
Project: MainnetZ Chain
Website: https://mainnetz.io
Platform: MainnetZ Chain
Language: Solidity
Date: January 3rd, 2023

https://mainnetz.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 15

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 21

Our Methodology ………………………………………………………………………………... 22

Disclaimers ………………………………………………………………………………………. 24

Appendix

● Code Flow Diagram ……………………………………………………………………... 25

● Slither Results Log ………………………………………………………………………. 30

● Solidity static analysis ….……………………………………………………………….. 34

● Solhint Linter …………………………………………………………………….……….. 39

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by MainnetZ Chain to perform the Security audit of the
MainnetZ Chain smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on January 3rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● MainnetZ empowers the use and creation of decentralized applications (Dapps) and

to not only be the leading edge communal blockchain, but to also focus on the

revelations of developers releasing innovative projects with high potential.

● MainnetZ strives to become the origin of innovative Dapp technology, promotion,

business, and manufacturing within the cryptocurrency sector.

● The audit scope consists of system smart contracts of the MainnetZ Chain. The

system smart contracts contribute heavily to the consensus mechanism.

● The system smart contracts performs actions such as Create/Update Validators,

Vote for Proposals, staking for validators, Bridge, etc.

Audit scope

Name Code Review and Security Analysis Report for
MainnetZ Chain System Smart Contracts

Platform MainnetZ Chain / Solidity

File 1 Bridge.sol

File 1 Github Commit F08C4ABC74B1089F079FB2AD695EEA3A

File 2 PeggedToken.sol

File 2 Github Commit 045096375994504E5DD9296960D51ED7

File 3 Proposal.sol

File 3 Github Commit D41AF773FE41436CBCBF4F112DE6385D

File 4 Punish.sol

File 4 Github Commit 69BAE7AF30D60741D97B0F5C53B43A46

File 5 Validators.sol

File 5 Github Commit ACB6B049843D84049B3A0E7B9086BD9C

Audit Date January 3rd, 2023

Revised Audit Date January 13th, 2023

https://github.com/MNZChain/Bridge-Smart-Contracts/blob/main/Bridge.sol
https://github.com/MNZChain/Bridge-Smart-Contracts/blob/main/PeggedToken.sol
https://github.com/MNZChain/System-Contracts/blob/main/Proposal.sol
https://github.com/MNZChain/System-Contracts/blob/main/Punish.sol
https://github.com/MNZChain/System-Contracts/blob/main/Validators.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Bridge.sol
● Bridge is used for inter-blockchain assets exchange

● Owner can update extra coins rewards

YES, This is valid.

Both Bridge and
Pegged Tokens are
Centralized
solutions. Owner
must handle them
very securely.

File 2 PeggedToken.sol
● Name: ETH, BNB, Matic

● Symbol: ETH, BNB, Matic

● Decimal: 18

● Total Supply: 10 Million

● No max minting limit.

File 3 Proposal.sol
● Validators will vote to reactivate any inactive validator

YES, This is valid.

File 4 Punish.sol
● The validator can be punished for misbehavior

● Validators can clean other validator’s punish records

while restake

YES, This is valid.

File 5 Validators.sol
● Validators' contracts can initialize and punish validators

● It distributes block rewards to all active validators

● Maximum Validators: 21

● Minimal Staking Coin: 32 Coins

● Minimum Validator Staking: 1 Million

● Distribution Of Gas Fee Earned By Validator:

○ Staker: 45%

○ Validator: 5%

○ Burn: 10%

○ Smart contract creator: 40%

○ Burn Stop Amount: 100 Million

○ Extra Rewards Per Block: 1 Coin

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.
All the issues have been acknowledged in the contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in MainnetZ Chain Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the MainnetZ Chain Protocol.

The MainnetZ Chain team has not provided unit test scripts, which would not help to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a MainnetZ Chain smart contract code in the form of a Github link. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://mainnetz.io/ which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://mainnetz.io/

AS-IS overview

Bridge.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 onlySigner modifier Passed No Issue
4 changeSigner write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 acceptOwnership write Passed No Issue
7 receive external Passed No Issue
8 coinIn external Function input

parameters lack of
check

Refer Audit
Findings

9 coinOut external Function input
parameters lack of

check

Refer Audit
Findings

10 tokenIn external Function input
parameters lack of
check, Hard coded

Values

Refer Audit
Findings

11 tokenOut external Function input
parameters lack of

check

Refer Audit
Findings

12 setExraCoinsRewards external Spelling mistake,
Function input

parameters lack of
check

Refer Audit
Findings

PeggedToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 getOwner external Passed No Issue
8 decimals external Passed No Issue
9 symbol external Passed No Issue

