
Project: HotDogs
Website: thehotdogsproject.com
Platform: Binance Smart Chain
Language: Solidity
Date: August 23rd, 2022

https://thehotdogsproject.com/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by HotDogs to perform the Security audit of the HotDogs
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on August 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
HotDogs is a multi-contract BNB miner in which users can deposit BNB in return for daily

rewards. The HotDogs contract inherits the LinkTokenInterface,

VRFCoordinatorV2Interface, VRFConsumerBaseV2standard smart contracts from the

chain link library. These chainlink contracts are considered community-audited and

time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
HotDogs Protocol Smart Contracts

Platform BSC / Solidity

File 1 HotDogsLotto.sol

File 1 MD5 Hash E426450138D767CC588CF317280E2CFE

Updated File 1 MD5 Hash 1B1E4D7ADA787C1B5410B11AE4DC43FB

File 2 HotDogsMiner.sol

File 2 MD5 Hash 7EAFD38CD35E8EDDB653A9C8433B28E9

Updated File 2 MD5 Hash 50C26FBE1189AB1CEA63E4FA4F54F0F6

File 3 HotDogsTreasury.sol

File 3 MD5 Hash A002C4906B4A922755DA884E05671600

Updated File 3 MD5 Hash 33700646D159AFC52F532A864552CE9A

File 4 RandomNumberGenerator.sol

File 4 MD5 Hash 28C96AB9C0D5200461CFD96DC468FBD1

Updated File 4 MD5 Hash CCA2F1587202C40EBB85972FC84B5F00

Audit Date August 23rd,2022

Revise Audit Date August 31st,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 HotDogsLotto.sol
● Maximum Price Ticket: 0.1 BNB

● Minimum Price Ticket: 0.005 BNB

● Maximum Length Lottery: 30 Days

● Minimum Length Lottery: 1 Day

● Maximum Number Tickets: 100

● Minimum Discount Divisor: 10%

● Maximum Treasury Fee: 20%

● Tvl Fee: 10%

YES, This is valid.

File 2 HotDogsMiner.sol
● Accumulation Exemption: 0.01 BNB

● Lotto Fee: 1%

● Dev Fee: 4%

● AP minimum exemption: 0.01 BNB

YES, This is valid.

File 3 HotDogsTreasury.sol
● HotDogsTreasury has functions like:

setLotteryAddress, fundLottery, etc.

YES, This is valid.

File 4 RandomNumberGenerator.sol
● Request Confirmations: 5

● Callback Gas Limit: 0.1 Million

● Returned Values: 1

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 2 low and some very low level issues.
All the issues have been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in HotDogs are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the HotDogs.

The HotDogs team has provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

All code parts are well commented on smart contracts.

Documentation

We were given a HotDogs smart contract code in the form of a file. The hash of that code

is mentioned above in the table.

As mentioned above, code parts are well commented. And the logic is straightforward. So

it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://thehotdogsproject.com/ which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://thehotdogsproject.com/

AS-IS overview

HotDogsLotto.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 nonReentrant modifier Passed No Issue
7 notContract modifier Passed No Issue
8 onlyOperator modifier Passed No Issue
9 onlyOwnerOrOperator modifier Passed No Issue

10 buyTickets external Passed No Issue
11 claimTickets external Passed No Issue
12 closeLottery external access only

Operator
No Issue

13 drawFinalNumberAndMakeC
laimable

external access only
Operator

No Issue

14 changeRandomGenerator external access only Owner No Issue
15 injectFunds external access only Owner

Or Operator
No Issue

16 startLottery external access only
Operator

No Issue

17 setMinAndMaxTicketPrice external access only Owner No Issue
18 setMinerAndTreasuryAddres

ses
external access only Owner No Issue

19 setOperatorAddress external access only Owner No Issue
20 calculateTicketsBulkPrice external Passed No Issue
21 viewCurrentLotteryId external Passed No Issue
22 viewLottery external Passed No Issue
23 viewNumbersAndStatusesFo

rTicketIds
external Passed No Issue

24 viewRewardsForTicketId external Passed No Issue
25 viewUserInfoForLotteryId external Passed No Issue
26 _calculateRewardsForTicketI

d
internal Passed No Issue

27 _calculateTicketsBulkPrice internal Passed No Issue
28 _isContract internal Passed No Issue
29 reinjectNonClaimedRewards

