@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Lynx Finance
Website: https://lynxfinance.net
Platform: Avalanche

Language: Solidity

Date: December 17th, 2022

https://lynxfinance.net

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 12
AUt FINAINGS oo e 13
@70 o T3 1017 T o 18
(@ 0] 1Y/ =1 1 T To [o] 0T) 19
DISCIAIMEIS ... e 21
Appendix
o Code FIoW Diagramououoiiii s 22
o Shther RESUIS LOGuiiiiii e 23
e Solidity staticanalysis ... 25
® SOININt LiNtEr oo 29

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Lynx Finance team to perform the Security audit of
the Lynx Finance smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on December 17th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
e LYNX Finance offers the $LYNX token.

e JSLYNX is a deflationary token on Avalanche (holders will receive rewards in
USDC.e).

e Lynx Contracts have functions like swapping, launch, etc.

Audit scope
Name Code Review and Security Analysis Report for Lynx
Token Smart Contract
Platform Avalanche / Solidity
File Lynx.sol
File MD5 Hash E9E74FA846B45592998B4A10C0588BCE

Updated File MD5 Hash | OBOEODED38AC3A1D13F5570F4A10BAO1

Online Code Link https://github.com/Volfsorg/Lynx/blob/main/Lynx.sol
Audit Date December 17th, 2022
Revised Audit Date December 22nd, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/Volfsorg/Lynx/blob/main/Lynx.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:
e Name: Lynx
e Symbol: LYNX
e Decimals: 18
e Total Supply: 100 Million $LYNX

YES, This is valid.

Buy Fee: 10%
e Burn Fee: 5%
e Treasury Fee: 4%

e Dev Fee: 1%

Sell Fee: 15%
e Reward Fee: 10%
e Burn Fee: 2%
e Treasury Fee: 2%

o Dev Fee: 1%

YES, This is valid.

Ownership Control:
e Owner can launch only once.

e Owner can set transfer enabled status.

YES, This is valid.

Authorized Control:
e Authorized can set swap settings.
e Authorized can set distributor gas settings.
e Authorized can set a new distributor.
e Authorized can set distribution addresses.
e Authorized can set distribution criteria.
e Authorized can set dex pair addresses.
e Authorized can set treasury fee receiver,
developer fee receiver.

o Authorized can set transfer fees, sell fees,

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

buy fees.
e Authorized can set reflection token

addresses.

Other Specifications: YES, This is valid.
e Fee Denominator: 1000
e Swap Maximum: 1%
e Launch Price: $0.0015

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 0 medium and 3 low and some very low level issues.

All the issues have been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

Passed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Lynx Finance are part of its logical algorithm. A library is a different type
of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Lynx Token.

The Lynx Finance team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Lynx Token smart contract code in the form of a Github weblink. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented on. But the logic is
straightforward. So it is easy to quickly understand the programming flow as well as
complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Another source of information was its website:_https://lynxfinance.net/ which provided rich

information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://lynxfinance.net/

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [receive external Passed No Issue
3 | checkTxLimit internal Passed No Issue
4 [launched internal Passed No Issue
5 basicTransfer internal Passed No Issue
6 transferFrom internal Passed No Issue
7 | shouldTakeFee internal Passed No Issue
8 [takeFee internal Passed No Issue
9 | shouldSwapBack internal Passed No Issue
10 | swapBack internal Passed No Issue
11 [buyTokens internal Removed No Issue
12 | allowance external Passed No Issue
13 | approve write Passed No Issue
14 | approveMax external Passed No Issue
15 | balanceOf read Passed No Issue
16 | decimals external Passed No Issue
17 | name external Passed No Issue
18 | symbol external Passed No Issue
19 | totalSupply external Passed No Issue
20 | transfer external Passed No Issue
21 | transferFrom external Passed No Issue
22 | getCirculatingSupply read Passed No Issue
23 | getDexPair external Passed No Issue
24 | getDexPair2 external Passed No Issue
25 | getDexPair3 external Passed No Issue
26 | getisFree read access only Owner No Issue
27 | getMinDistribution external Passed No Issue
28 | getMinPeriod external Passed No Issue
29 | getOwner external Passed No Issue
30 | getReflectionToken external Passed No Issue
31 | getSwapAmount read Passed No Issue
32 | getTotalBuyFee read Passed No Issue
33 | getTotalSellFee read Passed No Issue
34 | getTotalTransferFee read Passed No Issue
35 | launch write access only Owner No Issue
36 | swapBackManual external | access only authorized No Issue
37 | sweep external Removed No Issue
38 | setReflectionToken external | access only authorized No Issue
39 [setTransferEnabled write access only Owner No Issue
40 | setMax\Wallet external | access only authorized No Issue
41 | setTxLimit external | access only authorized No Issue
42 | setBuyFees external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

