@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: MainnetZ Chain
Website: https://mainnetz.io
Platform: MainnetZ Chain
Language: Solidity

Date: January 3rd, 2023

https://mainnetz.io/

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUAIt SUMMIAIY ot 8
Technical QUICK Stats ..o e 9
Code QUANIRY ... e 10
DOoCUMENTAtION ... 10
USE Of DEPENUENCIES ... e e nenaenes 10
ASIS OVEIVIEW ... 11
Severity DefinitioNS ... 15
AUt FINAINGS oo e 16
@70 o T3 1017 T o 21
(@ 0] 1Y/ =1 1 T To [o] 0T) 22
DISCIAIMEIS ... e 24
Appendix
o Code FIoW Diagramououoiiii s 25
o Slither RESUIS LOQ ...uviiiiii i e e e 30
e Solidity staticanalysis ... 34
® SOININt LiNtEr oo 39

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by MainnetZ Chain to perform the Security audit of the
MainnetZ Chain smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on January 3rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e MainnetZ empowers the use and creation of decentralized applications (Dapps) and
to not only be the leading edge communal blockchain, but to also focus on the
revelations of developers releasing innovative projects with high potential.

e MainnetZ strives to become the origin of innovative Dapp technology, promotion,
business, and manufacturing within the cryptocurrency sector.

e The audit scope consists of system smart contracts of the MainnetZ Chain. The
system smart contracts contribute heavily to the consensus mechanism.

e The system smart contracts performs actions such as Create/Update Validators,

Vote for Proposals, staking for validators, Bridge, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
MainnetZ Chain System Smart Contracts

Platform MainnetZ Chain / Solidity

File 1 Bridge.sol

File 1 Github Commit FO8C4ABC74B1089F079FB2AD6G95EEA3A

File 2 PeggedToken.sol

File 2 Github Commit 045096375994504E5DD9296960D51ED7

File 3 Proposal.sol

File 3 Github Commit D41AF773FE41436CBCBF4F112DE6385D

File 4 Punish.sol

File 4 Github Commit 69BAE7AF30D60741D97BOF5C53B43A46

File 5 Validators.sol

File 5 Github Commit ACB6B049843D84049B3A0E7B9086BD9C

Audit Date January 3rd, 2023

Revised Audit Date January 13th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/MNZChain/Bridge-Smart-Contracts/blob/main/Bridge.sol
https://github.com/MNZChain/Bridge-Smart-Contracts/blob/main/PeggedToken.sol
https://github.com/MNZChain/System-Contracts/blob/main/Proposal.sol
https://github.com/MNZChain/System-Contracts/blob/main/Punish.sol
https://github.com/MNZChain/System-Contracts/blob/main/Validators.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 Bridge.sol
e Bridge is used for inter-blockchain assets exchange

e Owner can update extra coins rewards

File 2 PeggedToken.sol
e Name: ETH, BNB, Matic
e Symbol: ETH, BNB, Matic
e Decimal: 18
e Total Supply: 10 Million

e No max minting limit.

YES, This is valid.

Both Bridge and
Pegged Tokens are
Centralized
solutions. Owner
must handle them

very securely.

File 3 Proposal.sol

e Validators will vote to reactivate any inactive validator

YES, This is valid.

File 4 Punish.sol
e The validator can be punished for misbehavior
e Validators can clean other validator’s punish records

while restake

YES, This is valid.

File 5 Validators.sol
e Validators' contracts can initialize and punish validators
e |t distributes block rewards to all active validators
e Maximum Validators: 21
e Minimal Staking Coin: 32 Coins
e Minimum Validator Staking: 1 Million
e Distribution Of Gas Fee Earned By Validator:
o Staker: 45%
o Validator: 5%
o Burn: 10%
o Smart contract creator: 40%
o Burn Stop Amount: 100 Million

o Extra Rewards Per Block: 1 Coin

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

All the issues have been acknowledged in the contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in MainnetZ Chain Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the MainnetZ Chain Protocol.

The MainnetZ Chain team has not provided unit test scripts, which would not help to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a MainnetZ Chain smart contract code in the form of a Github link. The

hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://mainnetz.io/ which provided rich

information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://mainnetz.io/

AS-IS overview

Bridge.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [onlyOwner modifier Passed No Issue
3 | onlySigner modifier Passed No Issue
4 | changeSigner write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | acceptOwnership write Passed No Issue
7 | receive external Passed No Issue
8 | coinin external Function input Refer Audit
parameters lack of Findings
check
9 | coinOut external Function input Refer Audit
parameters lack of Findings
check
10 | tokenlIn external Function input Refer Audit
parameters lack of Findings
check, Hard coded
Values
11 | tokenOut external Function input Refer Audit
parameters lack of Findings
check
12 | setExraCoinsRewards external | Spelling mistake, Refer Audit
Function input Findings
parameters lack of
check
PeggedToken.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 | transferOwnership internal Passed No Issue
7 | getOwner external Passed No Issue
8 | decimals external Passed No Issue
9 | symbol external Passed No Issue
10 | name external Passed No Issue
11 | totalSupply external Passed No Issue
12 | balanceOf external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

