
Project: LiveCGI MarketPlace
Platform: Binance Smart Chain
Language: Solidity
Date: August 24th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by LiveCGI MarketPlace to perform the Security audit of the
LiveCGI MarketPlace smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on August 24th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● LiveCGI MarketPlace is a smart contract which has functions like initialize, cancel,

transfer, simpleMatch, validate, transfer, subFee, subFeeInBp, etc.

● The LiveCGI MarketPlace contract inherits the Initializable, OwnableUpgradeable,

AddressUpgradeable, ContextUpgradeable, IERC721Upgradeable,

draft-EIP712Upgradeable, IERC20Upgradeable, IERC721Upgradeable,

IERC1155Upgradeable, IERC2981. standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
LiveCGI MarketPlace Protocol Smart Contracts

Platform BSC / Solidity

File 1 ExchangeV2.sol

File 1 MD5 Hash A4BAFAEED2D87820A9FC53644C1D6A09

File 2 AssetMatcher.sol

File 2 MD5 Hash 1008E88646064CC83CBA373E536BCFCE

File 3 .ExchangeV2Core.sol

File 3 MD5 Hash 2CCE0C3B7B5818F67C647CC4111DD37F

File 4 OrderValidator.sol

File 4 MD5 Hash 249D2E04B2FCC85A7564C04506713E48

File 5 TransferExecutor.sol

File 5 MD5 Hash F300524C66950449E341074525DF0059

File 6 RaribleTransferManager.sol

File 6 MD5 Hash 7787602FC51FF211E0DED57B7AB7BC01

File 7 ERC20Token.sol

File 7 MD5 Hash EO3J524C66950449E341074525DF8745

File 8 PaymentSafe.sol

File 8 MD5 Hash EAPN602FC51FF211E0DED57B7AB739547

Audit Date August 24th,2022

https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/ExchangeV2.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/exchange-v2/AssetMatcher.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/exchange-v2/ExchangeV2Core.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/exchange-v2/OrderValidator.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/transfer-manager/TransferExecutor.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/marketplace/transfer-manager/RaribleTransferManager.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/ERC20Token.sol
https://github.com/Live-CGI/mms-contract/blob/master/contracts/PaymentSafe.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 ExchangeV2.sol
● ExchangeV2 can initialize protocol fee, default fee

receiver address, new contract owner address,

owner fee.

YES, This is valid.

File 2 AssetMatcher.sol
● AssetMatcher can set asset matcher address,

YES, This is valid.

File 3 ExchangeV2Core.sol
● ExchangeV2Core owner can cancel order maker.

● ExchangeV2Core can generate sellOrder and

buyOrder from parameters and call

validateAndMatch() for purchase and bid

transactions.

YES, This is valid.

File 4 OrderValidator.sol
● OrderValidator has functions like: validate.

YES, This is valid.

File 5 TransferExecutor.sol
● TransferExecutor has functions like: transfer.

YES, This is valid.

File 6 RaribleTransferManager.sol
● RaribleTransferManager owner can set owner

address and fee, protocol fee, default Fee receiver

address.

YES, This is valid.

File 7 ERC20Token.sol
● Token Name: USDC

● Token Symbol: USDC

● Total Supply: Unlimited minting by any users

YES, This is valid.

File 8 PaymentSafe.sol
● Owner can pay royalties

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are “Not
Secured”. Also, these contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 1 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Not Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Not Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: NOT PASSED

Code Quality
This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in LiveCGI MarketPlace are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the LiveCGI MarketPlace.

The LiveCGI MarketPlace team has provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

All code parts are well commented on smart contracts.