43 | setSellFees external Passed No Issue
44 | setTransferFees external Passed No Issue
45 | setFeeReceivers external | access only authorized No Issue
46 | setFree write access only Owner No Issue
47 | unSetFree write access only Owner No Issue
48 | setlsDividendExempt external | access only authorized No Issue
49 | setlsFeeExempt external | access only authorized No Issue
50 [setlsTxLimitExempt external | access only authorized No Issue
51 [setDexPair external | access only authorized No Issue
52 | setDexPair2 external | access only authorized No Issue
53 | setDexPair3 external | access only authorized No Issue
54 | setDistributionCriteria external | access only authorized No Issue
55 | setDistributorAddress external | access only authorized No Issue
56 | setNewDistributor external | access only authorized No Issue
57 | setDistributorSettings external | access only authorized No Issue
58 | setSwapBackSettings external | access only authorized No Issue
59 [swapping modifier Passed No Issue
60 [onlyOwner modifier Passed No Issue
61 | authorized modifier Passed No Issue
62 | authorize write Passed No Issue
63 | unauthorize write Passed No Issue
64 | isAuthorized read Passed No Issue
65 [isOwner read Passed No Issue
66 | renounceOwnership write access only Owner No Issue
67 | transferOwnership write access only Owner No Issue
68 | initialization modifier Removed No Issue
69 [onlyToken modifier Passed No Issue
70 | claimDividend external Passed No Issue
71 [deposit external Passed No Issue
72 | distributeDividend internal Passed No Issue
73 | process external Passed No Issue
74 | shouldDistribute internal Passed No Issue
75 | getCumulativeDividends internal Passed No Issue
76 | getMinDistribution external Passed No Issue
77 | getMinPeriod external Passed No Issue
78 | getUnpaidEarnings read Passed No Issue
79 | setDistributionCriteria external Passed No Issue
80 [setReflectionToken external Passed No Issue
81 | setShare external Passed No Issue
82 [addShareholder internal Passed No Issue
83 [removeShareholder internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

(1) Not renouncing the contract ownership:

* o

fidev Leawves the contract without owner. It will not be possible to call

" TonlyOwner”™ functions anymore. Can only be called by the current owner.

¥ NOTE: Renouncing ownership will leave the contract without an owner,

* thereby removing any functionality that is only awvailable to the owner.

function renocunceOwnership(address newDwner) public onlyOwner {
address previousOwner = owner;
newOwner = address(@};

emit OwnershipRenounced(previousOwner, newOwner);

This function should be used to renounce ownership so that the contract will be without an
owner. But here the owner does not get set by address(0). So this will do nothing.This

contract has always an owner.

Resolution: We suggest setting the owner to address(0) to renounce the contract
ownership.

Status: This issue is fixed in the revised contract code.

High Severity

No High severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) The owner can drain contract funds:

By using a sweep function the owner can drain contract funds.

Resolution: We suggest confirming this functionality.

Status: This issue is fixed in the revised contract code.

