Issue
3 ownsHeadquarter modifier Passed No Issue
4 ownsYieldTree modifier Passed No Issue
5 distributeYieldTreePayment internal Passed No Issue
6 mintYieldTree write access by owns

Head quarter
No Issue

7 getTotalYieldTrees read Passed No Issue
8 getYieldTreeForestPrice read Passed No Issue
9 getYieldTreeEtherPrice read Passed No Issue
10 getYieldTreeBalance read Passed No Issue
11 getYieldTreesOf read Passed No Issue

12 getYieldTree read Passed No Issue
13 headquarterNotOnMaxCap

acity
modifier Passed No Issue

YieldTreeFeeFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 notBlacklisted modifier Passed No Issue
3 ownsYieldTree modifier Passed No Issue
4 payYieldTreeFee write Passed No Issue
5 payAllYieldTreeFees write Passed No Issue
6 getRemainingHoursUntilF

eeExpiry
read Passed No Issue

7 distributeYieldTreeFeePa
yment

internal Passed No Issue

SellTax.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 setTaxPercentage external access only Owner No Issue
9 setTaxAddress external access only Owner No Issue
10 setExcludedAddress external access only Owner No Issue
11 calculateTaxAmount read Passed No Issue
12 requiresTax read Passed No Issue
13 setTaxReceiver external access only Owner No Issue

YieldTreeCompoundFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 notBlacklisted modifier Passed No Issue
3 hasSpaceForYieldTree modifier Passed No Issue

4 distributeYieldTreeCompoun
dPayment

internal Passed No Issue

5 compoundRewardsIntoYield
Tree

write Passed No Issue

YieldTreeGetterFacet.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getTotalYieldTrees read Passed No Issue
3 getYieldTreeFullForestPrice read Passed No Issue
4 getYieldTreeForestPrice read Passed No Issue
5 getYieldTreeEtherPrice read Passed No Issue
6 getYieldTreeBalance read Passed No Issue
7 getYieldTreesOf read Passed No Issue
8 getYieldTree read Passed No Issue
9 getYieldTreeRewards read Passed No Issue
10 getTotalYieldTreeRewards read Passed No Issue
11 getRemainingHoursUntilFe

eExpiry
read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for:

YieldTreeClaimFacet.sol

● claimRewardsOfYieldTree

● claimRewardsOfAllYieldTrees

YieldTreeFeeFacet.sol

● payAllYieldTreeFees

● payYieldTreeFee

Resolution: Write an event log for listed events.

Status: Fixed

Very Low / Informational / Best practices:

(1) Discount limit not set:- RootsManageFacet.sol

In initRoots, setRootsMaxDiscount functions, the Owner can set the individual discount to

any variable. This might deter investors as they could be wary that the discount might one

day be set to any max number to force transfers to go to the contract owner.

Resolution: Consider adding an explicit limit to the maxdiscount adjustment function.

Status: Fixed

(2) Fee and Percentage limit not set:- YieldTreeManageFacet.sol

In the below functions the Owner can set the individual discount to any variable. This might

deter investors as they could be wary that the discount might one day be set to any max

number to force transfers to go to the contract owner:

● setYieldTreesForestPrice

● setYieldTreesForestFeePerMonth

● setYieldTreesPercentageInEther

● setYieldTreesForestLiquidityPercentage

● setYieldTreesForestRewardPoolPercentage

● setYieldTreesForestTreasuryPercentage

● setYieldTreesEtherLiquidityPercentage

● setYieldTreesEtherRewardPercentage

● setYieldTreesEtherTreasuryPercentage

● setYieldTreesFeeTreasuryPercentage

● setYieldTreesFeeCharityPercentage

Resolution: Consider adding an explicit limit to the maxdiscount adjustment function.

Status: Acknowledged.

(3) Same Contract Names:- YieldTreeManageFacet.sol

YieldTreeManageFacet.sol and ProtocolDataManageFacet.sol files have the same

contract names.

Resolution: We suggest changing the contract names.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● claimRewardsOfYieldTree: YieldTreeClaimFacet owner can claim rewards of yield

tree.

● mintYieldTree: YieldTreeMainFacet owner can mint yield tree token.

● payYieldTreeFee: YieldTreeFeeFacet owner can pay yield tree fees.

● setTaxPercentage: SellTax owner can set the tax percentage.

● setTaxReceiver: SellTax owner can set receiver tax.

● setTaxAddress: SellTax owner can update or set an address in the taxAddresses

mapping.

● setExcludedAddress: SellTax owner can update or set an excluded address.

● setTaxReceiver: SellTax owner can set the address where the tax funds will go to.

● addVariant: The ForesterNFT owner can add a new variant value.

● removeVariant: ForesterNFT owner can remove variant value.

● safeMint: ForesterNFT owner can safely mint a token.

● pause: ForesterNFT owner can trigger stopped state.

● unpause: ForesterNFT owner can return to normal state.

● setTaxRequirement: ForestToken owner can set tax requirement status.

● mint: RootsToken owner can mint a token from the address.

● attachCoreNFT: CoreNFTFacet owner can attach a CoreNFT to a YieldTree.

● detachForesterNFT: The ForesterNFTFacet owner can detach a Forester NFT from

a YieldTree.

● upgradeHeadquarter: HeadquarterMainFacet owner can upgrade headquarter

value.

● initCoreNFT: CoreNFTManageFacet owner can initialize core NFT.

● setSeedNFTBoost: CoreNFTManageFacet owner can set seed NFT Boost value.

