
Project: MyChance
Website: my-chance.io
Platform: Avalanche Network
Language: Solidity
Date: November 12th, 2022

https://my-chance.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 33

● Solhint Linter …………………………………………………………………….……….. 43

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by MyChance to perform the Security audit of the
MyChance protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on November 12th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● MyChance is a Lottery protocol which uses priceBonds as an NFT smart contract,

having functions like safeMint, safeBurn, pause, unpause, grantRole, revokeRole,

renounceRole, supportsInterface, startMigration, migrateMyself, etc. Users can

acquire Prize Bonds (which are NFTs) by paying in USDT, DAI or USC, and

automatically participate in lotteries. A part of their earnings is shared with

charities.

● A random winner chosen by every 7 days’ draw wins the total interests generated

in the last week.

● These contracts inherit IERC20, Pausable, ERC721Enumerable, AccessControl,

ERC721, Ownable, Counters standard smart contracts from the OpenZeppelin

library. And KeeperCompatible, LinkTokenInterface, VRFConsumerBaseV2,

LinkTokenInterface, ConfirmedOwner, VRFCoordinatorV2Interface standard smart

contracts from the chain link library.

● These OpenZeppelin and chain link contracts are considered community audited

and time tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
MyChance Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 MyChance.sol

File 1 MD5 Hash 4A0252C003CD151B7373B5E0A881CA4B

Updated File 1 MD5 Hash 0C27E0475C8F9CFF2C1E50CAAA82C2BF

File 2 Charities.sol

File 2 MD5 Hash A49286FEAF368714031BDF214DD65391

File 3 PrizeBond.sol

File 3 MD5 Hash AD5BC9DEA3A1EA58AB7669FC621D8699

Updated File 3 MD5 Hash B2E4531EDD29E9D546F21A2BF9DA28E5

File 4 RandomRequester.sol

File 4 MD5 Hash 91020DA4F056EB4C053C202D2B0D5BEA

File 5 Roles.sol

File 5 MD5 Hash 5CA0956D90B633BF9E71F71101585C76

Updated File 5 MD5 Hash 03E610EFA5B4C10B8D65A193F490EF5F

Audit Date November 12th, 2022

Revised Audit Date November 25th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 MyChance.sol
● Owner can handle pausable activities.

● Main contract that holds the lottery business rules as

well as numerous administrative functions.

YES, This is valid.

File 2 Charities.sol
● Charities role owners can enable charity addresses.

● The charities' contract is access to anything related to

adding and removing charities, in addition to getting

what the current charity gets.

YES, This is valid.

File 3 PrizeBond.sol
● Name: PrizeBond

● Symbol: PB

● Owner can set the base URI.

● A token's owner can also burn his prize bonds at any

time and recover the initial deposit.

YES, This is valid.

File 4 RandomRequester.sol
● This contract is used to generate a random key hash.

YES, This is valid.

File 5 Roles.sol
● Role contracts can define the roles of fees, migrants,

pausers and administrators.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 4 low and some very low level issues.
All the issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in MyChance Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the MyChance Protocol.

The MyChance team has provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a MyChance smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://my-chance.io/ which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://my-chance.io/

AS-IS overview

MyChance.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 checkUpkeep external Return value missing Refer Audit

Findings
3 performUpkeep external Passed No Issue
4 pause write Return value missing Refer Audit

Findings
5 unpause write access only Role No Issue
6 _updateCallbackGasLimit write access only Role No Issue
7 _approveLP write access only Role No Issue
8 getTotalPrizeBonds read Passed No Issue
9 getStakedAmount read Passed No Issue
10 getListOfTickets read Passed No Issue
11 getTicketData read Passed No Issue
12 getState read Passed No Issue
13 startMigration write access only Role No Issue
14 migrateMyself external Passed No Issue
15 draw write Passed No Issue
16 drawSpecialLottery external Passed No Issue
17 claim external Passed No Issue
18 mintPrizeBond external Passed No Issue
19 burnPrizeBond external Passed No Issue
20 increaseStake external Passed No Issue
21 reduceStake external Passed No Issue
22 canDraw internal Passed No Issue
23 howMuchToClaim read Passed No Issue
24 accumulatedDAI read Passed No Issue
25 accumulatedUSDT read Passed No Issue
26 accumulatedUSDC read Passed No Issue
27 getNextDrawDate read Passed No Issue
28 _executeDraw internal Passed No Issue
29 _executeSpecialDraw internal Passed No Issue
30 fulfillRandomWords internal Passed No Issue
31 setClaimNotRequired write access only Role No Issue
32 setWaitNotRequired write access only Role No Issue
33 _claimFees write Passed No Issue
34 _addSpecialLottery write access only Role No Issue