(2) Function input parameters lack of check:

Some functions require validation before execution.
Functions are:

LynxAuthorization

e authorize() - onlyOwner
e unauthorize()

LynxDividendDistributor

e setDistributionCriteria() - onlyToken

e setReflectionToken() - onlyToken

Resolution: We suggest using validation like for numerical variables that should be
greater than 0 and for address type check variables that are not address(0).

Status: This issue is fixed in the revised contract code.

(3) Critical operation lacks event log:

Missing event log for:

LynxDividendDistributor

e claimDividend()
e deposit() - onlyToken
e process() - onlyToken

e setShare() - onlyToken

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Lynx

e setBuyFees() - authorized
e setSellFees() - authorized

e setTransferFees() - authorized

Resolution: Please write an event log for listed events.

Status: This issue is fixed in the revised contract code.

Very Low / Informational / Best practices:

(1) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve
code size, and less gas consumption.

Status: This issue is fixed in the revised contract code.

(2) Unused function parameter: - LynxAuthorization

renounceOwnership(newOwner) onlyOwner {
previousOwner = owner;

newOwner = (0);

OwnershipRenounced(previousOwner, newOwner);

There is a function renounceOwnership() that asks the parameter "newOwner" but it's not
required and not used in this function, because in this function newOwner will always be
address(0).

Resolution: We suggest removing parameters from these function calls.

Status: This issue is fixed in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Unused modifier / Internal function / variable:
LynxDividendDistributor

The initialization() modifier is defined but not used.
The initialized variable has been set but not used anywhere.

Lynx

There are some internal functions defined but not used:

e launched()

Resolution: We suggest removing unused modifier / Internal function / variable.

Status: This issue is fixed in the revised contract code.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e getlsFree: Owner can check if the holder address is free or not.

e launch: Owner can launch only be called 1 time.

e swapBackManual: Authorized can swap back manual amount.

e setReflectionToken: Authorized can set reflection token address.

e setTransferEnabled: Owner can set transfer enabled status.

e setMaxWallet: Authorized can set maximum wallet amount.

e setTxLimit: Authorized can set transaction limit amount.

e setBuyFees: Authorized can set buy reflection fee, buy burn fee, buy treasury fee,
buy developer fee.

e setSellFees: Authorized can set sell reflection fee, sell burn fee, sell treasury fee,
sell developer fee.

e setTransferFees: Authorized can set transfer reflection fee, transfer burn fee,
transfer treasury fee, transfer developer fee.

e setFeeReceivers: Authorized can set treasury fee receiver, developer fee receiver.

e setFree: Owner can set free holder address.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e unSetFree: Owner can unset free holder address.

e setlsDividendExempt: Authorized can set if it is dividend exempt status.
o setlsFeeExempt: Authorized can set if it is fee exempt status.

e setDexPair: Authorized can set dex pair address.

e setDexPair2: Authorized can set dex pair 2 address.

e setDexPair3: Authorized can set dex pair 3 address.

e setDistributionCriteria: Authorized can set distribution criteria.

e setDistributorAddress: Authorized can set distribution address.

e setNewDistributor: Authorized can set new distributor.

e setDistributorSettings: Authorized can set distributor gas settings.

e setSwapBackSettings: Authorized can set swap settings.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a Github weblink. And we have used all
possible tests based on given objects as files. We have observed 1 critical, 3 low severity
issues and some informational issues in the smart contracts. All the issues have been
resolved in the revised code. So the smart contract is ready for the mainnet

deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Lynx Finance

@ Lyme
JIERC20

IERC20Metadata
LynxAuthorization

WhSafeMath for uint256

i

address bumFesReceiver
address treasuryFesReceiver
address devFeeReceiver
ddress reflectionToken
delress WAWVAX
address dexPair
address dexPair2
address dexPair3
ddress ROUTERADDR
address DEAD
ddress ZERO
unt256 buyReflectionFes

(@) wmonissnapistibutor

ILymxDivice ndDistrib mor
aSateMath for wint256

sddress _token

[ERC20 reflectionToken

address WAVAX

IoeRouter0z router

sddress shareholders
6

<
P

25
address=>Share shares

256 totalDividends.

