@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: LiveCGI MarketPlace
Platform: Binance Smart Chain
Language: Solidity

Date: August 24th, 2022

Table of contents

IO U CHION e 4
Project Background ... 4
AU S0P ..ttt 5
Claimed Smart Contract Featurescoiiiiiiii e 6
AUIt SUMMIAIY o e et 7
Technical QUICK Stats ..o e 8
Code QUANIRY ...t e 9
DOoCUMENTALION ... 9
USE Of DEPENUENCIESneiiii ettt e e e naenes 9
ASIS OVEIVIEW ..o e 10
Severity DefinitioNS ... 14
AUt FINAINGS .o e 15
@70 o T3 11017 T o 18
(@ 0] 1Y/ =1 1 T Yo [o] 0T) 19
DISCIAIMEIS ... e 21
Appendix
® Code FIOW Diagram ... 22
o Shther RESUIS LOGuiiiiii e 28
e Solidity staticanalysis ... 31
® SOININt LiNter .o e 37

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by LiveCGI MarketPlace to perform the Security audit of the
LiveCGl MarketPlace smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on August 24th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e LiveCGIl MarketPlace is a smart contract which has functions like initialize, cancel,
transfer, simpleMatch, validate, transfer, subFee, subFeelnBp, etc.

e The LiveCGI MarketPlace contract inherits the Initializable, OwnableUpgradeable,
AddressUpgradeable, ContextUpgradeable, IERC721Upgradeable,
draft-EIP712Upgradeable, IERC20Upgradeable, IERC721Upgradeabile,
IERC1155Upgradeable, IERC2981. standard smart contracts from the
OpenZeppelin library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
LiveCGI MarketPlace Protocol Smart Contracts

Platform BSC / Solidity

File 1 ExchangeV2.sol

File 1 MD5 Hash A4BAFAEED2D87820A9FC53644C1D6A09

File 2 AssetMatcher.sol

File 2 MD5 Hash 1008E88646064CC83CBA373E536BCFCE

File 3 .ExchangeV2Core.sol

File 3 MD5 Hash 2CCEOC3B7B5818F67C647CC4111DD37F

File 4 OrderValidator.sol

File 4 MD5 Hash 249D2E04B2FCC85A7564C04506713E48

File 5 TransferExecutor.sol

File 5 MD5 Hash F300524C66950449E341074525DF0059

File 6 RaribleTransferManager.sol

File 6 MD5 Hash 7787602FC51FF211EODED57B7AB7BCO01

File 7 ERC20Token.sol

File 7 MD5 Hash EO3J524C66950449E341074525DF8745

File 8 PaymentSafe.sol

File 8 MD5 Hash EAPN602FC51FF211EODED57B7AB739547

Audit Date August 24th,2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/ExchangeV2.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/exchange-v2/AssetMatcher.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/exchange-v2/ExchangeV2Core.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/exchange-v2/OrderValidator.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/transfer-manager/TransferExecutor.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/transfer-manager/RaribleTransferManager.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/ERC20Token.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/PaymentSafe.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 ExchangeV2.sol
e ExchangeV2 can initialize protocol fee, default fee
receiver address, new contract owner address,

owner fee.

YES, This is valid.

File 2 AssetMatcher.sol

e AssetMatcher can set asset matcher address,

YES, This is valid.

File 3 ExchangeV2Core.sol
e ExchangeV2Core owner can cancel order maker.
e ExchangeV2Core can generate sellOrder and
buyOrder from parameters and call
validateAndMatch() for purchase and bid

transactions.

YES, This is valid.

File 4 OrderValidator.sol

e OrderValidator has functions like: validate.

YES, This is valid.

File 5 TransferExecutor.sol

e TransferExecutor has functions like: transfer.

YES, This is valid.

File 6 RaribleTransferManager.sol
e RaribleTransferManager owner can set owner
address and fee, protocol fee, default Fee receiver

address.

YES, This is valid.