13 | transfer external Passed No Issue
14 | allowance external Passed No Issue
15 | approve external Passed No Issue
16 | transferFrom external Passed No Issue
17 | mint write Unlimited minting Refer Audit
Findings
18 | burn write Passed No Issue
19 | transfer internal Passed No Issue
20 | mint internal Passed No Issue
21 | burn internal Passed No Issue
22 | approve internal Passed No Issue
Proposal.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyMiner modifier Passed No Issue
3 | onlyNotlnitialized modifier Passed No Issue
4 | onlylnitialized modifier Passed No Issue
5 | onlyPunishContract modifier Passed No Issue
6 | onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue
8 | onlyProposalContract modifier Passed No Issue
9 [onlyValidator modifier Passed No Issue
10 | initialize external Critical operation Refer Audit
lacks event log, Findings
Infinite loops
possibility
11 | createProposal external Passed No Issue
12 | voteProposal external access only No Issue
Validator
13 | setUnpassed external access only No Issue
Validators Contract
Punish.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyMiner modifier Passed No Issue
3 | onlyNotlnitialized modifier Passed No Issue
4 | onlylnitialized modifier Passed No Issue
5 | onlyPunishContract modifier Passed No Issue
6 | onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 | onlyProposalContract modifier Passed No Issue
9 [onlyNotPunished modifier Passed No Issue
10 | onlyNotDecreased modifier Passed No Issue
11 | initialize external | Critical operation Refer Audit
lacks event log Findings
12 | punish external | access only Miner No Issue
13 | decreaseMissedBlocksCounter external Infinite loops Refer Audit
possibility Findings
14 | cleanPunishRecord external access only No Issue
Initialized
15 | getPunishValidatorsLen read Passed No Issue
16 | getPunishRecord read Passed No Issue
Validators.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | onlyMiner modifier Passed No Issue
3 [onlyNotlInitialized modifier Passed No Issue
4 | onlyInitialized modifier Passed No Issue
5 | onlyPunishContract modifier Passed No Issue
6 | onlyBlockEpoch modifier Passed No Issue
7 | onlyValidatorsContract modifier Passed No Issue
8 | onlyProposalContract modifier Passed No Issue
9 | onlyNotRewarded modifier Passed No Issue
10 | onlyNotUpdated modifier Passed No Issue
11 [receive external Passed No Issue
12 | setContractCreator write Critical operation Refer Audit
lacks event log Findings
13 | initialize external Critical operation Refer Audit
lacks event log, Findings
Infinite loops
possibility
14 | stake write access only No Issue
Initialized
15 | createOrEditValidator external access only No Issue
Initialized
16 | tryReactive external access only No Issue
Proposal Contract
17 | unstake external access only No Issue
Initialized
18 | withdrawStakingReward write Passed No Issue
19 | withdrawStaking external Passed No Issue
20 | withdrawProfits external Passed No Issue
21 | distributeBlockReward external Passed No Issue
22 | updateActiveValidatorSet write access only Miner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

23 | removeValidator external | access only Punish No Issue
Contract
24 | removeValidatorincoming external | access only Punish No Issue
Contract
25 | getValidatorDescription read Passed No Issue
26 | getValidatorinfo read Passed No Issue
27 | getStakinglnfo read Passed No Issue
28 | getActiveValidators read Passed No Issue
29 | getTotalStakeOfActiveValidators read Passed No Issue
30 | getTotalStakeOfActiveValidators read Passed No Issue
Except
31 | isActiveValidator read Passed No Issue
32 | isTopValidator read Passed No Issue
33 | getTopValidators read Passed No Issue
34 | validateDescription write Passed No Issue
35 | tryAddValidatorToHighestSet internal Passed No Issue
36 | tryRemoveValidatorlncoming write Passed No Issue
37 | addProfitsToActiveValidatorsBySt | write Passed No Issue
akePercentExcept
38 [tryJailValidator write Passed No Issue
39 | tryRemoveValidatorinHighestSet write Passed No Issue
40 | viewStakeReward read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low
No low severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Spelling mistake:

Validators.sol

if (staked[staker][validator].coins

Spelling mistakes in comments.

“valiadtor” word should be “validator.”

Bridge.sol

oinRewards)

Spelling mistakes in function name and parameter.
“setExraCoinsRewards” should be “setExtraCoinsRewards”.

[13

_exraCoinRewards” should be ”_extraCoinRewards”.

Resolution: Correct the spelling.

