
Project: Gamut Exchange
Website: gamut.exchange
Platform: Ethereum
Language: Solidity
Date: October 5th, 2022

https://gamut.exchange/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 16

Audit Findings …………………………………………………………………………………… 17

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 32

● Solidity static analysis ….……………………………………………………………….. 35

● Solhint Linter …………………………………………………………………….……….. 43

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Gamut Exchange protocol to perform the Security audit
of the Gamut Exchange protocol smart contracts code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on October 5th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Gamut Exchange is an algorithmic market maker(AMM) and decentralized financial(Defi)

product which has functionalities like create pool, join or exit the pool, swap, etc.

Audit scope

Name Code Review and Security Analysis Report for
Gamut Exchange Protocol Smart Contracts

Platform Ethereum / Solidity

File 1 HedgeFactory.sol

File 1 MD5 Hash 790FCC49EB81D3E736A2A7E12C1EEBD9

File 2 HedgePoolToken.sol

File 2 MD5 Hash EC765FAECC4B069970C966B904FDC18C

File 3 Pool.sol

File 3 MD5 Hash 97678C48930E15C40ED54EC510837758

File 4 ProtocolFeesCollector.sol

File 4 MD5 Hash E41DF03AB5B8E44C206C1DA6CE24BB54

File 5 Router.sol

File 5 MD5 Hash 6B77495E30DD3FC4E8F4723AE968A7FB

File 6 Vault.sol

File 6 MD5 Hash 4CF72EB24A323FB6650C352DA9788B0B

File 7 WeightedMath.sol

File 7 MD5 Hash B035975E0BCE7A006D1FD295B9298D23

File 8 WETH9.sol

File 8 MD5 Hash A109DC8265B78411CAD4525A5E7AE73F

Audit Date October 5th, 2022

Revision Date October 14th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 HedgeFactory.sol
● HedgeFactory can create a new pool.

● HedgeFactory can set the protocol fee collector.

YES, This is valid.

File 2 HedgePoolToken.sol
● Name: Hedge Pool Token

● Symbol: HT

YES, This is valid.

File 3 Pool.sol
● Swap Fee Percentage: 0.0001%

● Maximum Swap Fee Percentage: 10%

● Minimum Weight: 20%

● Pool owners can set a swap fee.

● Pool owners can set the balances of Pool's tokens

and update the lastChangeBlock.

YES, This is valid.

File 4 ProtocolFeesCollector.sol
● Maximum Protocol Swap Fee Percentage: 50%

● Owner can withdraw collected fees.

● Owner can set a swap fee percentage.

YES, This is valid.

File 5 Router.sol
● Owner can set up a hedge factory.

● Routers can join the pool.

● Routers can exit pool.

YES, This is valid.

File 6 Vault.sol
● Vault has functions like: _receiveAsset,

_sendAsset, _handleRemainingEth, etc.

YES, This is valid.

File 7 WeightedMath.sol
● One: 18

● WeightedMath has functions like:

YES, This is valid.

_calculateInvariant, _calcOutGivenIn, etc.

File 8 WETH9.sol
● Name: Wrapped Ether

● Symbol: WETH

● Decimals: 18

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.
These issues are fixed/resolved in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 8 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Gamut Exchange Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Gamut Exchange Protocol.

The Gamut Exchange team has provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Gamut Exchange smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are not well commented. but the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website https://gamut.exchange which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://gamut.exchange

AS-IS overview

HedgeFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getRouter read Passed No Issue
3 setProtocolFeeCollector external Passed No Issue
4 getProtocolFeesCollector read Passed No Issue
5 _getProtocolSwapFeePerce

ntage
external Passed No Issue

6 allPoolsLength external Passed No Issue
7 create external Passed No Issue
8 owner read Passed No Issue
9 onlyOwner modifier Passed No Issue
10 renounceOwnership write access only Owner No Issue
11 transferOwnership write access only Owner No Issue
12 _transferOwnership internal Passed No Issue

HedgePoolToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue
10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 _afterTokenTransfer internal Passed No Issue

Pool.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRouter modifier Passed No Issue
3 getRouter read Passed No Issue
4 getSwapFeePercentage read Passed No Issue
5 getWeights external Passed No Issue
6 _weights read Passed No Issue
7 _weights read Passed No Issue
8 getWeightsAndScalingFactors read Passed No Issue
9 getPoolTokensAndBalances external Passed No Issue
10 getPoolBalancesAndChangeBloc

k
read Passed No Issue

11 setSwapFeePercentage external Passed No Issue
12 _setSwapFeePercentage write Passed No Issue
13 setPoolBalancesAndLastChange