Wnt256 totalDistributed

LNt255 dividendsPerShare

WN256 dividendsPerShare AccuracyFactor
WNt256 reflectionTokenDecimals

Wn256 minPeriod

Wnt256 minDistribution

WNt356 currentindex

bool infialized

»000000000000¢

6 _allowances

0000O00000000000000000000000O000000000000G0
M

»
© uint: launchedAt

© U256 lunchedAtTimestamp

“© LynxDividendDistributor distributor
© address distributor Address

© unt256 distributorGas

© bool swapEnabled

© Unt2Se swapPercentMax

© uint256 swap ThresholdMax

< bool nswap

. IoeFair

@) rwoeractory

© &__constructor_()
© QeheckTxLimi()

__constructor__()
CiaimDividenc()
Bdeposi()
distributeDividend()

proces:
A shouldDistribute(y

@ getCumuistiveDividencs()
AgethinDistribution()

© QgethinPeriod()

@ QgetUnpaidEamings()

© setDistributionCriteria()

® setReflectionToken()

© setShare()

< adashareholder()

°
°
<

°
o
P

“ Qlaunched()

© _basicTransfer()
© gransferfrom)

© AushouldTakeFee()
© takeFee()

> QshouldSwapBack()
© swapBack()

© buyTokens()
Aalowance()
approve()
approvehiax()

< removeShareholder()

® transfer()

® transferFram()

® QgetCirculatingSupply ()
P air ()

® QgetMinDistribution()
© QgethinPeriod()

® Qgetowner()

® QgetRefiectionToken()
© QgetSwapAmount()
QgetTotalBuyFee()
QgetTotalSelFee()
QgetTotalTransferFes()
Isunchi)
swapBackianual()
sweey
setReflectionToken()
setTransferEnabled()

@ QfeeTo()
eq

© approve()
@ transfer()

® transfarFrom()
@ burn{)

® swap()

© shim()

© syne()

© intisize(}

@ permit()

.

© Qumigrator()

© QgetPai()

© QalPairs()

® QuallPairsLength()
® createPair()

© setFeeTo()

© setfesToSetter()
© seibigrator()

0
© QbalanceOf()
© Quallowance()
© QDOMAN_SEPARATOR()
Qronces()

& Quokent()

© QgetResarves()

© Qprice0CumuiativeLast()
Qprice] Cumulativelast(y

@ QPERMIT_TYPEHASH()
& CUMRILIU_LIQUIDIT ()

. 1JoeRouter02

toeRourer01

® removeL iuidty AV AXSupportingF esOnTransfer Tokens

© removeLiquidty AV At PermitSuppor
- 2

0
rtingFesOnTranster
oF

TokensForTokens:

r Tokens()

Tokers()

AXForTe OnTransferTokens()

=

OnTransferTokens()

setMax\Vallet()
' setTxLimi()
I\ setBuyFees()
[setSelFees()
I setTeansterFees)
\ selFeeReceivers()
|] setfree()
[unSetFres()
|4 setlsDividendExempt()
| setisFeeExempt()
. setisTxLimhExempt()
1 setDexPair()
\ setDexPair2()

' setDexPair3()

' etDistributionCriteria()y
| ! setDistributor Address()
| | i | @ sethewDistributort)
| | ¢ | ® setbiswribatorsetingsg)
| . 1 | @ setSwapBackSetiings()

| \ / |
| ' for wint256 | for wint256 \ N
| . '
\ JI
v : |
. / [
| q_ v |
4 @samm £
(@ rLymxDividendpistributor Xy (@) /erc20metadiata
Ayl
 selistrioutionCriterial) < Quryb(iERCae
© setShare() < QuryMod()
Bdeposit() < Qadd)
© process() < Qsubl)
Al
o \ © transterOwnershipt)