Status: This issue is Acknowledged by the MainnetZ team, as it does not impact any

security or logical flow.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Critical operation lacks event log:

Missing event log for:
Validators.sol
e initialize()

e setContractCreator()

Proposal.sol

e initialize()

Punish.sol

e cleanPunishRecord()

Resolution: Please write an event log for listed events.
Status: This issue is Acknowledged by the MainnetZ team, as these smart contracts

are being called from the blockchain and no events are needed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Infinite loops possibility:

Validators.sol

distributeB

ber][(Operations.Distribute}] =

_burnrart = rew

_burnPart;
urnt o
burnPart } [(@)).transfer(_burnPart);

initialize([1 vals) onlyNotInitialized {

punish = Punish(PunishContractAddr);

(i=0; i< vals.length; i++) {
(vals[i] != (@), "Invalid validator address");
lastRewardTime[vals[1]] = .timestamp;

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.
Resolution: Adjust logic to replace loops with mapping or other code structure.
Status: This issue is Acknowledged by the MainnetZ team, as validators are going

to be no more than 21. So, it will never go above the limit.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(4) Function input parameters lack of check: Bridge.sol

Some functions require validation before execution.
Functions are:

e setExraCoinsRewards

e coinOut

e coinin

e tokenOut

e tokenln

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0).

Status: This issue is Acknowledged in the contract code.

(5) Hard coded Values: Bridge.sol

tokenIn(tokenAddress, tokenAmount, chainlD, outputCurrenc
orderID++;

if(tokenAddress == (0 ec7)){

usdtContract (tokenAddress).transferFrom(.sender, owner, tokenAmount);
lelse{
FRC2@Essential (tokenAddress).transferFrom(.sender, owner, tokenAmount);

1

Some variables are set as hard coded addresses.

Resolution: Deployer has to confirm before deploying the contract to production.

Status: This issue is Acknowledged by the MainnetZ team, as this address is USDT

Ethereum, which is a constant and the code logic is specifically for that.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(6) Unlimited minting: PeggedToken.sol

_mint(account, amount) {
(account I= (@), "BEP20: mint to the zero address");

_totalSupply = totalSupply + amount;
_balances[account] = _balances[account] + amount;
Transfer((@), account, amount);

Setting max minting for the tokens is good for tokenomics.

Resolution: Since this is an owner function, the owner must take care of minting with

limitations. or even better, just add a max minting limit.

Status: This issue is Acknowledged by the MainnetZ team, as this is a centralized

solution and the owner has the full ability to min or burn the tokens.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e coinOut function in the Bridge contract: the signers can transfer coins out.

e tokenOut function in the Bridge contract: the signers can token out.

e setExraCoinsRewards in the Bridge: the owner can update extra coins rewards.

e mint function in PeggedToken contact: the owner can create "amount’ tokens and

assign them to ‘'msg.sender’, increasing the total supply.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github link. And we have used all possible
tests based on given objects as files. We have not observed any major issue in the smart
contracts. All the issues have been acknowledged in the contract code. So smart

contracts are good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - MainnetZ Chain Protocol

Bridge Diagram

owned
(@ ercz0essential
@ usatContract 2 uint256 orderlD

o7 .
® Qhbalance0f() uirnt256 exraCoinRewards
@ transfer() @ transferFromi) @ &__constructor_()
@ transferFrom() @ écoinin)

@ coinOut()

@ tokening)

@ tokenOut()

@ setExraCoinsRewards()

@ ;wned

O address owner
< address newOwner
2 address==hool signer

@ _ constructor__()
2@ changeSigner()

@ transferOwnershipl)
@ acceptOwnership)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

PeggedToken Diagram

© ETH

Context
1BIP20
Ownable

O address==uint256 _balances

O address==mapping address=-uirt256 _alowances
O uird256 _totalSupply

O uirts _decimals
O string _symbol
O string _name

@ _ constructor__ ()
@ QgetOwner()
@ G decimals()
@ Qeymbol()

@ Q.name()

@ QtotalSupply()
@ G balancedf()
@ transfer()

@ Qallowance()
2 approvel)

@ transferFrom()
@ mirt()

@ burni)

< _transfer()

< _mint()

< _pburn()

< _approvel)

T
T

| N
@ IBIPZ0 ', @ Ownable

@ CtatalSupply() \
@ Qdecimals()

@ L eymbol() |
@ Qname() '

Context

@ QgetOwner() \
@ Qhalance0f() |
@ transfer()

@ Qallowance()
@ approvel)

@ transferFrom()

| O address _owner

@ _ constructor__ ()
@ Qowner()

@ renounceOwnershipl)
@ transferOwnership()

< _transferQwnershipl)

T
| T

©I Co ;11911

@ _ constructor__()
< 0, msgSender()
< O,_mzgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Proposal Diagram

© Validators

@ Funish

Params

< uint256 punishThresholed

O uint256 removeThreshold

© uint256 decreaseRate

< Validators validators

“ address==PunishRecord punishRecords
< address punish'/alidators

< Lint256==bool punished

< Uint256==hool decreased

Params

< address==\alidator validatorinfo

< address=>mapping address==Stakinginfo staked
© address current'/alidatorSet

© address highest'/alidatorsSet

O uint256 totalStake

O uint256 totalJailedHB

© address=raddress contractCreator

O address=>mapping address==>uint stakeTime

O address=>uint lastRewardTime

< address=>mapping vint=>uint reflectionPercertSum
> Punish punish

e uint256=>mapping uint8==hool operationsDone

@ initialize()