Charities.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _enableCharity write access only Role No Issue
3 onlyRole modifier Passed No Issue
4 supportsInterface read Passed No Issue
5 hasRole read Passed No Issue
6 _checkRole internal Passed No Issue
7 _checkRole internal Passed No Issue
8 getRoleAdmin read Passed No Issue
9 grantRole write access only Role No Issue
10 revokeRole write access only Role No Issue
11 renounceRole write Passed No Issue
12 _setupRole internal Passed No Issue
13 _setRoleAdmin internal Passed No Issue
14 _grantRole internal Passed No Issue
15 _revokeRole internal Passed No Issue

Roles.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRole modifier Passed No Issue
3 supportsInterface read Passed No Issue
4 hasRole read Passed No Issue
5 _checkRole internal Passed No Issue
6 _checkRole internal Passed No Issue
7 getRoleAdmin read Passed No Issue
8 grantRole write access only Role No Issue
9 revokeRole write access only Role No Issue
10 renounceRole write Passed No Issue
11 _setupRole internal Passed No Issue
12 _setRoleAdmin internal Passed No Issue
13 _grantRole internal Passed No Issue
14 _revokeRole internal Passed No Issue

PrizeBond.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMyChance modifier Passed No Issue
3 _baseURI internal Passed No Issue

4 _setBaseURI write access only Owner No Issue
5 getAssetType read Passed No Issue
6 setMyChance external Passed No Issue
7 safeMint external access only My

Chance
No Issue

8 safeBurn external access only My
Chance

No Issue

9 _beforeTokenTransfer internal Passed No Issue
10 supportsInterface read Passed No Issue
11 supportsInterface read Passed No Issue
12 balanceOf read Passed No Issue
13 ownerOf read Passed No Issue
14 name read Passed No Issue
15 symbol read Passed No Issue
16 tokenURI read Passed No Issue
17 _baseURI internal Passed No Issue
18 approve write Passed No Issue
19 getApproved read Passed No Issue
20 setApprovalForAll write Passed No Issue
21 isApprovedForAll read Passed No Issue
22 transferFrom write Passed No Issue
23 safeTransferFrom write Passed No Issue
24 safeTransferFrom write Passed No Issue
25 _safeTransfer internal Passed No Issue
26 _ownerOf internal Passed No Issue
27 _exists internal Passed No Issue
28 _isApprovedOrOwner internal Passed No Issue
29 _safeMint internal Passed No Issue
30 _safeMint internal Passed No Issue
31 _mint internal Passed No Issue
32 _burn internal Passed No Issue
33 _transfer internal Passed No Issue
34 _approve internal Passed No Issue
35 _setApprovalForAll internal Passed No Issue
36 _requireMinted internal Passed No Issue
37 _checkOnERC721Received write Passed No Issue
38 _beforeTokenTransfer internal Passed No Issue
39 _afterTokenTransfer internal Passed No Issue
40 _beforeConsecutiveTokenTransfe

r
internal Passed No Issue

41 _afterConsecutiveTokenTransfer internal Passed No Issue
42 supportsInterface read Passed No Issue
43 tokenOfOwnerByIndex read Passed No Issue
44 totalSupply read Passed No Issue
45 tokenByIndex read Passed No Issue
46 _beforeTokenTransfer internal Passed No Issue
47 _addTokenToOwnerEnumeration write Passed No Issue

48 _addTokenToAllTokensEnumerati
on

write Passed No Issue

49 _removeTokenFromOwnerEnume
ration

write Passed No Issue

50 _removeTokenFromAllTokensEnu
meration

write Passed No Issue

51 owner read Passed No Issue
52 onlyOwner modifier Passed No Issue
53 renounceOwnership write access only Owner No Issue
54 transferOwnership write access only Owner No Issue

RandomRequester.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _randomnessRequest internal Passed No Issue
3 fulfillRandomWords internal Passed No Issue
4 rawFulfillRandomWords external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium
No medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check: PrizeBond.sol
Variable validation is not performed in below functions:

● setMyChance = _myChance, _myChanceMigration.

Resolution: We advise to put validation: integer type variables should be greater than 0

and address type variables should not be address(0).

Status: Fixed

(2) Infinite Loop: Charities.sol
In _enableCharity function, the for loop does not have aCharities upper length limit, which

costs more gas.

Resolution: Upper bound should have a certain limit in for loops.

Status: Acknowledged

(3) Critical operation lacks event log: MyChance.sol
Missing event log for:

● draw

● drawSpecialLottery

● burnPrizeBond

● increaseStake

● reduceStake

● _claimFees

Resolution: Write an event log for listed events.

Status: Fixed

(4) Return value missing: MyChance.sol

In the checkUpkeep function, Unnamed return variable can remain unassigned. Add an

explicit return with value to all non-reverting code paths or name the variable.

Resolution: We suggest adding a "return" value in the function.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Same string is passed for all 3 constants: Roles.sol

For all 3 PAUSER, MIGRATOR,FEES roles the same hash is generated by passing the

same ""PAUSER_ROLE"" string to keccak256 method. Which consumes more gas. And

Transaction Fee.