File 7 ERC20Token.sol
e Token Name: USDC
e Token Symbol: USDC
e Total Supply: Unlimited minting by any users

YES, This is valid.

File 8 PaymentSafe.sol

e Owner can pay royalties

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are “Not
Secured”. Also, these contracts do contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 1 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Moderated
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Not Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Not Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

NOT PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in LiveCGI MarketPlace are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the LiveCGI MarketPlace.

The LiveCGI MarketPlace team has provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

All code parts are well commented on smart contracts.

Documentation

We were given a LiveCGl MarketPlace smart contract code in the form of a Github

weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. And the logic is straightforward. So
it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

ExchangeV2.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initialize external Passed No Issue
3 | getProtocolFee internal Passed No Issue
4 | cancel external Passed No Issue
5 | directPurchase external Passed No Issue
6 | directAcceptBid external Passed No Issue
7 | matchOrders external Passed No Issue
8 | validateOrders internal Passed No Issue
9 [matchAndTransfer internal Passed No Issue
10 | getMaxFee internal Passed No Issue
11 [getDealData internal Passed No Issue
12 | getSumFees internal Passed No Issue
13 | setFillEmitMatch internal Passed No Issue
14 | getOrderfFill internal Passed No Issue
15 | matchAssets internal Passed No Issue
16 | validateFull internal Passed No Issue
17 | getProtocolFee internal Passed No Issue
18 | getProtocolFeeConditional internal Passed No Issue
19 | _ Ownable_init internal access only No Issue
Initializing
20 | _ Ownable_init_unchained internal access only No Issue
Initializing
21 | onlyOwner modifier Passed No Issue
22 | owner read Passed No Issue
23 | checkOwner internal Passed No Issue
24 | renounceOwnership write access only Owner No Issue
25 | transferOwnership write access only Owner No Issue
26 | transferOwnership internal Passed No Issue
27 | __ RaribleTransferManager_i | internal access only No Issue
nit unchained Initializing
28 | setContractOwnerAndFee external | access only Owner No Issue
29 | setProtocolFee external | access only Owner No Issue
30 | setDefaultFeeReceiver external | access only Owner No Issue
31 | setFeeReceiver external | access only Owner No Issue
32 | getFeeReceiver internal Passed No Issue
33 | doTransfers internal Passed No Issue
34 | doTransfersWithFees internal Passed No Issue
35 [transferProtocolFee internal Passed No Issue
36 | transferRoyalties internal Passed No Issue
37 | getRoyaltiesByAssetType internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

38 | getRoyalties internal Passed No Issue
39 [transferFees internal Passed No Issue
40 | transferPayouts internal Passed No Issue
41 | calculateTotalAmount internal Passed No Issue
42 | subFeelnBp internal Passed No Issue
43 | subFee internal Passed No Issue

AssetMatcher.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue

Initializing
3 | __Ownable init_unchained internal access only No Issue
Initializing

4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | setAssetMatcher external | access only Owner No Issue
11 | matchAssets internal Passed No Issue
12 | matchAssetOneSide read Passed No Issue
13 | simpleMatch write Passed No Issue

ExchangeV2Core.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [cancel external Passed No Issue
3 | directPurchase external Passed No Issue
4 | directAcceptBid external Passed No Issue
5 | matchOrders external Passed No Issue
6 | validateOrders internal Passed No Issue
7 | matchAndTransfer internal Passed No Issue
8 | getMaxFee internal Passed No Issue
9 | getDealData internal Passed No Issue
10 | getSumFees internal Passed No Issue
11 | setFillEmitMatch internal Passed No Issue
12 | getOrderfFill internal Passed No Issue
13 | matchAssets internal Passed No Issue
14 | validateFull internal Passed No Issue
15 | getProtocolFee internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