@ punishi)

@ decreaseMissedBlocksCounter])
@ cleanPunishRecord()

@ QgetPunishalidatorsLeni)

@ QgetPunishRecord()

@ @&_ constructor__()

@ setContractCreator()

@ inttialize()

@ dstake()

© @createOrEditV alicitor()

@ tryReactive()

@ unstake()

@ withdraw StakingReward()

@ withdraw Staking()

@ withdrawProfits()

© @distributeBlockReward()

@ updatebctive'/alidatarSet()

@ remove'alidator)

@ removeValidaterincoming()

© QgetValidatorDescription()

o Qgetvalidatorinfol)

@ QgetStakinglnfol)

@ QgetActiveValidators()

© QgetTotalStakeOfActiveValidators()
B O, getTotalStakeOfActive' alidatorsExcept()
© QisActivel/alidator()

@ QisTop'alidstor()

@ O getTop\Validators()

© QalidateDescription()
 tryAddValidator ToHighestSet()

B tryRemovealidatorincoming()

B addProfitsToActive'\ValidatorsByStakePercentExcept()
B tryJailvalicator)

B tryRemoveV alidastorinHighestSet()

© Proposal

Params

O uirt256 proposalLastingPeriod
O address=>bool pass
0 bytes32==Proposalinfo proposal

O address==mapping bytes32=="otelnfo votes

< Walidators validators

@ initialize()

@ createProposal()
@ voteProposal()
@ setUnpassed()

© QuiewsStakeReward()

bool inttialized

address ValidatorContractAddr
address PunishContract Addr
address Proposal Addr

uint1 & Max"alidators

uinté4 StakingLockPeriod
uint&4 WithelrawProfitPeriod
uint256 MinimalStakingCoin
uirt256 minimurm®/alicistor Staking
uint stakerPartPercent

uint validstorPartPercent

uint burnPartPercent

uint contractPartPercent

uint burnStopAmount

O uint totalBurrt

O uint258 extraRewardsPerBlock
O Lint256 rewardFund

O uint256 totalRewards

O00000000000O0O0

© Params

T

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Punish Diagram

@ “alidators

Params

“ address=="alidator validatorinfo

“ address=>mapping address=>Stakinginfo staked

© address current' alidatorSet

< address highest'alidstorsSet

O Uint256 totalStake

O uint256 totalJailedHB

< address==address contractCreator

< gddress=>mapping address=>uint stakeTime

< address==uint lastRewardTime

O address==mapping uirt==uint reflectionPercertSum

< Punish punish

< uint256=>mapping uirtB==hool operationsDone

@ Punish

Params

@ @& __constructor__ ()

@ getContractCreator()

@ initialize)

@ dstake)

@ dcreateOrEditvalidator()
@ tryReactivel)

@ unstake()

@ withdrawStakingReward()
@ withdrawStaking()

@ withdrawProfits()

@ @distributeBlockReward()
@ updateActivealidatorSet()
@ remove‘alidator()

@ remove'alidatorincoming()
@ QgetValidatorDescription()
@ QogetValidatorinfol)

@ QgetStakinglnfol)

@ O getActiveValidators()

@ O getTotalStakeOfActive'alidators()

B 4 getTotalStakeOfActive'alidatorsExcept()

@ QsActive'Validator()

@ QisTopValidator()

@ QgetTopalidators()

@ O validateDe=cription()

“ try AddV alidator ToHighestSet()
B tryRemoveValidatorincoming)

B addProfitsToActiveValidatorsBy StakePercentExcept()

B tryJailvalidator()
B tryRemoveV alidatorinHighestSet()
@ QviewStakeReward()

O UiMt256 punishThreshold
O uint256 removeThreshold
O uint256 decreaseRate

< Walidators validators

O address punishValidators
© uint256==bool punished
O Uint256=>baool decr |

“ address=>PunishRecord punishRecords

@ initialize()
@ punishi)
@ cleanPunishRecord()

@ QgetPunish alidatorsLen()
@ QgetPunishRecord()

@ decreaseMissedBlocksCounter()

T

@ Faram sla

bool intialized

address Validator ContractAdcr
address PunishContractAddr
address ProposalAddr

uint16 MaxValidators

uint&4 StakingLockPeriod
uint&4 WithdrawProfitPeriod
uirt256 MinimalStakingCoin

uirt 256 minimum®/ alidatorStaking
uint stakerPartPercent

uint validatorPartPercent

uint burnPartPercent

uint contractPartPercent

uint burnStopAmaount

uirt totalBurnt

uint256 extraRewardsPerBlock
uint256 rewardFund

uint256 totalRewards

QOoOQOoOOQOO0OO000QO00000000

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Validators Diagram

@ Validators

© Punish

Params

O UiMt256 punishThreshold

O Uint256 removeThreshold

O Uint256 decreaseRate

<> Walidators validators

< address==PunishRecord punishRecords
2 address punishValidators

< uint256==hool punished

2 uint256==hool decreased

Params

“ address=="alidator validatorinfo

“* address=>mapping address=>Stakinglnfo staked
address current'alidatorSet

address highestValidatorsSet

uint256 totalStake

uirt256 totalJailedHB

address==address contractCreator
address=>mapping address==>uint stakeTime
address==uint lastRewardTims
address==mapping uirt==uint reflectionPercentSum
< Punish punish