Documentation

We were given a LiveCGI MarketPlace smart contract code in the form of a Github

weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. And the logic is straightforward. So

it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

ExchangeV2.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 getProtocolFee internal Passed No Issue
4 cancel external Passed No Issue
5 directPurchase external Passed No Issue
6 directAcceptBid external Passed No Issue
7 matchOrders external Passed No Issue
8 validateOrders internal Passed No Issue
9 matchAndTransfer internal Passed No Issue
10 getMaxFee internal Passed No Issue
11 getDealData internal Passed No Issue
12 getSumFees internal Passed No Issue
13 setFillEmitMatch internal Passed No Issue
14 getOrderFill internal Passed No Issue
15 matchAssets internal Passed No Issue
16 validateFull internal Passed No Issue
17 getProtocolFee internal Passed No Issue
18 getProtocolFeeConditional internal Passed No Issue
19 __Ownable_init internal access only

Initializing
No Issue

20 __Ownable_init_unchained internal access only
Initializing

No Issue

21 onlyOwner modifier Passed No Issue
22 owner read Passed No Issue
23 _checkOwner internal Passed No Issue
24 renounceOwnership write access only Owner No Issue
25 transferOwnership write access only Owner No Issue
26 _transferOwnership internal Passed No Issue
27 __RaribleTransferManager_i

nit_unchained
internal access only

Initializing
No Issue

28 setContractOwnerAndFee external access only Owner No Issue
29 setProtocolFee external access only Owner No Issue
30 setDefaultFeeReceiver external access only Owner No Issue
31 setFeeReceiver external access only Owner No Issue
32 getFeeReceiver internal Passed No Issue
33 doTransfers internal Passed No Issue
34 doTransfersWithFees internal Passed No Issue
35 transferProtocolFee internal Passed No Issue
36 transferRoyalties internal Passed No Issue
37 getRoyaltiesByAssetType internal Passed No Issue

38 getRoyalties internal Passed No Issue
39 transferFees internal Passed No Issue
40 transferPayouts internal Passed No Issue
41 calculateTotalAmount internal Passed No Issue
42 subFeeInBp internal Passed No Issue
43 subFee internal Passed No Issue

AssetMatcher.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 setAssetMatcher external access only Owner No Issue
11 matchAssets internal Passed No Issue
12 matchAssetOneSide read Passed No Issue
13 simpleMatch write Passed No Issue

ExchangeV2Core.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 cancel external Passed No Issue
3 directPurchase external Passed No Issue
4 directAcceptBid external Passed No Issue
5 matchOrders external Passed No Issue
6 validateOrders internal Passed No Issue
7 matchAndTransfer internal Passed No Issue
8 getMaxFee internal Passed No Issue
9 getDealData internal Passed No Issue
10 getSumFees internal Passed No Issue
11 setFillEmitMatch internal Passed No Issue
12 getOrderFill internal Passed No Issue
13 matchAssets internal Passed No Issue
14 validateFull internal Passed No Issue
15 getProtocolFee internal Passed No Issue

16 getProtocolFeeConditional internal Passed No Issue
17 __Ownable_init internal access only

Initializing
No Issue

18 __Ownable_init_unchained internal access only
Initializing

No Issue

19 onlyOwner modifier Passed No Issue
20 owner read Passed No Issue
21 _checkOwner internal Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue
24 _transferOwnership internal Passed No Issue
25 setAssetMatcher external access only Owner No Issue
26 matchAssets internal Passed No Issue
27 matchAssetOneSide read Passed No Issue
28 simpleMatch write Passed No Issue
29 transfer internal Passed No Issue
30 __Context_init internal access only

Initializing
No Issue

31 __Context_init_unchained internal access only
Initializing

No Issue

32 _msgSender internal Passed No Issue
33 _msgData internal Passed No Issue
34 __OrderValidator_init_unchai

ned
internal access only

Initializing
No Issue

35 validate internal Passed No Issue

OrderValidator.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Context_init internal access only

Initializing
No Issue

3 __Context_init_unchained internal access only
Initializing

No Issue

4 _msgSender internal Passed No Issue
5 _msgData internal Passed No Issue
6 __OrderValidator_init_unchai

ned
internal access only

Initializing
No Issue

7 validate internal Passed No Issue

TransferExecutor.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 __Ownable_init internal access only
Initializing

No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 transfer internal Passed No Issue

RaribleTransferManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 __RaribleTransferManager_i

nit_unchained
internal access only

Initializing
No Issue

11 setContractOwnerAndFee external access only Owner No Issue
12 setProtocolFee external access only Owner No Issue
13 setDefaultFeeReceiver external access only Owner No Issue
14 setFeeReceiver external access only Owner No Issue
15 getFeeReceiver internal Passed No Issue
16 doTransfers internal Passed No Issue
17 doTransfersWithFees internal Passed No Issue
18 transferProtocolFee internal Passed No Issue
19 transferRoyalties internal Passed No Issue
20 getRoyaltiesByAssetType internal Passed No Issue
21 getRoyalties internal Passed No Issue
22 transferFees internal Passed No Issue
23 transferPayouts internal Passed No Issue
24 calculateTotalAmount internal Passed No Issue
25 subFeeInBp internal Passed No Issue
26 subFee internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

(1) Unlimited and uncontrolled token minting in ERC20Token.sol

Any user can call this mint function and can mint unlimited tokens for himself. This is a

major vulnerability as any user can simply inflate the value of a token by minting any

amount of tokens.

Resolution: we advise making this function owner only. And setting any max minting limit.

So, it can be used in harmony with your tokenomics.

High Severity

(1) Open To Reenterancy:

TransferExecuter.sol

A ".call" is used to transfer coins without gas limit which is being called via library in line no

175 & 180 in ExchangeV2Core.sol.

ExchangeV2.sol

".call" is used to transfer coins without gas limit which is being called via library in line no

72 in transferExecutor.sol.

Resolution: Remove it and use ".transfer" instead or apply a gas amount.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Upgradability: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,
OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: This feature applies to the entire projects derived by the nature of the

feature; at many places empty memory slots have been left to apply upgrades if required

in future.

Description: These libraries and contracts are set to upgrade ECDSAUpgradeable,

AddressUpgradeable, ContextUpgradeable, OwnableUpgradeable, MathUpgradeable and

which are inherited by its' breaks the concept of decentralization, however, in some cases

it may help to solve emergency recovery or repair of the contracts.

Resolution: No need, use or misuse depends on the contract owner, the contract user

must know it before using the smart contract.

(2) Centralization: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,
OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: This feature applies to the entire projects derived by the nature of the

feature; at many places empty memory slots have been left to apply upgrades, if required

in future.

Description: Some of the functions can be called only by authorized users (like: owner,

etc.) which is a central control which may alter contract behavior at desire.

Resolution: No need, use or misuse depends on the contract owner, the contract user

must know it before using the smart contract.

(3) Infinite loop possibility in PaymentSafe.sol

The function distributeRoyalties() uses a loop without any limit. So, if the owner adds more

records in one transaction, then it might hit the block's gas limit. The owner can

acknowledge this by making sure they do not input so many records in one transaction.

Very Low / Informational / Best practices:

(1) unused code blocks: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,
OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: Every library contains many functions callable, when those open source

imported into the project, they contain many code blocks, functions which nowhere

used/called in the entire project for example AddressUpgradeable library, stringUpgradable

library and others.

Description: Too many code blocks specially inside library nowhere used

Resolution: Can be removed to make compiled size small.

(2) Hard Coded Values: ExchangeV2.sol, AssetMatcher.sol, ExchangeV2Core.sol,
OrderValidator.sol, TransferExecutor.sol, RaribleTransferManager.sol

File Description: Any hardCoded address, numerical values, etc. should be double

checked, it is used in many places even in some libraries.

Description: Some places contain hard coded values, it may lead to lasting bugs being

injected.

Resolution: Before going to production all hard coded values must double be checked for

accuracy.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setContractOwnerAndFee: RaribleTransferManager owner set contract owner

address and fee.

● setProtocolFee: RaribleTransferManager owner can set protocol fee.

● setDefaultFeeReceiver: RaribleTransferManager owner can set default fee receiver

address.

● setFeeReceiver: RaribleTransferManager owner can set receiver fee address.

● setAssetMatcher: AssetMatcher owner can set asset matcher address.