ToLottery
external access only Owner No Issue

30 giveawayTickets external access only Owner
Or Operator

No Issue

31 receive external Passed No Issue
32 checkBalance read Passed No Issue

33 checkNonClaimedRewards external access only Owner
Or Operator

No Issue

HotDogsMiner.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 nonReentrant modifier Passed No Issue
7 cookHotDogs external Passed No Issue
8 eatHotDogs external Passed No Issue
9 cookHotDogsInternal write Passed No Issue

10 buyHotDogs external Passed No Issue
11 switchVacationMode external Passed No Issue
12 getBalance external Passed No Issue
13 getMarketHotDogs external access only Owner No Issue
14 getMyHotDogsChefs external Passed No Issue
15 getMyHotDogs external Passed No Issue
16 getHotDogsSincelastCooked read Passed No Issue
17 getUserInfo external access only Owner No Issue
18 getMyHotDogsInternal read Passed No Issue
19 getVacationMode external Passed No Issue
20 hasEatPenalty read Passed No Issue
21 getPenalties external Passed No Issue
22 getEatsMonth external Passed No Issue
23 getDatePenalties external Passed No Issue
24 hotDogsRewards external Passed No Issue
25 seedMarket external access only Owner No Issue
26 balanceMarket external access only Owner No Issue
27 setAccumulationPenaltyExe

mption
external access only Owner No Issue

28 updateLotteryStatus external access only Owner No Issue
29 retrieveEatPenalty read Passed No Issue
30 applyDailyCap read Passed No Issue
31 applyMaxRewardsLimit read Passed No Issue
32 applyAccumulationPenalty read Passed No Issue
33 retrieveAccumulationPenalty read Passed No Issue
34 getEnableCookHotdogs external Passed No Issue
35 receive external Passed No Issue
36 percent write Passed No Issue
37 calculateTrade write Passed No Issue
38 calculateHotDogsSell read Passed No Issue

39 calculateHotDogsBuy read Passed No Issue
40 calculateFeeValue write Passed No Issue
41 calculateHotDogsBuySimple read Passed No Issue
42 min write Passed No Issue
43 max write Passed No Issue

HotDogsTreasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 nonReentrant modifier Passed No Issue
7 setLotteryAddress external access only Owner No Issue
8 fundLottery external access only Owner No Issue
9 checkBalance read Passed No Issue

10 receive external Passed No Issue

RandomNumberGenerator.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 getRandomNumber external Passed No Issue
7 fulfillRandomWords internal Passed No Issue
8 createNewSubscription write access only Owner No Issue
9 topUpSubscription external access only Owner No Issue

10 addConsumer external access only Owner No Issue
11 removeConsumer external access only Owner No Issue
12 cancelSubscription external access only Owner No Issue
13 withdraw external access only Owner No Issue
14 setKeyHash external access only Owner No Issue
15 setLotteryAddress external access only Owner No Issue
16 viewLatestLotteryId external Passed No Issue
17 viewRandomResult external Passed No Issue
18 functionCallWithValue internal Removed
19 sendValue internal Removed

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Out of Gas issue:

HotDogsTreasury.sol

RandomNumberGenerator.sol.sol

HotDogsMiner.sol

function: eatHotDogs()

function: buyHotDogs()

".call" is used to transfer coins without a gas limit.

Resolution: Remove it and use ". transfer" instead or apply the gas amount.

Status: Fixed by adding gas limit with call.

Low

(1) Function input parameters lack of check:

RandomNumberGenerator.sol

Amount and address should be checked for "0" and address(0) value.

HotDogsMiner.sol

Check the requirements of all the addresses assigned in the constructor.

HotDogsLotto.sol

Check for address(0) of _randomGeneratorAddress in the constructor.

Resolution: We suggest using validation like amount should be greater than zero and
address should not be dead address.

Status: Fixed.