@ ierczo

& Qotalsuppiy()
QbalanceOfi)
transter()
& Qallowance()
® approve()
@ transferFrom()

@ rweroweror

Qfactory()

 QWAVAXD

© addLiguidity(y

© BaddLiguidityAVAX()

© removeliquidty()

® removel iquidity AVAX()
emaveligquidityVithPermit()

© swapTokensForExact Tokens()
© BswapExacta v AXForTokens()
@ swapTokensForExactAVAX()
© swapExactTokensFor AVAX()
SswapAVAXForExactTokens()

Qquate()
© QgetAmourtout()
@ QgetAmourting)
© QgetAmount=Ou()
© QgetAmountsing

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> Lynx.sol

INFO:Detectors:

Ly |/E1“1PchE15t|1|Lt"r se tE15t|1|Lt1-|C|1t»|1clL1|t_SE ,uint256) iLyrx.scl#EBE—
- minPeri = _minPeriod {Lynx.sol#
- minDistribution = minDistributi

d emit an event for:

ctionToken(255, U1) (Lynx.sol#6 615) ould emit an event for:
- reflectio enDec ima _ref oC i (‘.
- minDistributi *
ynx.setTxLimit{uint256)
_maxTxAmount

{Lynx.sol#1897)

x: o11Re 1 . ce) (_sellTreasuryFee).add(_sellDevFee) (Lynx.sol#1106)
ynx.setT o (ui 1 ,ui ‘. 0) it 2 :

tra|sT»|BL|r =1

transferTreas se = _ f = Fee (Lynx.sol#1113)

transferD 8 = _ '. ol#1114)

totalTransferFee = ce (_ nsferBurnFee). (_transferTreasury).add{ transferDev

) should emit an event for:

:Detectors
c.setReflectionTo

mx.setDexPair(

mx.setDexPair2 \

address

setDexPair3(: ._dexPair3 {

dexPair3 address|(
mx.setDistributoraddr

: https
INFD.Detectors:
Reentrancy in Lynx.constructor()
External calls:
- pair

es[address{this)][ass | ter) _totalSupply (Lynx.sols
R“L ERaEER _tota 1su {
sen

amount tLul/.SCl#GiE}
1

_E/»r|t[EEHE] = true
empt[msg.sen
is /LlrltE/ rpt[rs se
Reentrancy y videndDistributor

Reentrancy in LynxDividendDistributor.

Reentrancy
) {Lynx.sol#541)

shareholders.length (Lynx.sol#636)

gth - 1]] = shareholderIndexes[shareholder] {(Lynx.sol#642)

shareholders[shareholders.length - 1] (Lynx.sol#641)

er].amount).

Reference: tor-Documentat

INFD:Detectors:
Reentrancy in Lynx. tlc\sT»r-l-rlcccr=ss address ,uint256) (Lynx.sol#

p:\tlr“:eeDr_rarsfer'ckers[aFCLrt oSwap,0, ,address(this),block.timestamp)

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reentrancy in Lynx.censtructer{) (Lynx.sol#724-743):

External calls

- pair = IJoeFactory(router.factory()).createPair(WAVAX,address{this)) (Lynx.sol#726

Event emitted after the call(s):

- Approval{msg.sender,spender,amount) 'Lvhf.501$04al

- appr 'jj|eSSIpa1r,, totalSupply)
Approval{msg.sender,spender,amount) {Lynx. s01#047
- approve(ROUTERADDR, totalSupply) (Lynx. sol#729)

- _ransferiaddressi@),nsg.sendel _totalSupply) (L .sol#742)
Reference: https:ffgithub.cowfcryticfslitherfwikifDetector—DDcuwentation#reentrancy—vulnerabillties—3
INFO:Detectors:
LynxDividendDistributor.shouldDistribute{address) {Lynx.sol#575-577) uses timestamp for comparisens

Dangerous comparisons:

- shareholderClaims[shareholder] + minPeriod < block.timestamp && getUnpaidEarnings(shareholder) = minDistribution (Lyn
x.s0l#576)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
LynxDividendDistributor.process{uint2 {Lynx.sol#548-573) has costly operations inside a loop:

- currentIndex = 8 {Lynx. sole)
LynxDividendDistributor.pr ({Lynx.s0l#548-573) has costly operations inside a loop:

- currentIndex ++ {Lynx. 3
Reference: https ffglthub CDWfCIvTICfsllthQIf\lklfDQtQCtDF Documentat ion#costly-operations-inside-a-loop

INFO: Detectors

LynxDividendDistributor.minDistribution (Lynx.sol#488) is set pre-construction with a non-constant function or state variable:
-1 * (18 ** reflectionTokenDecimals)

Lynx._maxTxAmount (Lynx.sol#658) is set pre-construction with a non-censtant function or state variable:
- totalsupply.div(1e0)

Lynx._maxWallet (Lynx.sol#659) is set pre-construction with a non-constant function or state variable:
- _totalSupply.di)

Lynx.totalBuyFee (Lynx.sol#682) is set pre-construction with a non-constant function or state variable:

- buyReflectionFee. add(buyBurnFee) .add{buyTreasuryFee).add{buyDevFee)
Lynx.totalSellFee (Lynx.sol#688) is set pre-construction with a mon-constant function or state variable:

- sellReflectionFee.add({sellBurnFee).add(sellTreasuryFee).add(sellDevFee)
Lynx.totalTransferFee (Lynx.sol#694) is set pre-construction with a non-constant function or

- transferReflectionFee.add(transferBurnFee).add(transferTreasuryFee).add(transferbevFe
Lynx.swapThresholdMax (Lynx.sol#715) is set pre-construction with a non-constant function or sta

- _totalSupply / 5@
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state-variables
INFO:Detectors:
Pragma version™@.8.4 (Lynx.sol#2) necessitates a version too recent to be trusted. Consider deploying with 8.6.12/8.7.6
solc-0.8.4 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

INFO:Detectors:
Lynx.slitherConstructorvariables .soli 1182) uses literals with too many dlg1ts:
- burnFeeReceiver el EaD (Lynx.sol#
Lynx.slitherConstructorva |1ab1e5I (Lynx.sols) o with too many dlg1ts:
- treasuryFeeRece ox0 8 (Lynx. s0l#66
Lynx.slitherConstructorvariables() (Lj) 2 i iith too many dlg1ts:
devFeeReceiver o 'Lvhf sol#665)
Lynx.slitherConstructory o ynx.sols 2) es literals with too many dlg1ts:
dexPair = {Lynx.sol#678)
Lynx.slitherConstructor a ()1 .soli) es literals with too many digits:
dexPair2 = {Lynx.sol#671)
Lynx.slitherConstruct () {Ly literals with too many digtits:
dexPair3 = {Lynx.sol#67
Lynx.slitherConstructor) . 3) uses literals with too many digits:
- DEAD = 6xB808 BedEaD (Lynx.sol#675)
Lynx.slitherConstructory o .soli) s literals w th too many digits:
- ZERO = @ B (Lynx.sol#676
Lynx.slitherConstructorVariab .) es literals with too many digits:
distributorGas = 6 Lvhf sol)
Reference, https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
:Detectors:
x.DEAD (Lynx.sol#675) should be constant
¢.ROUTERADDR (Lynx.sol#673) should be constant
. ZERD {Lynx.sol#676) should be constant
.._totalsupply (Lynx.sol#655) should be constant
x.burnFeeReceiver (Lynx. sol«.fsg should be constant
«. feeDenominator (Lynx.sol#) should be constant
dendDistributor.WAVAX (Lynx.sol#473) should be constant
! dendDistributor.dividendsPershareAccuracyFactor (Lynx.sol#485) should be constant
Reference: https:ffgithub.coWJC|ytlcfsllthelf\1k1fDetector—DDcuwentation#state—variables—that—cDuld—be—declared—constant