Gas and TX fee consumption comparison:

● The contract with 3 keccak256 - 960,231 gas. Transaction Fee: 0.0264063525

AVAX ($0.60).

● The contract with 1 keccak256 - 924,554 gas, Transaction Fee: 0.025425235 AVAX

($0.58).

Resolution: Same hash is generated for all the roles, instead generate once and use for

all or have different hash for different roles.

Status: Fixed

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● _enableCharity: Charities role owner can enable charity address status.

● pause: MyChance role owner can trigger a stopped state.

● unpause: MyChance role owner can return to normal state.

● _updateCallbackGasLimit: MyChance role owner can update callback gas limit

values.

● _approveLP: MyChance role owner can approve LP tokens.

● _setBaseURI: PrizeBond owner can set a base URI.

● setMyChance: PrizeBond owner can set my chance address and my chance

migration.

● safeMint: PrizeBond MyChance owner can safely mint tokens.

● safeBurn: PrizeBond MyChance owner can safely burn tokens.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have observed 4 low severity issues, and some

Informational issues in smart contracts. All the issues have been fixed / acknowledged in

the revised code. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - MyChance Protocol

Charities Diagram

PrizeBond Diagram

RandomRequester Diagram

Roles Diagram

MyChance Diagram

Slither Results Log

Slither log >> MyChance.sol

Slither log >> Charities.sol

Slither log >> PrizeBond.sol

Slither log >> Roles.sol

Slither log >> RandomRequester.sol

Solidity Static Analysis

MyChance.sol

Charities.sol

PrizeBond.sol

RandomRequester.sol

Solhint Linter

MyChance.sol

MyChance.sol:3:1: Error: Compiler version ^0.8.15 does not satisfy
the r semver requirement
MyChance.sol:6:21: Error: Use double quotes for string literals
MyChance.sol:7:26: Error: Use double quotes for string literals
MyChance.sol:26:1: Error: Contract has 19 states declarations but
allowed no more than 15
MyChance.sol:53:5: Error: Explicitly mark visibility of state
MyChance.sol:73:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
MyChance.sol:103:18: Error: Avoid to make time-based decisions in
your business logic
MyChance.sol:130:146: Error: Use double quotes for string literals
MyChance.sol:131:104: Error: Use double quotes for string literals
MyChance.sol:135:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.MyChance.sol:137:13: Error:
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
MyChance.sol:139:149: Error: Use double quotes for string literals
MyChance.sol:140:106: Error: Use double quotes for string literals
MyChance.sol:144:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
MyChance.sol:145:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
MyChance.sol:146:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
MyChance.sol:230:101: Error: Use double quotes for string literals
MyChance.sol:234:101: Error: Use double quotes for string literals
MyChance.sol:265:16: Error: Avoid to make time-based decisions in
your business logic
MyChance.sol:337:74: Error: Visibility modifier must be first in list
of modifiers
MyChance.sol:341:73: Error: Visibility modifier must be first in list
of modifiers
MyChance.sol:345:47: Error: Visibility modifier must be first in list
of modifiers
MyChance.sol:387:80: Error: Use double quotes for string literals
MyChance.sol:393:32: Error: Code contains empty blocks
MyChance.sol:399:63: Error: Use double quotes for string literals
MyChance.sol:413:5: Error: Explicitly mark visibility of state
MyChance.sol:449:61: Error: Use double quotes for string literals
MyChance.sol:460:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

Charities.sol

Charities.sol:3:1: Error: Compiler version ^0.8.15 does not satisfy
the r semver requirement
Charities.sol:12:5: Error: Explicitly mark visibility of state
Charities.sol:35:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

PrizeBond.sol

PrizeBond.sol:3:1: Error: Compiler version ^0.8.15 does not satisfy
the r semver requirement
PrizeBond.sol:22:5: Error: Explicitly mark visibility of state
PrizeBond.sol:29:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PrizeBond.sol:29:45: Error: Code contains empty blocks
PrizeBond.sol:31:5: Error: Explicitly mark visibility of state

RandomRequester.sol

RandomRequester.sol:3:1: Error: Compiler version ^0.8.15 does not
satisfy the r semver requirement
RandomRequester.sol:14:5: Error: Explicitly mark visibility of state
RandomRequester.sol:14:22: Error: Constant name must be in
capitalized SNAKE_CASE
RandomRequester.sol:15:5: Error: Explicitly mark visibility of state
RandomRequester.sol:15:22: Error: Constant name must be in
capitalized SNAKE_CASE
RandomRequester.sol:16:5: Error: Explicitly mark visibility of state
RandomRequester.sol:18:6: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

Roles.sol

Roles.sol:3:1: Error: Compiler version ^0.8.15 does not satisfy the r
semver requirement
Roles.sol:14:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