16 | getProtocolFeeConditional internal Passed No Issue
17 | _ Ownable_init internal access only No Issue
Initializing
18 | _ Ownable_init_unchained internal access only No Issue
Initializing
19 [onlyOwner modifier Passed No Issue
20 | owner read Passed No Issue
21 | checkOwner internal Passed No Issue
22 | renounceOwnership write access only Owner No Issue
23 | transferOwnership write access only Owner No Issue
24 | transferOwnership internal Passed No Issue
25 | setAssetMatcher external | access only Owner No Issue
26 | matchAssets internal Passed No Issue
27 | matchAssetOneSide read Passed No Issue
28 | simpleMatch write Passed No Issue
29 | transfer internal Passed No Issue
30 | _ Context_init internal access only No Issue
Initializing
31 | _ Context_init_unchained internal access only No Issue
Initializing
32 | msgSender internal Passed No Issue
33 | msgData internal Passed No Issue
34 | _ OrderValidator_init_unchai | internal access only No Issue
ned Initializing
35 | validate internal Passed No Issue
OrderValidator.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | _ Context_init internal access only No Issue
Initializing
3 | __Context_init_unchained internal access only No Issue
Initializing
4 msgSender internal Passed No Issue
5 msgData internal Passed No Issue
6 | _ OrderValidator_init_unchai | internal access only No Issue
ned Initializing
7 | validate internal Passed No Issue
TransferExecutor.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | transfer internal Passed No Issue
RaribleTransferManager.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | _ RaribleTransferManager_i | internal access only No Issue
nit_unchained Initializing
11 | setContractOwnerAndFee external | access only Owner No Issue
12 | setProtocolFee external | access only Owner No Issue
13 | setDefaultFeeReceiver external | access only Owner No Issue
14 | setFeeReceiver external | access only Owner No Issue
15 | getFeeReceiver internal Passed No Issue
16 | doTransfers internal Passed No Issue
17 | doTransfersWithFees internal Passed No Issue
18 | transferProtocolFee internal Passed No Issue
19 | transferRoyalties internal Passed No Issue
20 | getRoyaltiesByAssetType internal Passed No Issue
21 | getRoyalties internal Passed No Issue
22 | transferFees internal Passed No Issue
23 | transferPayouts internal Passed No Issue
24 | calculateTotalAmount internal Passed No Issue
25 | subFeelnBp internal Passed No Issue
26 | subFee internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

(1) Unlimited and uncontrolled token minting in ERC20Token.sol

P . 1r o i N 3 C b
mint{addre sweiver, o 256 _amount)

mint{_receiver, _amount);

Any user can call this mint function and can mint unlimited tokens for himself. This is a
major vulnerability as any user can simply inflate the value of a token by minting any

amount of tokens.

Resolution: we advise making this function owner only. And setting any max minting limit.

So, it can be used in harmony with your tokenomics.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

High Severity
(1) Open To Reenterancy:

TransferExecuter.sol

makeMatcl

_msg>

takematch.

msgSender Jtransfereth : e.s5ubl totalTakevalue

A ".call" is used to transfer coins without gas limit which is being called via library in line no
175 & 180 in ExchangeV2Core.sol.

ExchangeV2.sol

to. transferethl asset .

".call" is used to transfer coins without gas limit which is being called via library in line no

72 in transferExecutor.sol.

Resolution: Remove it and use ".transfer" instead or apply a gas amount.

Medium

No Medium severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) Upgradability: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,

OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: This feature applies to the entire projects derived by the nature of the
feature; at many places empty memory slots have been left to apply upgrades if required

in future.

Description: These libraries and contracts are set to upgrade ECDSAUpgradeable,
AddressUpgradeable, ContextUpgradeable, OwnableUpgradeable, MathUpgradeable and
which are inherited by its' breaks the concept of decentralization, however, in some cases

it may help to solve emergency recovery or repair of the contracts.

Resolution: No need, use or misuse depends on the contract owner, the contract user

must know it before using the smart contract.

(2) Centralization: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,

OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: This feature applies to the entire projects derived by the nature of the
feature; at many places empty memory slots have been left to apply upgrades, if required

in future.