2 uint256=>mapping uirtB==hool operationsDone

QoQoQOoOO00Q00

@ initialize)

@ punishi)

@ decreaseMissedBlocksCounter()
@ cleanPunishRecord()

@ Q getPunish'alidatorsLen()

@ Q getPunishRecord()

i

@ &_ constructor__ ()
setContractCreator()

inftialize()

dstake()

d create OrEdit\ alidatar()
tryReactive()

unstake()
withdrawStakingRewsard()
withdrawStaking ()
withdrawProfits()

B distributeBlockReward()
updateActivealidatorSet()
remove\alidator)
remove'alidatorincoming()

O, get'alidatorDescription()

@ QgetValidatorinfol)

@ Q getStakinginfol)

@ QgetActiveValidators()

@ O getTotalStakeOf Active W alidators()
B O getTotalStakeOfActiveValidatorsExcept()
@ QsActive'Validator()

@ QisTopWalidator()

@ Q getTopValidators()

@ QvalidateDescription()

< tryadevalidator ToHighestSet()

B tryRemowve\alidatorincoming)

B addProftsToActiveWalidatorsBy StakePercentExcept()
B tryJail'alicdator()

B tryRemowvehalidatorinHighestSet()

@ QyiewStakeReward()

200000 OCQOQOQOOOOQRODD

T

@ Params

bool inttialized
address ValidatorContract&cdr

address PunishContractAddr

address ProposalAddr

uint16 MaxValidators

wint&4d StakingLockPeriod

uint&4 WithdrawProfitPeriod

uimt25E8 MinimalStakingCoin

QoOOoOOoOCOCC0000000000

Uirt256 minimum®/ alidator Staking
uint stakerPartPercent

uint validstorPartPercent

uint burnPartPercernt

E contractPartPercent

uint burnStopAmount

uint totalBurnt

uint256 extraRewardsPerBlock
uint256 rewardFund

uint256 totalRewards

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> Bridge.sol

INFO:Detectors:
Bridge.setExraCoinsRewards{uint256) (Bri .s0l#137 hould emit an event for:

Reference:
INFO:Detectors:
ol .transfer0

- usdtContract(toke).transferF (msg.se tokenAmount)
- ERC2BEsse ntial(tokenA ess).transfer (.sende mer ,tokenAmount)
after th
. »:'-:er_.t-:ker.-i\r’-:u‘t,-:l'eirII:.-LtrLtCer‘
= 255 ,UiNt256,uint256,uint256)

E/t rnal -clls
- ERC20Essential(ress).transfer(user,tokenAmount) (Bridge.
External calls send :
- é-.;l-SSI'LEwI ::-.

vulnerabilities-3

on too recent to be trusted. Consider depl

= o-H '._.slltl»l.-\ll-(l Detector-Documentation#incorrect-versions-of-solidity
INFO: Detectors
Co |t|c't usdtCo |tr

Parameter ch i (a . }._st-,r»:l I_Br is not in
Parameter .ch igner(.)._status (Br) is not in
EETET))1 1
Paramete 2., C N .)
Parameter . cend = ess,uint2 b 2 (Br -,» ? not 1n mixedCase
Paramete ,.s»?‘tE/raC nsRe (256) ra ds (Br ;) i in ase
Ref -5 //github.com/crytic/slither, <i/Detecto cumenta nfo ce-to-solidity-naming-conventions
INFO: Detectors
RTT| t cl"'-'
r).
aft»:r the
ID,msg.se s alL»:_.-:Lt|:LtCLr|"
Reentrancy i oinOut({address,uint256,uint256) (Br

t| anster{amo L,I t (Bridge.sol#183)

ess,address, L,'Ll‘t_.E L,'LI‘thE_.L"LI"tf‘EE:' (Bri .50l#124-134):
(exraCoinRewards) (Bridge.sol#129

okenOut(_or ..] g chainID) (Bri 131)
https:/ .C c/slither/wiki/Detector-Documentatio rancy-vulnerabilities-4

INFO:Detectors:

ference: Jeryticy etecto r-Documentation#public-function-that-could-be-declared-external
INFO: SlLther Brldge sol analyzed (4 contracts \-I'Lth 75 detectors), 27 result(s) found
INFO:Slither:Use : ddi etector Github intec