10 name external Passed No Issue
11 totalSupply external Passed No Issue
12 balanceOf external Passed No Issue

13 transfer external Passed No Issue
14 allowance external Passed No Issue
15 approve external Passed No Issue
16 transferFrom external Passed No Issue
17 mint write Unlimited minting Refer Audit

Findings
18 burn write Passed No Issue
19 _transfer internal Passed No Issue
20 _mint internal Passed No Issue
21 _burn internal Passed No Issue
22 _approve internal Passed No Issue

Proposal.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue
9 onlyValidator modifier Passed No Issue

10 initialize external Critical operation
lacks event log,

Infinite loops
possibility

Refer Audit
Findings

11 createProposal external Passed No Issue
12 voteProposal external access only

Validator
No Issue

13 setUnpassed external access only
Validators Contract

No Issue

Punish.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue

8 onlyProposalContract modifier Passed No Issue
9 onlyNotPunished modifier Passed No Issue

10 onlyNotDecreased modifier Passed No Issue
11 initialize external Critical operation

lacks event log
Refer Audit

Findings
12 punish external access only Miner No Issue
13 decreaseMissedBlocksCounter external Infinite loops

possibility
Refer Audit

Findings
14 cleanPunishRecord external access only

Initialized
No Issue

15 getPunishValidatorsLen read Passed No Issue
16 getPunishRecord read Passed No Issue

Validators.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue
9 onlyNotRewarded modifier Passed No Issue

10 onlyNotUpdated modifier Passed No Issue
11 receive external Passed No Issue
12 setContractCreator write Critical operation

lacks event log
Refer Audit

Findings
13 initialize external Critical operation

lacks event log,
Infinite loops

possibility

Refer Audit
Findings

14 stake write access only
Initialized

No Issue

15 createOrEditValidator external access only
Initialized

No Issue

16 tryReactive external access only
Proposal Contract

No Issue

17 unstake external access only
Initialized

No Issue

18 withdrawStakingReward write Passed No Issue
19 withdrawStaking external Passed No Issue
20 withdrawProfits external Passed No Issue
21 distributeBlockReward external Passed No Issue
22 updateActiveValidatorSet write access only Miner No Issue

23 removeValidator external access only Punish
Contract

No Issue

24 removeValidatorIncoming external access only Punish
Contract

No Issue

25 getValidatorDescription read Passed No Issue
26 getValidatorInfo read Passed No Issue
27 getStakingInfo read Passed No Issue
28 getActiveValidators read Passed No Issue
29 getTotalStakeOfActiveValidators read Passed No Issue
30 getTotalStakeOfActiveValidators

Except
read Passed No Issue

31 isActiveValidator read Passed No Issue
32 isTopValidator read Passed No Issue
33 getTopValidators read Passed No Issue
34 validateDescription write Passed No Issue
35 tryAddValidatorToHighestSet internal Passed No Issue
36 tryRemoveValidatorIncoming write Passed No Issue
37 addProfitsToActiveValidatorsBySt

akePercentExcept
write Passed No Issue

38 tryJailValidator write Passed No Issue
39 tryRemoveValidatorInHighestSet write Passed No Issue
40 viewStakeReward read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Spelling mistake:

Validators.sol

Spelling mistakes in comments.

“valiadtor” word should be “validator.”

Bridge.sol

Spelling mistakes in function name and parameter.

“setExraCoinsRewards” should be “setExtraCoinsRewards”.
“_exraCoinRewards” should be ”_extraCoinRewards”.

Resolution: Correct the spelling.

Status: This issue is Acknowledged by the MainnetZ team, as it does not impact any
security or logical flow.

(2) Critical operation lacks event log:

Missing event log for:

Validators.sol

● initialize()

● setContractCreator()

Proposal.sol

● initialize()

Punish.sol

● cleanPunishRecord()

Resolution: Please write an event log for listed events.

Status: This issue is Acknowledged by the MainnetZ team, as these smart contracts
are being called from the blockchain and no events are needed.

(3) Infinite loops possibility:

Validators.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

Status: This issue is Acknowledged by the MainnetZ team, as validators are going
to be no more than 21. So, it will never go above the limit.

(4) Function input parameters lack of check: Bridge.sol

Some functions require validation before execution.

Functions are:

● setExraCoinsRewards

● coinOut

● coinIn

● tokenOut

● tokenIn

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0).

Status: This issue is Acknowledged in the contract code.

(5) Hard coded Values: Bridge.sol

Some variables are set as hard coded addresses.

Resolution: Deployer has to confirm before deploying the contract to production.