Description: Some of the functions can be called only by authorized users (like: owner,

etc.) which is a central control which may alter contract behavior at desire.

Resolution: No need, use or misuse depends on the contract owner, the contract user

must know it before using the smart contract.

(3) Infinite loop possibility in PaymentSafe.sol

The function distributeRoyalties() uses a loop without any limit. So, if the owner adds more
records in one transaction, then it might hit the block's gas limit. The owner can

acknowledge this by making sure they do not input so many records in one transaction.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) unused code blocks: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,

OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: Every library contains many functions callable, when those open source
imported into the project, they contain many code blocks, functions which nowhere
used/called in the entire project for example AddressUpgradeabile library, stringUpgradable

library and others.
Description: Too many code blocks specially inside library nowhere used

Resolution: Can be removed to make compiled size small.

(2) Hard Coded Values: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,

OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: Any hardCoded address, numerical values, etc. should be double

checked, it is used in many places even in some libraries.

Description: Some places contain hard coded values, it may lead to lasting bugs being

injected.

Resolution: Before going to production all hard coded values must double be checked for

accuracy.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

setContractOwnerAndFee: RaribleTransferManager owner set contract owner
address and fee.

setProtocolFee: RaribleTransferManager owner can set protocol fee.
setDefaultFeeReceiver: RaribleTransferManager owner can set default fee receiver
address.

setFeeReceiver: RaribleTransferManager owner can set receiver fee address.
setAssetMatcher: AssetMatcher owner can set asset matcher address.

cancel: ExchangeV2Core owner can cancel order.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of Github weblink. And we have used all
possible tests based on given objects as files. We have observed 1 high Severity issue, 2
low Severity issue and some informational issues in smart contracts. So, the smart

contracts are ready for the mainnet deployment after fixing those issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Insecure”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - LiveCGI MarketPlace Protocol

ExchangeV2 Diagram

i
|
|

T

i

|urui:i;:;f‘ :

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ LibAsset

O bytes4 ETH_ASSET_CLASS
O bytesd ERC20_ASSET_CLASS

© bytesd ERC721_ASSET_CLASS

© bytesd ERC1155_ASSET_CLASS
O bytes4 COLLECTION

© bytesd CRYPTO_PUNKS

© bytes32 ASSET_TYPE_TYPEHASH

< byles32 ASSET TYPEHASH

© Quheshi)

AddressUpgradeable

< QsContract()
© sendValue()
“ functionCall()
< functionCallithValue()
& B functionStaticCall()
© QuerifyCallResudFromTarget()
O QverifyCallResul])
B Q_revert()
—

AssetMatcher Diagram

AssetMatcher

@ 1AssetMatcher

@ OmatchAssels()

Initializable
Ownablelipgradeable

© bytes EMPTY

7 bytesd=>address matchers
O uint256 gap

© getdssetMatcher()

< GmatchAssets()

B O matchAssetOneSidel)
B O, simpleMatehi)

Cwnablelpgradeahle

Initializable
ContextUpgradeable

O address _owner
O uint256 _ gap

< __Ownable_ini()
' Ownable_int_unchained()
o Qowner()

O Q_eheckOwnear()

| @ renounceOwnership)
® transferOwnership()
< _transferOwnership()

@ ContextUpgradeakle

| Initializable

O uint256 __ gap

& _ Comntext_ind()
¢ _ Context_ing_unchained()
o 4, msgSender()
& Q,_msgDatal)

YAV

i |
Initiallzakble

[wnts _indialized
O boel _intislizing

o _disableinitializers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ExchangeV2Core Diagram

=
=
= == = e —
ﬁ =S = ==l===]-al——=
Y —_—
=
ST |
= -
] —

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

OrderValidator Diagram

=
= 3 prawtive
a R -
e e e
ik i "