● setSaplingNFTBoost: CoreNFTManageFacet owner can set sapling NFT Boost

value.

● setTreeNFTBoost: CoreNFTManageFacet owner can set tree NFT Boost value.

● setPeltonNFTBoost: CoreNFTManageFacet owner can set pelton NFT boost value.

● initHeadquarters: HeadquarterManageFacet owner can initialize headquarters.

● setHeadquartersMaxBalance: HeadquarterManageFacet owner can set

headquarters maximum balance.

● setHeadquartersMaxLevel: HeadquarterManageFacet owner can set headquarters

maximum level value.

● setHeadquartersMaxYieldTreesPerLevel: HeadquarterManageFacet owner can set

headquarters maximum yield trees per level.

● setHeadquartersForestPrice: HeadquarterManageFacet owner can set

headquarters forest price.

● giftYieldTree: ManagerFacet owner can gift yield tree address.

● removeAdmin: ManagerFacet owner can remove an admin address to the protocol.

● addAdmin: ManagerFacet owner can add an admin address to the protocol.

● initProtocolMetaData: ProtocolDataManageFacet owner can initialize protocol

metadata addresses.

● initProcotolMetaData2: ProtocolDataManageFacet owner can initialize protocol

metadata addresses.

● setTreasury: ProtocolDataManageFacet owner can set a new treasury address.

● setRewardPool: ProtocolDataManageFacet owner can set a new reward pool

address.

● setForestToken: ProtocolDataManageFacet owner can set a new forest token

address.

● setRootsToken: ProtocolDataManageFacet owner can set a new root token

address.

● setStableToken: ProtocolDataManageFacet owner can set a new stable token

address.

● setForesterNFT: ProtocolDataManageFacet owner can set a new forest NFT

address.

● setJoeRouter: ProtocolDataManageFacet owner can set a new Joe router

address.

● setJoeFactory: ProtocolDataManageFacet owner can set a new Joe factory

address.

● setJoePair: ProtocolDataManageFacet owner can set a new Joe pair address.

● setPriceFeed: ProtocolDataManageFacet owner can set a new price feed address.

● initRoots: RootsManageFacet owner can initialize root addresses.

● setRootsTreasury: RootsManageFacet owner can set root treasury address.

● setRootsAdditionalGrowthFactorCap: RootsManageFacet owner can set roots

additional growth factor cap value.

● setRootsResetPeriodAfter: RootsManageFacet owner can set root reset period

value.

● setRootsMaxDiscount: RootsManageFacet owner can set root maximum discount

value.

● recoverRootsSupply: RootsManageFacet owner can recover root supply.

● initYieldTrees: YieldTreeManageFacet owner can initialize yield tree values.

● initYieldTreesPaymentDistribution: YieldTreeManageFacet owner can initialize yield

tree payment distribution value.

● setYieldTreesForestPrice: YieldTreeManageFacet owner can set yield tree forest

price.

● setYieldTreesPercentageInEther: YieldTreeManageFacet owner can set yield tree

percentage in ether.

● setYieldTreesBaseRewards: YieldTreeManageFacet owner can set yield tree base

rewards value.

● setYieldTreesDecayAfter: YieldTreeManageFacet owner can set after yield tree

decay value

● setYieldTreesDecayTo: YieldTreeManageFacet owner can set yield tree decay.

● setYieldTreesDecayPerDay: YieldTreeManageFacet owner can set yield tree decay

per day value.

● setYieldTreesForestFeePerMonth: YieldTreeManageFacet owner can set yield tree

forest fee per month.

● setYieldTreesForestLiquidityPercentage: YieldTreeManageFacet owner can set

yield tree forest liquidity percentage value.

● setYieldTreesForestRewardPoolPercentage: YieldTreeManageFacet owner can set

yield tree forest rewards pool percentage.

● setYieldTreesForestTreasuryPercentage: YieldTreeManageFacet owner can set

yield tree forest treasury percentage.

● setYieldTreesEtherLiquidityPercentage: YieldTreeManageFacet owner can set yield

tree ether liquidity percentage.

● setYieldTreesEtherRewardPercentage: YieldTreeManageFacet owner can set yield

tree ether reward percentage.

● setYieldTreesEtherTreasuryPercentage: YieldTreeManageFacet owner can set

yield tree ether treasury percentage.

● setYieldTreesFeeTreasuryPercentage: YieldTreeManageFacet owner can set yield

tree fee treasury percentage.

● setYieldTreesFeeCharityPercentage: YieldTreeManageFacet owner can set yield

tree fee charity percentage.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Github weblink. And we have used all

possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Forest Financial

Diamond Diagram

DiamondInit Diagram

ForesterNFT Diagram

ForestToken Diagram

RootsToken Diagram

DiamondCutFacet Diagram

DiamondLoupeFacet Diagram

CoreNFTManageFacet Diagram

HeadquarterManageFacet Diagram

OwnershipFacet Diagram

PresaleFacet Diagram

RootsManageFacet Diagram

CoreNFTFacet Diagram

HeadquarterMainFacet Diagram

ManagerFacet Diagram

ProtocolDataManageFacet Diagram

RootsMainFacet Diagram

YieldTreeMainFacet Diagram

YieldTreeClaimFacet Diagram

YieldTreeFeeFacet Diagram

SellTax Diagram

YieldTreeManageFacet Diagram

YieldTreeCompoundFacet Diagram

YieldTreeGetterFacet Diagram