INFO:Detectors:
ETH.allowance(

) necessitates a version too rece o be trusted. ploying with 8.6.12,
ment

INFO Dotoctors

Redundant expression)
£ #redundant-statements

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:
ETH.constructor({) (PeggedToken.sol# 5) uses literals with too many digits:
- _totalSupply = elele 0080 (PeggedToken.sol#221)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
renounceOwnership() should be declared externa
- Ownable.renounceOwnership() (PeggedToken.sol#183-186)
transferownership({address) should be declared externa
- I-nable.transfeernershipiaddress} {PeggedToken.sol#192-194)
mint{uint256) should be declared external:
~ ETH.mint(uint256) (PeggedToken.sol#328-331)
burn{uint256) should be declared external:
- ETH.burn{uint256) (PeggedToken.sol#336-339)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-externa
INFO:511ither: PeggedToken sol analyzed (4 contracts thh 75 detectors), 11 result(s) found
INFO:Slither:Use https://cryt to get ac o additicnal detectors and

Github integration

Slither Log >> Proposal.sol

INFO:Detectors:
validators.withdrawStaking(address).staker {Proposal.sol#594) lacks a zero-check on
- staker.transfer(staking) (Proposal.sol#613)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Validators.distributeBlockReward(address[],uint64[]) (Proposal.sol#6 72 external calls inside a loop: address(contractC
reator[_to[i]]).transfer{amt) (Proposal. 531¢ro=.
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFO:Detectors:
Reentrancy in Punish.punish{address) (Propesal.sol#119-144):
External calls:
- validators.removeValidator(val) (Proposal.sol#134)
- lidators.removevalidatorIncoming(val) (Proposal.sol#140)
Event emitted after the call{s):
- LogPunishvalidator(val,block.timestamp) (Proposal.sol#143)
Reentrancy in Validators.tryReactive({address) (Proposal.sol#494-516):
External calls:
- require{bool,string){punish.cleanPunishRecord(validator),clean failed) {Proposal.sol#509)
Event emitted after the call(s):
- LogReactive(validator,block.timestamp) (Proposal.sol#513)
Reentrancy in Proposal.voteProposal(bytes32,bool) (Proposal.sol#1187-1242):
External calls:
- wvalidators.tryReactive(proposals[id].dst) (Propesal.sol#1227)
Event emitted after the callis):
- LogPassProposal(id,proposals[id].dst,block.timestamp) (Proposal.sol#1228)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Proposal.createProposal(address,string) (Proposal.sol#1163-1185) uses timestamp for compariseons
Dangerous CoOmMparisons:
- require(bool,string)(propesals[id].createTime == 6,Proposal already exists) (Proposal.sol#1174)
Proposal.voteProposal(bytes32,bool) (Proposal.sol#1187-1242) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string)(proposals[id].createTime != 0,Proposal not exist) (Proposal.sol#1192)
- require(bool,string)(block.timestamp < proposals[id].createTime + proposallLastingPeriod,Proposal expired) (Proposal.s
ol#1197-)
ol#1197-1 L ; o) L i , _ - P
- proposals[id].reject == validators. gQTHCtl reValidators{).length / 2 + 1 IP|op05a1 sol#1234-1235)
Reference: https://github.com/crytic/slither/wiki/Detector- Documentation#block- timestamp
INFO:Detectors:
Validators.onlyNotRewarded() (Proposal.sol#341-347) compares to a boolean constant:
-require(bool,string)(operationsDene[block.number][uint8(0perations.Distribute)] == false,Block 1is
roposal.sol#342-345)
Validators.onlyNotUpdated() (Proposal.sol#349-356) compares to a boolean constant:
-require{bool,string){operationsDone[block.number][uintd(0perations.Updatevalidators)] == false,validators already upda
ted) (Proposal.sol#350-354)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
INFO:Detectors:
Pragma version8.8.4 (Proposal.sol#2) necessitates a version too recent to be trusted. Consider deploying with 0.6.
solc-8.8.4 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

INFO:Detectors:
Punish.slitherConstructorVariables() (Proposal.sol#78-209) uses literals with too many digits:

- minimumValidatorStaking = 1000 BOE0 (Proposal.sol#23)
Punish.slithn|Const|ucto|‘ riables() (Pr al. i)9) uses literals with too many digits:

0o |PIDPDSa1 sol#31)

Punish.sllth9|Const|uctolConstantUarlablesi‘ (Proposal.sol#78-209) uses literals with too many digits:

- ValidatorContractAddr = address (Proposal.sol#8-9)
Punish.slitherConstructorConstantVariabl uses literals with too many digits:

- PunishContractAddr = @ 801 (Proposal.sol#108-11)
Punish.slitherConstructorConstantVariablesi (Proposal.sol#78-209) uses literals with too many digits:

BOBOFR02 (Proposal.sol#12-13)
591) uses 11té|als with too many digits:
(Proposal .sol#586)
uses literals with too many digits:
_ alldato|Pa|t = rew 3 'alldato|Pa|tPn|cnnt /10 IP|DpDSa1 sol#674)