[T

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

TransferExecutor Diagram

LifsA st ERET
oy = ® opreianiieg 1..gm'_nw {8} TramsterEsemuter
> Dyt [Tre ATSIT_CLASS s
0 btend [P0 ASST_CLASH Fpwamey ROy ez O
Sytwed FRCTH ASSET CLARS
:er? - g 1 g ve— * Gumwellil| (Thanme S
 Ewatwi} @ |eptesd COULERTERN e ¥ SR
@ Selamare [} o) & pth s A LA Transfur for sawrnen
& approrad| :mu| : m' O e
bytunl3 ASSPT TREHASH Pehatmivis EntaictTricterFrars(]
T 17 ASSET _TWPErASH » Giget y ™ [y
& Ty " o]
{5 ownatiwisraseah
() Asovessiograseois s
i S r——
: r
“pr— i i .
g ——] ERC el ingrace atuel ik Frrler ITrankisiErsc 1 mnnn g
= i . @ !@I m! 1 O s
- " | & Comprintanie tees] liganeERs | | ¥]
S e —— — | '.—“"-Hw'
S lemizine :Ik_mnﬁl .
B b o |
o _jraraten v
() cortmatipgrasatia
[rreT—
L]
bt}
- T mmgfemnder]
o weglistul

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RaribleTransferManager Diagram

[
o
anipd iy for i
o T
© Uiz
§ e
B
ey e e
= il corailaret e ——
L = B o
C P o g P |
- 1 ! i
:-n-l-ni-u 8 Syl it
Py ——
: Setistere
st i |
I e Rt
twrresmen.
LT e —
gt pat
rew e
* - —
 dypabeaiade st |
D pabe
- Sl v
o a2
() ranar g atene
| [T
%4 i
® o e [T @ weonn
Frr i = a Zga
! e 3 -Pemuien P]
& S}
© v
[
* bt
b s i |
t S il
Lauar gramare)
Syt |
T e ® s
a - G| Mearvatertsatitn)
E"‘"“' hawmesam) ; Gy o gt
[frrierim=S = :
-::'h-l) ; — : .
el A] | = e} Bt r—"
e £ Sy e
W 5, remwit _:w.ll 5 _rmglem
B s
Tl e
11 ez
—

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> ExchangeV2.sol

:5lither:ExchangeVz.sol analyzed (43 contracts with 75 detectors), 232 result({s) found

Slither log >> AssetMatcher.sol

iDetectors;

1 analyzed (7 contracts with 75 detectors), 48 result(s) foumd

Slither log >> ExchangeV2Core.sol

:Detectors:

:5lither :ExchangeV2Core.sol analyzed (35 contracts with 75 detectors), 147 result(s) fouwnd
Slither:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither log >> OrderValidator.sol

Slither log >> TransferExecutor.sol

:Detectors:

i5lither:TransferExecutor.sol analyzed (12 contracts with 75
+glither:

Slither log >> RaribleTransferManager.sol

18l ither:RaribleTrans ferManager . sal {18 contracts with 75 detectors), 85 r
slither

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Solidity Static Analysis

ExchangeV2.sol

Block timestamp:

Use of "block timestamp": "block timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block:timestamp, to a certain degree, to change the outcome of a

transaction in the mined block

Low level calls:

Use of "call™; should be avoided whenever possible. 1t can lead to unexpected behavior if return value

is not handled properly. Please use Direct Calls via specifying the called contract's interface,

Gas & Economy

(Gas costs:

Gas requirement of function ExchangeVZinitialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 3107:12:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amuount of gas. The number of iterations in a loop can grow beyond the block gas Limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops

incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to such

Similar variable names:

ExchangeV2Core.matchAssets(struct LibOrder.Order, struct LibOrder.Order) : Variables have very
similar names "makeMatch” and "takeMatch". Note: Modifiers are currently not considered by this
static analysis

Pos: 3080:24:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Guard conditions:

Jee "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your

code). Use "requirefx)" if x can be false, due to e.g. invalid input or a failing external component.