(2) Gas Consumption: HotDogsMiner.sol

Use a local variable instead of calling msg.sender and msg.value multiple times inside a

function.

Resolution: Instead of calling state variables multiple times, assign this state variable

value to a local variable to that function and use it.

Status: Fixed.

Very Low / Informational / Best practices

(1) Initialized by default value: HotDogsMiner.sol

Resolution: We suggest ignoring to initialize the variables by default value.

Status: Fixed

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● getRandomNumber: RandomNumberGenerator hotDogsLottery owner can get a

random valid key hash list.

● createNewSubscription: RandomNumberGenerator owner can create new

subscriptions.

● topUpSubscription: RandomNumberGenerator owner can top up subscription

amount.

● addConsumer: RandomNumberGenerator owner can add a new consumer

address.

● removeConsumer: RandomNumberGenerator owner can remove consumer

address.

● cancelSubscription: RandomNumberGenerator owner can cancel consumer

address.

● withdraw: RandomNumberGenerator owner can withdraw amount from address.

● setKeyHash: RandomNumberGenerator owner can set key hash like:

vrfCoordinator address, _linkToken address, _keyHash.

● setLotteryAddress: RandomNumberGenerator owner can set the lottery address.

● setLotteryAddress: HotDogsTreasury owner can set the lottery address.

● fundLottery: HotDogsTreasury owner can fund the lottery.

● getMarketHotDogs: HotDogsMiner owner can get market hot dogs.

● getUserInfo: HotDogsMiner owner can get user information address.

● seedMarket: HotDogsMiner owner can send funds to the treasury.

● balanceMarket: HotDogsMiner owner can balance market funds.

● setAccumulationPenaltyExemption: HotDogsMiner owner can set accumulation

penalty exemption value.

● updateLotteryStatus: HotDogsMiner owner can update lottery status.

● closeLottery: HotDogsLotto owner can close lottery status.

● drawFinalNumberAndMakeClaimable: HotDogsLotto owner can draw the final

number and make the claimable value.

● changeRandomGenerator: HotDogsLotto owner can change the random generator

address.

● injectFunds: HotDogsLotto owner or operator can inject funds.

● startLottery: HotDogsLotto owner can start a lottery.

● setMinAndMaxTicketPrice: HotDogsLotto owner can set the minimum and

maximum ticket price.

● setMinerAndTreasuryAddresses: HotDogsLotto owner can set minimum and

maximum ticket addresses.

● setOperatorAddress: HotDogsLotto owner can set operator address.

● reinjectNonClaimedRewardsToLottery: HotDogsLotto owner can reinject non

claimed rewards to lottery.

● giveawayTickets: HotDogsLotto owner can giveaway ticket addresses.

● checkNonClaimedRewards: HotDogsLotto owner can check non claimed rewards.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have observed 1 medium Severity issue and 2 low

issues and some informational issues in smart contracts. But those are not critical ones

and all issues have been resolved in the revised code. So, the smart contracts are ready
for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - HotDogs Protocol

HotDogsLotto Diagram

HotDogsMiner Diagram

HotDogsTreasury Diagram

RandomNumberGenerator Diagram

Slither Results Log

Slither log >> HotDogsLotto.sol

Slither log >> HotDogsMiner.sol

Slither log >> HotDogsTreasury.sol

Slither log >> RandomNumberGenerator.sol

Solidity Static Analysis

HotDogsLotto.sol

HotDogsMiner.sol

HotDogsTreasury.sol

RandomNumberGenerator.sol

Solhint Linter

HotDogsLotto.sol

HotDogsLotto.sol:277:21: Error: Parse error: missing ';' at '{'
HotDogsLotto.sol:703:13: Error: Parse error: missing ';' at '{'