Status: This issue is Acknowledged by the MainnetZ team, as this address is USDT
Ethereum, which is a constant and the code logic is specifically for that.

(6) Unlimited minting: PeggedToken.sol

Setting max minting for the tokens is good for tokenomics.

Resolution: Since this is an owner function, the owner must take care of minting with

limitations. or even better, just add a max minting limit.

Status: This issue is Acknowledged by the MainnetZ team, as this is a centralized
solution and the owner has the full ability to min or burn the tokens.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● coinOut function in the Bridge contract: the signers can transfer coins out.

● tokenOut function in the Bridge contract: the signers can token out.

● setExraCoinsRewards in the Bridge: the owner can update extra coins rewards.

● mint function in PeggedToken contact: the owner can create `amount` tokens and

assign them to `msg.sender`, increasing the total supply.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github link. And we have used all possible

tests based on given objects as files. We have not observed any major issue in the smart

contracts. All the issues have been acknowledged in the contract code. So smart
contracts are good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - MainnetZ Chain Protocol

Bridge Diagram

PeggedToken Diagram

Proposal Diagram

Punish Diagram

Validators Diagram

Slither Results Log
Slither Log >> Bridge.sol

Slither Log >> PeggedToken.sol

Slither Log >> Proposal.sol

Slither Log >> Punish.sol

Slither Log >> Validators.sol

Solidity Static Analysis
Bridge.sol

PeggedToken.sol

Proposal.sol

Punish.sol

Validators.sol

Solhint Linter

Bridge.sol

Bridge.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver requirement
Bridge.sol:15:1: Error: Contract name must be in CamelCase
Bridge.sol:26:1: Error: Contract name must be in CamelCase
Bridge.sol:35:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Bridge.sol:47:37: Error: Use double quotes for string literals
Bridge.sol:95:33: Error: Code contains empty blocks

PeggedToken.sol

PeggedToken.sol:2:1: Error: Compiler version 0.8.17 does not satisfy
the r semver requirement
PeggedToken.sol:108:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PeggedToken.sol:108:19: Error: Code contains empty blocks
PeggedToken.sol:155:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PeggedToken.sol:217:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

Proposal.sol

Proposal.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the
r semver requirement Error: Constant name must be in capitalized
SNAKE_CASE
Proposal.sol:13:25: Error: Constant name must be in capitalized
SNAKE_CASE
Proposal.sol:89:5: Error: Explicitly mark visibility of state
Proposal.sol:143:38: Error: Avoid to make time-based decisions in
your business logic
roposal.sol:366:38: Error: Avoid to use tx.origin
Proposal.sol:375:39: Error: Avoid making time-based decisions in your
Proposal.sol:709:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
Proposal.sol:727:60: Error: Avoid to make time-based decisions in
your business logic
Proposal.sol:1120:5: Error: Explicitly mark visibility of state
Proposal.sol:1171:56: Error: Avoid to make time-based decisions in
your business logic

Punish.sol

Punish.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver requirement
Punish.sol:9:25: Error: Constant name must be in capitalized
SNAKE_CASE
Punish.sol:11:25: Error: Constant name must be in capitalized
SNAKE_CASE
Punish.sol:21:29: Error: Constant name must be in capitalized
SNAKE_CASE
Punish.sol:208:5: Error: Event name must be in CamelCase
Punish.sol:235:38: Error: Avoid to use tx.origin
Punish.sol:244:39: Error: Avoid to make time-based decisions in your
business logic
Punish.sol:571:9: Error: Possible reentrancy vulnerabilities. Avoid
state changes after transfer.
Punish.sol:571:31: Error: Avoid to make time-based decisions in your
business logic
Punish.sol:932:54: Error: Avoid to make time-based decisions in your
business logic
Punish.sol:964:5: Error: Explicitly mark visibility of state
Punish.sol:966:5: Error: Explicitly mark visibility of state
Punish.sol:969:5: Error: Explicitly mark visibility of state
Punish.sol:970:5: Error: Explicitly mark visibility of state

Validators.sol

Validators.sol:2:1: Error: Compiler version 0.8.17 does not satisfy
the r semver requirement
Validators.sol:20:28: Error: Constant name must be in capitalized
SNAKE_CASE
Validators.sol:21:29: Error: Constant name must be in capitalized
SNAKE_CASE
Validators.sol:95:5: Error: Explicitly mark visibility of state
Validators.sol:143:38: Error: Avoid to make time-based decisions in
your business logic
alidators.sol:366:38: Error: Avoid to use tx.origin
Validators.sol:375:39: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:702:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
Validators.sol:702:31: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:957:50: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:1063:54: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