Block
external access only Router No Issue

14 onSwap write access only Router No Issue
15 _onVirtualSwap write Passed No Issue
16 _calcPoolAndProtocolSwapFee read Passed No Issue
17 _calcSwapOut read Passed No Issue
18 _updateWeights write Passed No Issue
19 onJoinPool external access only Router No Issue
20 _onInitializePool read Passed No Issue
21 _onJoinPool write Passed No Issue
22 _joinExactTokensInForHPTOut write Passed No Issue
23 _unEqualJoin write Passed No Issue
24 _joinTokenInForHPTOut write Passed No Issue
25 _calculateHptOut read Passed No Issue
26 _doVirtualSwap write Passed No Issue
27 onExitPool external access only Router No Issue
28 _onExitPool write Passed No Issue
29 _doExit write Passed No Issue
30 _computeScalingFactor read Passed No Issue
31 _scalingFactor read Passed No Issue
32 _upscale write Passed No Issue
33 _upscaleArray read Passed No Issue
34 _downscaleDown write Passed No Issue
35 _downscaleDownArray read Passed No Issue
36 _downscaleUp write Passed No Issue
37 _downscaleUpArray read Passed No Issue
38 _calculateInvariant internal Passed No Issue
39 _calcOutGivenIn internal Passed No Issue
40 _calculateNewWeights internal Passed No Issue
41 _calcHptOutGivenExactTokensIn internal Passed No Issue
42 _calculateVirtualSwapAmountIn internal Passed No Issue
43 _calculateNextIterationAmountIn internal Passed No Issue
44 _calcTokensOutGivenExactHptIn internal Passed No Issue

ProtocolFeesCollector.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 withdrawCollectedFees external Passed No Issue
8 setSwapFeePercentage external Passed No Issue
9 getProtocolSwapFeePerc

entage
external Passed No Issue

10 getCollectedFeeAmounts external Passed No Issue

Router.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 setHedgeFactory external Passed No Issue
8 _toPoolBalanceChange write Passed No Issue
9 _toPoolBalanceChange write Passed No Issue
10 joinPool external Passed No Issue
11 exitPool external Passed No Issue
12 _joinOrExit write Passed No Issue
13 _callPoolBalanceChange write Passed No Issue
14 _processJoinPoolTransfers write Passed No Issue
15 _processExitPoolTransfers write Passed No Issue
16 swap external Passed No Issue
17 _swapWithPool write Passed No Issue
18 _processPoolSwapRequest write Passed No Issue
19 _callPoolOnSwapHook write Passed No Issue
20 batchSwap external Passed No Issue
21 _swapWithPools write Passed No Issue
22 _validateTokensAndGetBala

nces
read Passed No Issue

23 _unsafeCastToInt256 write Passed No Issue
24 _receiveAsset internal Passed No Issue
25 _sendAsset internal Passed No Issue
26 _handleRemainingEth internal Passed No Issue

27 _payFeeAmount internal Passed No Issue
28 receive external Passed No Issue
29 nonReentrant modifier Passed No Issue
30 _enterNonReentrant write Passed No Issue
31 _exitNonReentrant write Passed No Issue

Vault.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _receiveAsset internal Passed No Issue
3 _sendAsset internal Passed No Issue
4 _handleRemainingEth internal Passed No Issue
5 _payFeeAmount internal Passed No Issue
6 receive external Passed No Issue

WeightedMath.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _calculateInvariant internal Passed No Issue
3 _calcOutGivenIn internal Passed No Issue
4 _calculateNewWeights internal Passed No Issue
5 _calcHptOutGivenExactToke

nsIn
internal Passed No Issue

6 _calculateVirtualSwapAmou
ntIn

internal Passed No Issue

7 _calculateNextIterationAmo
untIn

internal Passed No Issue

8 _calcTokensOutGivenExact
HptIn

internal Passed No Issue

WETH9.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 receive external Passed No Issue
3 deposit write Passed No Issue
4 withdraw write Passed No Issue
5 totalSupply read Passed No Issue
6 approve write Passed No Issue
7 transfer write Passed No Issue
8 transferFrom write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

Router.sol
● joinPool = recipient

● exitPool = sender

HedgeFactory.sol
● create = tokenA, tokenB

Resolution: We advise to put validation: integer type variables should be greater than 0

and address type variables should not be address(0).

Status: This issue is fixed

Very Low / Informational / Best practices:

(1) Infinite loop: ProtocolFeesCollector.sol

In the withdrawCollectedFees function, tokens for loop do not have an upper length limit,

which costs more gas.

Resolution: Upper bound should have a certain limit for loops.

Status: This issue is fixed

(2) Owner can drain all ERC20 tokens: ProtocolFeesCollector.sol

Using the withdrawCollectedFees function, the owner can drain tokens from the contract.

Resolution: Owner should confirm this feature.

Status: This issue is fixed

(3) Critical operation lacks event log:

Missing event log for:

Router.sol

● setHedgeFactory

HedgeFactory.sol

● setProtocolFeeCollector

ProtocolFeesCollector.sol

● withdrawCollectedFees

● setSwapFeePercentage

Resolution: Write an event log for listed events.

Status: This issue is fixed

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setProtocolFeeCollector: HedgeFactory owner can set a new protocol fee collector

address.

● setSwapFeePercentage: Pool owner can set swap fee percentage value.

● setPoolBalancesAndLastChangeBlock: Pool router owner can set the balances of

Pool's tokens and update the lastChangeBlock.

● onSwap: Pool router owner can swap hooks.

● onJoinPool: Pool router owner can join pool.

● onExitPool: Pool router owner can exit pool hook.