HotDogsMiner.sol

HotDogsMiner.sol:1:1: Error: Compiler version 0.8.14 does not satisfy
the r semver requirement
HotDogsMiner.sol:13:1: Error: Compiler version 0.8.14 does not
satisfy the r semver requirement
HotDogsMiner.sol:22:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
HotDogsMiner.sol:43:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
HotDogsMiner.sol:93:2: Error: Explicitly mark visibility of state
HotDogsMiner.sol:119:2: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
HotDogsMiner.sol:135:13: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:138:6: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:140:39: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:146:33: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:168:40: Error: Visibility modifier must be first in
list of modifiers
HotDogsMiner.sol:175:6: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:177:39: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:183:33: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:194:33: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:201:40: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:203:40: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:241:23: Error: Avoid using low level calls.
HotDogsMiner.sol:251:51: Error: Visibility modifier must be first in
list of modifiers
HotDogsMiner.sol:255:39: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:280:9: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:281:35: Error: Avoid to make time-based decisions in
your business logic

HotDogsMiner.sol:290:22: Error: Avoid using low level calls.
HotDogsMiner.sol:299:12: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:303:41: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:306:9: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:307:35: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:332:42: Error: Visibility modifier must be first in
list of modifiers
HotDogsMiner.sol:337:25: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:353:27: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:356:48: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:406:43: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:406:119: Error: Avoid to make time-based decisions
in your business logic
HotDogsMiner.sol:432:6: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:446:7: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:515:25: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:519:32: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:611:27: Error: Avoid to make time-based decisions in
your business logic
HotDogsMiner.sol:631:7: Error: Avoid to make time-based decisions in
your business logic

HotDogsTreasury.sol

HotDogsTreasury.sol:1:1: Error: Compiler version 0.8.14 does not
satisfy the r semver requirement
HotDogsTreasury.sol:18:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
HotDogsTreasury.sol:60:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
HotDogsTreasury.sol:60:19: Error: Code contains empty blocks
HotDogsTreasury.sol:81:28: Error: Avoid using low level calls.

RandomNumberGenerator.sol

RandomNumberGenerator.sol:174:1: Error: Import statements must be on
top
RandomNumberGenerator.sol:175:1: Error: Import statements must be on
top
RandomNumberGenerator.sol:176:1: Error: Import statements must be on

top
RandomNumberGenerator.sol:2:1: Error: Compiler version 0.8.14 does
not satisfy the r semver requirement
RandomNumberGenerator.sol:16:1: Error: Compiler version 0.8.14 does
not satisfy the r semver requirement
RandomNumberGenerator.sol:23:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
RandomNumberGenerator.sol:51:1: Error: Compiler version 0.8.14 does
not satisfy the r semver requirement
RandomNumberGenerator.sol:57:9: Error: Avoid using inline assembly.
It is acceptable only in rare cases
RandomNumberGenerator.sol:66:28: Error: Avoid using low level calls.
RandomNumberGenerator.sol:99:51: Error: Avoid using low level calls.
RandomNumberGenerator.sol:129:51: Error: Avoid using low level calls.
RandomNumberGenerator.sol:143:17: Error: Avoid using inline assembly.
It is acceptable only in rare cases
RandomNumberGenerator.sol:157:1: Error: Compiler version 0.8.14 does
not satisfy the r semver requirement
RandomNumberGenerator.sol:168:1: Error: Compiler version 0.8.14 does
not satisfy the r semver requirement
RandomNumberGenerator.sol:179:1: Error: Compiler version 0.8.14 does
not satisfy the r semver requirement
RandomNumberGenerator.sol:182:5: Error: Explicitly mark visibility of
state
RandomNumberGenerator.sol:182:31: Error: Variable name must be in
mixedCase
RandomNumberGenerator.sol:183:5: Error: Explicitly mark visibility of
state
RandomNumberGenerator.sol:183:24: Error: Variable name must be in
mixedCase
RandomNumberGenerator.sol:185:5: Error: Explicitly mark visibility of
state
RandomNumberGenerator.sol:185:13: Error: Variable name must be in
mixedCase
RandomNumberGenerator.sol:191:5: Error: Explicitly mark visibility of
state
RandomNumberGenerator.sol:193:20: Error: Variable name must be in
mixedCase
RandomNumberGenerator.sol:194:20: Error: Variable name must be in
mixedCase
RandomNumberGenerator.sol:195:19: Error: Variable name must be in
mixedCase
RandomNumberGenerator.sol:201:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