Pos: 3080:16:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants

i P el | 47 . 0
| 0 L e R e

AssetMatcher.sol

Security

Check-effects-interaction:
Potential vielation of Checks-Effec r e{struct

ibAsset AssetTypestruct LibAsset. AssetType): Could potentially lead to re-entrancy vulnerability

Lib
Mote: Modimhers are currently not considered by this static analysis.

Pos: 316:4
liscellaneous

Constant/View/Pure functions:
AssetMatcher.simpleMatch(struct LibAsset. Asset Type,struct LibAsset. AssetType) : |s constant but

potentially should not be. Note: Modifiers are currently not considered by this static analysis

Pos: 353:4:

Similar variable names:

AssetMatcher.matchAssetOneSide(struct LibAsset. Asset Type, struct LibAsset. Asset Type) : Variables
have very similar names "matcher” and "matchers”. Note; Modifiers are currently not considered by

atic analysis

Mo return:

lAssetMatcher.matchAssets|struct LibAsset. Asset e, struct LibAsset AssetType): Defines a retum
type but never explicitly returns a value.

Pos: 51:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Guard conditions:
Use "assert(x]" if you never ever want x to be false, not in any circumstance {apart from a bug in your

code). Use "require(x)” iIf x can be false, due to eg. invalid input or a failling external component

ExchangeV2Core.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in QrderValidator.validate(struct
LibOrder.Order.bytes): Could potentially lead to re-entrancy vulnerability. Note: Modifiers are

currently not considered by this static analysis

Pre 170417
Pos: 167917

Low level calls:

Use of "call™ should be avoided whenever possible. it can lead to unexpected behavior if return vald

ot handled properly. Please use Direct Calls wvia specifying the called contract's interface.

Pos: 1971:34:

Gas & Economy

For loop over dynamic array:
that do not have a fixed number of iterations, for example, loops that depend on storage

values, have to be used carefully, Due to the block gas limit, transactions can only consume a certain

amount of gas, The number of iterations in a loop can grow beyond the block gas limit which can

ed at a certain point. Addiionally, using unbounded loops

incurs in a lot of Carefully test how many items at maximum you can pass to such

functions to make it successful

Constant/View/Pure functions:

Exchange\/2CarevalidateFull(struct LibOrder Order bytes) : |s constant but patentially should not be

MNote: Modifiers are currently not considered by this static analysis.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Similar variable names:

ExchangeVZ2Core.matchAssets(struct LibCrder.Order struct LibOrder.Order) : Variables have very
similar names "makeMatch” and "takeMatch”. Mote: Modifiers are currently not considered by this
stabic analysis.

Pos: 2479:16:

Mo return:

ExchangeV2Core.getProtocolFee(): Defines a return type but never explicitly returns a value

Pos: 2488:12;

Guard conditions:

if you never ever want x to be false, not in any circumstance (apart from a bug in your

Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

Pos: 2480:16:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 =0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
vield rational constants

OrderValidator.sol
Security
Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
AddressUpgradeable functionCallWithValue(address, bytes uint256,string): Could potentially lead to
re-entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis

Pos: 306:7:

Block timestamp:

Uise of "block.timestamp”: "block.timestamp” can be influenced by miners to a certain degree. Tl
means that a miner can "choose” the bloc
transaction in the mined block

Pos: 1144:52:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Constant/View/Pure functions:

OrderValidatorvalidate(struct LibOrder.Order, bytes) : Is canstant but potentially should not be

Modifiers are currently not considered by this static analysis.

Pos: 1175:10:

Guard conditions:

Ise "assert(x)" if you never ever want x to be false, not in any drcumstance (apart from a bug in your

cede). Use "require(x)” if x can be false, due to e.g. invalid input or a failing external component

Pos: 1178:22;

TransferExecutor.sol

Se

Mi

-._.'_]r!tl'r'l

Check-effects-interaction:

Fotential violation of Checks-Effects-Interaction pattern in
AddresslpgradeablefunctionCallWithValue (address, bytesuint256,string): Could potentially lead to

re-entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 356:4:

scellaneous

Constant/View/Pure functions:

ContextlUpgradeable. Context_init_unchained{) : Potentially should be constantAview/pure but is not.