Validators.distributeBlockReward{address[],uint64[]) IP|op05a1 sol# 28) uses literals with too many digits:

- _burnPart = reward * burnPartPercent / 100800 (Proposal.sol
Validators.distributeBlockRewardladdress[],uint [1) (Proposal.sol ’8) uses literals with too many digits:

- amt = amt * contractPartPercent / 18 {Proposal.sol#6
Validators.distributeBlockReward(address[],uint64[]) (Proposal.sol# 728) uses literals with too many digits:

- |°T1°ct10nPé|c9nt°uw[al][laStRQ\alj ime[vall] = lastRé\a|jH01 {remaining * 10 / validatorInfol
val].coins) (Proposal.sol#7@
Validators.viewStakeReward{address,address) (Proposal.sol#1 8) uses literals with too many digits:

- stakinglnfo.coins * yalidPercent / 10 B0 (Proposal.sol#1076)
Validators.slitherConstructorVariables() (Proposal.sol#211-1082) uses literals with too many digits:

- minimumValidatorStaking = Beee (Proposal.sol#23)
Validators.slitherConstructorvariables() (Proposal. 501*411 1882) uses literals with too many digits:

- burnStopAmount =

a private and confidential document. No part of this document should
closed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Log >> Punish.sol

withdrawStaking(a

staker.

ce: https://g

INFD Detectors

v ors.distributeB

ator[_te[1]]) t|c|sT»|\crt

Ref -__,Itt|. g

INFO: Detectors

Reentr / in Punish
calls:

.punish(address)

on

ess-validation
has external calls inside a lo
#calls-inside-a-loop

(Punish.sol#994-1019):

{Punish.sol#18

1) (Punish.sol#1015)

the call(s):

Cy n validators.try
External call

{Punish.sol#218- ompares to a an
perationsDone[bl

ic/slither/w

k.timestamp)
address)

{Punish.sol#18
(Punish.sol#36
cleanPunishRec) {(Punish.sol#373
{Punish.

.1.1;E etector- --Lr-|t tion#reentran vulnerabilities-3

=,Block 1is alre
constant:

.number J[uint&(rations.Updatevalidators)] == false,Va

viki/Detector-Documentation olean-equality

sitates a version too

yment

ecent to be trusted.

t+iki/Detector-Documentation#incorrec

address(contractCre

INFO:Detectors:
validators.withdrawStakingR

alidatorPart

validators.distr =

- _burnPart =
validators.distributeB

- amt = amt *
Validators.distributeB

- reflectionPe

) IPL\lﬂ

ess,address)

validators.slit
- minimu
validators.slith

'alicafc‘
,L1|tf4[]

with
(Punish.so
litcrals wi

uses literals

many digits:

uses 11t»|cls wi ny digits:

) uses literals wi

uses Lliterals wi

ch_irE[;ci]] = lcstR- ardHold + {remaining

IPLllsF s0l#929-049) uses literals with too
{Punish.sol#945)
uses literals with too

many

(Punish.sol#

uses literals with too many

h.sol#31)

¢ validatorInfol

INFO:Detectors:

setCo |tra-tC|" "|fc.-r‘ss

should
511-ct-|1r
h

clea

getPunishval idate
- Punish
getPunishRec
- Punis

tFL|1sIR»
Reference: https i

thub.

lc
ess[].Llrt
ed external:

(Punish.sol#631-651)

fwiki/ E t»-t“r E“'LF entat ion#public-function-that-cc

INFO:Slither:Punish. sol analyzed (3 contraéts wtth 75 detectors), 69 result(s) found

INFO:Slither:Use

; is a private and confidential document. No part of this document should

be disclosed to third party without prior written perm

Email: audit@EtherAuthority.io

on of EtherAuthority.

Slither Log >> Validators.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Bridge.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Bridge.coinln(address):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently
not considered by this static analysis.

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

Bridge tokenOut{address,address,uint256,uint256,uint256): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 129:4:

Gas & Economy

Gas costs:

Gas requirement of function Bridge.coinOut is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops In your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 106:4:

Gas costs:

Gas requirement of function Bridge.setbExraCoinsRewards is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 142:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

PeggedToken.sol
Gas & Economy

Gas costs:

Gas requirement of function ETH.symbol is infinite: If the gas requirement of a
function is higher than the block gas Limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 244:2:

Gas costs:

Gas requirement of function ETH.mint is infinite: If the gas requirement of a
function is higher than the block gas mit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 328:2:

Gas costs:

Gas requirement of function ETH.burn is infinite: If the gas requirement of a

function is higher than the block gas Limit, it cannot be executed. Please avoid
loops In your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 336:2:

ERC
ERC20:

ERC20 contract's "decimals” function should have "uint8" as return type
more
Pos: 13:2:

ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 237:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Proposal.sol

Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it for
authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 366:37:

Block timestamp:

Use of "block.timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 1252:33:

Gas costs:

Gas requirement of function Punish.decreaseMissedBlocksCounter is infinite: If
the gas requirement of a function i1s higher than the block gas limit, it cannot be
executed. Please avoid loops In your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 146:4:

Gas costs:

Gas requirement of function Validators.isTopValidator is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)
Pos: 866:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Punish.sol

Security

Transaction origin:

Use of bx.origin: "tx.origin” is useful only in very exceptional cases. If you use it for
authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

mare

Pos: 235:37:

Block timestamp:

Use of "block.timestamp™: "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 1018:37:

Gas & Economy

Gas costs:

Gas requirement of function Validators.initialize is infinite: If the gas requirement
of a function is higher than the block gas Limit, it cannot be executed. Please
avoid loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 239:4:

Gas costs:

Gas requirement of function Validators.distributeBlockReward is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas

of storage (this includes clearing or copying arrays in storage)
Pos: 529:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Validators.sol

Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it for
authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 366:37:

Gas costs:

Gas requirement of function Punish.decreaseMissedBlocksCounter is infinite: If
the gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 146:4:

Gas costs:

Gas requirement of function Validators.distributeBlockReward is infinite: If the
gas requirement of a function is higher than the block gas Limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 660:4:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100
= 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 1076:19:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Bridge.sol

Bridge.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver requirement
Bridge.sol:15:1: Error: Contract name must be in CamelCase

6:1: Error: Contract name must be in CamelCase

:5: Error: Explicitly mark visibility in function (Se
ignoreConstructors to true if using solidity >=0.7.0)
Bridge.sol:47:37: : Use double quotes for string literals

Code contains empty blocks

PeggedToken.sol

PeggedToken.sol:2:1: Error: Compiler version 0.8.17 does not satisfy
the r semver requirement

PeggedToken.s0l:108:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PeggedToken.so0l:108: : Error: Code contains empty blocks
PeggedToken.sol:155: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PeggedToken.so0l:217:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true i1f using solidity >=0.7.0)

Proposal.sol

Proposal.sol:2:1:)r: Compiler version 0.8.17 does not

r semver requirement Error: Constant name must be in capita
(E_CAS

Proposal.so0l:13:25: Error: Constant name must be in capitali

SNAKE CASE

J1

Error: Explicitly mark visibility of state
Error: Avoid to make time-based decisions in

(00)
O

oy B WO
(@]

W e

W Q e
(00)

W H- W e
Q

Error: Avoid to use tx.origin

Error: Avoid making time-based decisions in your
Error: Possible reentrancy vulnerabilities.
after transfer.

Error: Avoid to make time-based decisions in

~1
) O oo

ood W
v O
S5 O Ol

W
® ~ W

(@]
~J
O 0

=N
o J

Proposal.sol:
your business
Proposal.sol:11

== ©N

N
QO = oY

Error: Explicitly mark visibility of state
Error: Avoid to make time-based decisions in

a1 01 Q

1v)
s
O
o)
O
N
9
—
)
O
}_l
=
=
~J
O) o

o)

your business

N
}_l
O
H
Q

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Punish.sol

Punish.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the

semver requirement

Punish.s0l:9:25: Error: Constant name must be in capitalized

SNAKE CASE

Punish.sol:11:25: Error: Constant name must be in capitalized

SNAKE CASE

Punish.s0l:21:29: Error: Constant name must be in capitalized

SNAKE CASE

Punish.s0l1:208:5: Error: Event name must be in CamelCase

Punish.s0l1:235:38: Error: Avoid to use tx.origin

Punish.s0l1:244:39: Error: Avoid to make time-based decisions in your

business logic

Punish.so0l:571:9: Error: Possible reentrancy vulnerabilities. Avoid

state changes after transfer.

Punish.so0l:571:31: Error: Avoid to make time-based decisions in your

business logic

Punish.s0l:932:54: Error: Avoid to make time-based decisions in your

business logic
.501:964:5: Error: Explicitly mark visibility of state
.801:966:5: Error: Explicitly mark visibility of state
.801:969:5: Error: Explicitly mark visibility of state
.801:970:5: Error: Explicitly mark visibility of state

Validators.sol

Validators.sol:2:1: Error: Compiler version 0.8.17 does not satisfy
the r semver requirement

Validators.sol:20:28: Error: Constant name must be in capitalized
SNAKE CASE

Validators.sol:21:29: Error: Constant name must be in capitalized
SNAKE CASE

Validators.so0l:95:5: Error: Explicitly mark visibility of state
Validators.sol:143:38: Error: Avoid to make time-based decisions
your business logic

alidators.sol:366:38: Error: Avoid to use tx.origin
Validators.sol:375:39: Error: Avoid to make time-based decisions
your business logic

Validators.sol:702:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

Validators.sol:702:31: Error: Avoid to make time-based decisions in
your business logic

Validators.so0l:957:50: Error: Avoid to make time-based decisions 1in
your business logic

Validators.sol:1063:54: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