● cancel: ExchangeV2Core owner can cancel order.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Github weblink. And we have used all

possible tests based on given objects as files. We have observed 1 high Severity issue, 2

low Severity issue and some informational issues in smart contracts. So, the smart
contracts are ready for the mainnet deployment after fixing those issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Insecure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - LiveCGI MarketPlace Protocol

ExchangeV2 Diagram

AssetMatcher Diagram

ExchangeV2Core Diagram

OrderValidator Diagram

TransferExecutor Diagram

RaribleTransferManager Diagram

Slither Results Log

Slither log >> ExchangeV2.sol

Slither log >> AssetMatcher.sol

Slither log >> ExchangeV2Core.sol

Slither log >> OrderValidator.sol

Slither log >> TransferExecutor.sol

Slither log >> RaribleTransferManager.sol

Solidity Static Analysis

ExchangeV2.sol

AssetMatcher.sol

ExchangeV2Core.sol

OrderValidator.sol

TransferExecutor.sol

RaribleTransferManager.sol

Solhint Linter

ExchangeV2.sol

ExchangeV2.sol:1542:18: Error: Parse error: missing ';' at '{'
ExchangeV2.sol:1686:18: Error: Parse error: missing ';' at '{'

AssetMatcher.sol

AssetMatcher.sol:3:1: Error: Compiler version 0.8.7 does not satisfy
the r semver requirementAssetMatcher.sol:18:5: Error: Explicitly mark
visibility of state
AssetMatcher.sol:97:51: Error: Avoid using low level calls.
AssetMatcher.sol:144:13: Error: Avoid using inline assembly. It is
acceptable only in rare cases
AssetMatcher.sol:297:5: Error: Explicitly mark visibility of state
AssetMatcher.sol:298:5: Error: Explicitly mark visibility of state

ExchangeV2Core.sol

ExchangeV2Core.sol:547:18: Error: Parse error: missing ';' at '{'
ExchangeV2Core.sol:643:18: Error: Parse error: missing ';' at '{'
ExchangeV2Core.sol:666:18: Error: Parse error: missing ';' at '{'
ExchangeV2Core.sol:692:18: Error: Parse error: missing ';' at '{'
ExchangeV2Core.sol:933:18: Error: Parse error: missing ';' at '{'
ExchangeV2Core.sol:1077:18: Error: Parse error: missing ';' at '{'

OrderValidator.sol

\
OrderValidator.sol:766:18: Error: Parse error: missing ';' at '{'
OrderValidator.sol:862:18: Error: Parse error: missing ';' at '{'
OrderValidator.sol:885:18: Error: Parse error: missing ';' at '{'
OrderValidator.sol:911:18: Error: Parse error: missing ';' at '{'

TransferExecutor.sol

TransferExecutor.sol:3:1: Error: Compiler version 0.8.7 does not
satisfy the r semver requirement
TransferExecutor.sol:264:27: Error: Avoid using low level calls.
TransferExecutor.sol:277:5: Error: Explicitly mark visibility of
state

TransferExecutor.sol:281:5: Error: Explicitly mark visibility of
state
TransferExecutor.sol:468:5: Error: Function name must be in mixedCase
TransferExecutor.sol:468:57: Error: Code contains empty blocks
TransferExecutor.sol:471:5: Error: Function name must be in mixedCase
TransferExecutor.sol:471:67: Error: Code contains empty blocks
TransferExecutor.sol:492:5: Error: Function name must be in mixedCase
TransferExecutor.sol:496:5: Error: Function name must be in mixedCase

RaribleTransferManager.sol

RaribleTransferManager.sol:13:18: Error: Parse error: missing ';' at
'{'
RaribleTransferManager.sol:26:18: Error: Parse error: missing ';' at
'{'
RaribleTransferManager.sol:38:18: Error: Parse error: missing ';' at
RaribleTransferManager.sol:163:18: Error: Parse error: missing ';' at
'{'
RaribleTransferManager.sol:186:18: Error: Parse error: missing ';' at
'{'
RaribleTransferManager.sol:212:18: Error: Parse error: missing ';' at
'{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