Mote: Modifiers are currently not considered by this static analysis

Pos: 471:4:

Guard conditions:

Jse "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your

code). Use "require(x)” if x can be false, due to e.g. invalid input or a failing external component.

Pos: 600:16:

Guard conditions:
se, not in any crcumstance (apart from a bug in your
nvalid input or a failling external component.,

Pos: 587:12:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

RaribleTransferManager.sol

Low level calls:
e of "call”; should be avoided whenever possible. It can lead to unexpected behavior if return value

is not handled properly. Please use Direct Calls via specifying the called contract's interface.

Pos: 498:50:

15 ::_";.. [: conomy

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
roidable gas costs. Carefully test how many items at maximum you can pass to such

incurs in a Lot of ave

functions to make it successful.

Similar variable names:

Rarible TransferManager.getRoyalties(address,uint256) : Vanabls gve very similar names “token”
and "tokenld”. Note: Modifiers are currently not considered by this static analysis

Pos: 1037

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any crcumstance (apart from a bug in your

code). Use "require(x)” if x can be false, due to e.g. invalid input or a failing external component

Pos: 1115:8:

Data truncated:
Division of integer values yields an integer value again, That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those

yvield rational constants

Pos: 256:26:;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Solhint Linter

ExchangeV2.sol

Error: Parse error: missing ';

Error: Parse error: missing '; at

AssetMatcher.sol

AssetMatcher.sol:3:1: Error: Compiler version 0.8.7 does not satisfy
the r semver requirementAssetMatcher.so0l:18:5: Error: Explicitly mark
visibility of state

AssetMatcher.so0l:97:51: Error: Avoid using low level calls.
AssetMatcher.sol:144:13: or: Avoid using inline assembly.
acceptable only in rare

AssetMatcher.so0l:297:5: : Explicitly mark visibility
AssetMatcher.so0l:298:5: : Explicitly mark visibility o

ExchangeV2Core.sol

)

Error: missing
missing

missing

ExchangeV2Cor
ExchangeV2Cor

) X

]

N 0

® ® O

QO

)
o ot

V)

Error:
Error:
Error:
Error:
Error:

(0]
o)

S
C (0)]

missing
missing
missing

= o o
D)

E n »
o O
(U

Q© cf ct ot

Error: Se error:
OrderVali . 2 : : Error: ¢ error: missing
OrderValidator. :885:18: Error: se error: missing
OrderValidator. : :18: Error: ' error:

TransferExecutor.sol

:3:1: Error: Compiler version 0.8.7 does not
mver requirement

.s01:264:27: Error: Avoid using low level calls.
.501:277:5: Error: Explicitly mark visibility of

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

TransferExecutor.sol: :5: Error: Explicitly mark visibility of
state

TransferEx
TransferEx

utor.sol:“
utor.sol:“
utor.sol:

TransferExecutor.sol:4
TransferExecutor.sol:/

Q

Error: Function name must be in mixedCase
Error: Code contains empty blocks

Error: Function name must be in mixedCase
Error: Code contains empty blocks

Error: Function name must be in mixedCase

TransferExecutor.so0l:496:5: Error: Function name must be in mixedCase

o1 o1

D]

® ® @
Q

Q
ul

TransferEx

JT O)

RaribleTransferManager.sol

RaribleTransferManager.: :13: : Error: error: missing ';
V{'

RaribleTransferManager. :26: : Error: Pars missing ';
V{l

RaribleTransferManager. :38: : Error: error: missing ';
RaribleTransferManager. :163: : Error: : missing
V{l

RaribleTransferManager.sol:186:18: Error: : missing
v

8

RaribleTransferMan .sol: : : Error: S : missing

V{'

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