● withdrawCollectedFees: ProtocolFeesCollector owner can withdraw collected fees.

● setSwapFeePercentage: ProtocolFeesCollector owner can set swap fee

percentage value.

● setHedgeFactory: Router owner can set hedge factory value.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have not observed any major issues in smart

contracts. So smart contracts are ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Gamut Exchange Protocol

HedgeFactory Diagram

HedgePoolToken Diagram

Pool Diagram

ProtocolFeesCollector Diagram

Router Diagram

Vault Diagram

WETH9 Diagram

WeightedMath Diagram

Slither Results Log

Slither log >> HedgeFactory.sol

Slither log >> HedgePoolToken.sol

Slither log >> Pool.sol

Slither log >> ProtocolFeesCollector.sol

Slither log >> WeightedMath.sol

Slither log >> WETH9.sol

Slither log >> Router.sol

Slither log >> Vault.sol

Solidity Static Analysis

HedgeFactory.sol

HedgePoolToken.sol

Pool.sol

ProtocolFeesCollector.sol

Router.sol

Vault.sol

WeightedMath.sol

WETH9.sol

Solhint Linter

HedgeFactory.sol

HedgeFactory.sol:1390:18: Error: Parse error: missing ';' at '{'
HedgeFactory.sol:1426:18: Error: Parse error: missing ';' at '{'
HedgeFactory.sol:1473:18: Error: Parse error: missing ';' at '{'
HedgeFactory.sol:1527:22: Error: Parse error: missing ';' at '{'

HedgePoolToken.sol

HedgePoolToken.sol:453:18: Error: Parse error: missing ';' at '{'
HedgePoolToken.sol:489:18: Error: Parse error: missing ';' at '{'
HedgePoolToken.sol:536:18: Error: Parse error: missing ';' at '{'
HedgePoolToken.sol:590:22: Error: Parse error: missing ';' at '{'

Pool.sol

Pool.sol:1390:18: Error: Parse error: missing ';' at '{'
Pool.sol:1426:18: Error: Parse error: missing ';' at '{'
Pool.sol:1473:18: Error: Parse error: missing ';' at '{'
Pool.sol:1527:22: Error: Parse error: missing ';' at '{'

ProtocolFeesCollector.sol

ProtocolFeesCollector.sol:2:1: Error: Compiler version 0.8.11 does
not satisfy the r semver requirementProtocolFeesCollector.sol:23:5:
Error: Avoid using inline assembly. It is acceptable only in rare
cases
ProtocolFeesCollector.sol:154:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
ProtocolFeesCollector.sol:327:51: Error: Avoid using low level calls.
ProtocolFeesCollector.sol:330:9: Error: Avoid using inline assembly.
It is acceptable only in rare cases
ProtocolFeesCollector.sol:357:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

Router.sol

Router.sol:2:1: Error: Compiler version 0.8.11 does not satisfy the r

semver requirement
Router.sol:462:51: Error: Avoid using low level calls.
Router.sol:465:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Router.sol:493:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity
>=0.7.0)Router.sol:660:1: Error: Explicitly mark visibility in
function
Router.sol:671:5: Error: Avoid using inline assembly. It is
acceptable only in rare casesRouter.sol:1039:5: Error: Explicitly
mark visibility in function (Set ignoreConstructors to true if using
solidity >=0.7.0)
Router.sol:1039:50: Error: Code contains empty blocks

Vault.sol

Vault.sol:2:1: Error: Compiler version 0.8.11 does not satisfy the r
semver requirement
Vault.sol:340:1: Error: Explicitly mark visibility in function
Vault.sol:344:1: Error: Explicitly mark visibility in function
Vault.sol:355:5: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Vault.sol:536:51: Error: Avoid using low level calls.
Vault.sol:539:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Vault.sol:567:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)

WeightedMath.sol

WeightedMath.sol:2:1: Error: Compiler version 0.8.11 does not satisfy
the r semver requirement
WeightedMath.sol:4:1: Error: Explicitly mark visibility in function
WeightedMath.sol:11:1: Error: Explicitly mark visibility in function
WeightedMath.sol:22:5: Error: Avoid using inline assembly. It is
acceptable only in rare casesWeightedMath.sol:162:5: Error:
Explicitly mark visibility of stateWeightedMath.sol:173:5: Error:
Explicitly mark visibility of stateWeightedMath.sol:178:5: Error:
Explicitly mark visibility of state
WeightedMath.sol:178:21: Error: Constant name must be in capitalized
SNAKE_CASE
WeightedMath.sol:191:5: Error: Explicitly mark visibility of state
WeightedMath.sol:191:21: Error: Constant name must be in capitalized
SNAKE_CASE
WeightedMath.sol:578:5: Error: Function name must be in mixedCase
WeightedMath.sol:591:9: Error: Variable name must be in mixedCase

WETH9.sol

WETH9.sol:16:1: Error: Compiler version ^0.8.11 does not satisfy the
r semver requirement
WETH9.sol:23:5: Error: Explicitly mark visibility of state
WETH9.sol:23:13: Error: Variable name must be in mixedCase
WETH9.sol:33:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