INFO:Detectors:
authorize(address) should be declared external:

- LynxAuthorization.authorize(address) (Lynx.sol#428-430)
unauthorize(address) should be declared external:

- LynxAuthorization.unauthorize{address) (Lynx.sol#432-434)
transferOwnership(address) should be declared external:

- LynxAuthorization.transferOwnership(address) (Lynx.sol#450-455)
getCirculatingSupply() should be declared external:

- Lynx.getCirculatingSupply() (Lynx.sol#937-989)
getIsFree(address) should be declared external:

- Lynx.getIsFree(address) (Lynx.sol#
get'otalBuyFeefl should be declared exte|na1

getTotalBuyFee() (Lyn

getTotalSellFee() should be declared externa

- Lynx.getTotalSellFee() (Lynx.sol#
getTotalTransferFee() should be declared externa

- Lynx.getTotalTransferFee() (Lynx.sol#1@
launch{) should be declared external:

- Lynx.launch{) (Lynx.sol#1042-1046)
setTransferEnabled(bool) should be declared externa

- Lynx.setTransferEnabled({bool) {Lynx.sol#
setFree(address) should be declared external:

- Lynx.setFree{address) (Lynx.sol#1125-1127)
unsetFree{address) should be declared externa

- Lynx.unSetFree{address) (Lynx.sol#1129-1131)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external
INFO:Slither:Lynx. sol analyzed (11 contracts wlth 75 detectors), 135 result(s) found
INFO:Slither:Use h crytic i cce =

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
LynxDividendDistributor.deposit(): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 823:4:

Check-effects-interaction:

Potential viclation of Checks-Effects-Interaction pattern in
LynxDividendDistributor.distributeDividend{address): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 841:4:

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a certain
degree. That means that a miner can "choose" the block.timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 1262:22:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the block.timestamp, to a certain degree,
to change the ocutcome of a transaction in the mined block.

more

Pos: 1381:30:

Block timestamp:

Use of "block timestamp”: "block timestamp™ can be influenced by miners to a certain
degree. That means that a miner can "choose" the block.timestamp, to a certain degree,
to change the ocutcome of a transaction in the mined block.

more
Pos: 1393:107:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function LynxDividendDistributor.process is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 864:4:

Gas costs:

Gas requirement of function Lynx.setSwapBackSettings is infinite: If the gas
requirement of a function is higher than the block gas Llimit, it cannot be executed.
Please avoid Loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 1530:4:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 470:4:

ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 1287/:4:

Miscellaneous

Constant/View/Pure functions:

IERC20.transfer(address,uint256) : Potentially should be constant/view/pure but is not.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 333:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

lJoeFactory.setMigrator(address) : Potentially should be constant/view/pure but is not.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 410:4:

Constant/View/Pure functions:

Lynx.getCirculatingSupply() : Is constant but potentially should not be. Note: Modifiers
are currently not considered by this static analysis.

more

Pos: 1315:4:

Similar variable names:

Lynx.setDexPair3(address) : Variables have very similar names "dexPair2" and

"_dexPair3". Note: Madifiers are currently not considered by this static analysis.
Pos: 1507:27:

No return:

lloeRouter02.removeliquidity AVAXWithPermitSupportingFeeOnTransfer Tokens(address,uint
Defines a return type but never explicitly returns a value.
Pos: 640:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from
a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing
external component.

more

Pos: 1476:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from
a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing
external component.

more

Pos: 1526:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/100=0
iInstead of 0.1 since the result is an integer again. This does not hold for division of
(only) literal values since those yield rational constants.

Pos: 1448:31:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/100=0

instead of 0.1 since the result is an integer again. This does not hold for division of

(only) literal values since those yield rational constants.
Pos: 1457:35:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Lynx.sol

error: missing
error: missing
error: missing
error: missing

error: missing
error: missing
error: missing
error: missing

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

