@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Plutus Land

Website: http://plutuslandofficial.com/
Platform: Ethereum

Language: Solidity

Date: July 29th, 2022


http://plutuslandofficial.com/

Table of contents

Introduction

................................................................................................... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Features ...........cooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 17
(@ 0] 1Y/ =1 1 T To [o] 0T ) 18
DISCIAIMEIS ... e 20
Appendix
o Code FIoW Diagram ........ououoiiii s 21
o Shther RESUIS LOG .. ..uiiiiii e 22
e Solidity staticanalysis ... 24
®  SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io


https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Introduction

EtherAuthority was contracted by the Plutus Land team to perform the Security audit of the
Plutus Land smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on July 29th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Plutus Land is a NFT smart contract, having functions like mint, setBaseURI,
refund, nftAdd, nftSub, etc.

e The Key4 Token contract inherits ERC721, ERC721Enumerable, Address,
ERC721, ERC721EnuCounters, Pausable, Ownable standard smart contracts from
the OpenZeppelin library.

e These OpenZeppelin contracts are considered community- audited and time-tested,

and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
Plutus Land Smart Contract
Platform Etherscan / Solidity
File Mint.sol
File MD5 Hash 3551DE6782654F2207B2650187A93BE4
Audit Date July 29th, 2022
Revised Audit Date August 1st, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Tokenomics: YES, This is valid.
e Name: Key4

e Symbol: KEY4

e Price Per Token: 0.8 ether

Ownership Control: YES, This is valid.
e Owner can set the recipient of revenues.

e Owner allows to change the mint price.

Tokens are non-transferable. YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 1 low and some very low level issues.

All the issues have been resolved/acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues

Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Key4 Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Key4 Token.

The Plutus Land team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Key4 Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | whenNotPaused modifier | Unused local libraries Refer audit
findings
3 | whenPaused modifier Passed No Issue
4 | paused read Passed No Issue
5 requireNotPaused internal Passed No Issue
6 requirePaused internal Passed No Issue
7 pause internal Passed No Issue
8 unpause internal Passed No Issue
9 |[owner read Passed No Issue
10 | onlyOwner modifier Passed No Issue
11 | renounceOwnership write access only Owner No Issue
12 | transferOwnership write access only Owner No Issue
13 | setOwner write Passed No Issue
14 | supportsinterface read Passed No Issue
15 | balanceOf read Passed No Issue
16 | ownerOf read Passed No Issue
17 | name read Passed No Issue
18 | symbol read Passed No Issue
19 | tokenURI read Passed No Issue
20 | baseURI internal Passed No Issue
21 | approve write Passed No Issue
22 | getApproved read Passed No Issue
23 | setApprovalForAll write Passed No Issue
24 | isApprovedForAll read Passed No Issue
25 | transferFrom write Passed No Issue
26 | safeTransferFrom write Passed No Issue
27 | safeTransferFrom write Passed No Issue
28 | safeTransfer internal Passed No Issue
29 | exists internal Passed No Issue
30 [ isApprovedOrOwner internal Passed No Issue
31 | safeMint internal Passed No Issue
32 | safeMint internal Passed No Issue
33 | mint internal Passed No Issue
34 | transfer internal Passed No Issue
35| burn internal Passed No Issue
36 | approve internal Passed No Issue
37 | setApprovalForAll internal Passed No Issue
38 [ requireMinted internal Passed No Issue
39 [ checkOnERC721Received write Passed No Issue
40 | beforeTokenTransfer internal Passed No Issue
41 | afterTokenTransfer internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




42 | mint external Passed No Issue
43 | multimint write Passed No Issue
44 | setBeneficiary write Function input Refer audit
parameters lack of findings
check
45 | checkOwner internal Passed No Issue
46 | getPrice read Passed No Issue
47 | setPrice write Function input Refer audit
parameters lack of findings
check
48 | totalSupply read Passed No Issue
49 | tokenURI read Passed No Issue
50 | getBaseURI read Passed No Issue
51 | setBaseURI write Passed No Issue
52 | baseURI internal Passed No Issue
53 | supportsinterface read Passed No Issue
54 | beforeTokenTransfer internal Passed No Issue
55 [ refund write Passed No Issue
56 | gettokenlID read Passed No Issue
57 [ getnftamount read Passed No Issue
58 | nftAdd internal Passed No Issue
59 | setApprovalForAll write Passed No Issue
60 [ nftSub internal Passed No Issue
61 | transferFrom write Passed No Issue
62 | safeTransferFrom write Passed No Issue
63 | safeTransferFrom write Passed No Issue
64 | approve write Passed No Issue
65 | transferOwnership write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Audit Findings

Critical Severity
No Critical severity vulnerabilities were found.

High Severity

(1) The onlyOwner Modifier not working:

J// @notice Sets the recipient of revenues.

function setBeneficiary(address payable beneficiary) public onlyOwner {
require(msg.sender == ownera, “"you no owner"); -
beneficiary = beneficiary;

¥

Ownable library has been included and code using onlyOwner modifier, but it's not working
as the _checkOwner function has been overridden as blank. So anyone can execute the

owner's function.
The onlyOwner functions are:

e setBeneficiary()
e setPrice()
e setBaseURI()

Resolution: We suggest removing that _checkOwner override function from the contract,

so the ownerOnly modifier will work.

Status: Fixed

Medium

No Medium severity vulnerabilities were found.
Low

(1) Function input parameters lack check:
Some functions require validation before execution.
Functions are:
e setPrice() - newPrice variable
This is a private and confidential document. No part of this document should

be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io



e setBeneficiary() - _beneficiary variable

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0).

Status:

Very Low / Informational / Best practices:

(1) Unused local libraries:

The Pausable library has been included in the contract code and the whenNotPaused()

function is also used but the owner cannot set pause/unpause for the contract.

The Ownable library has been included in the contract code, but Ownable functions or

modifiers are not used.

Resolution: We suggest removing unused libraries or adding owner functions to

pause/unpause the contract.
Status:

(2) Unwanted commented code:

// mapping(uint256 => string) private tokeuri;

//ff @dev (internal) Mint amount of tokens to address
function _multimint(address to, uint256 amount) {

nextTokenId++;

uint256 startTokenId = nextTokenId;

tokenID[to] = nextTokenld;
|fj tokeuri[nextTokenId] = baseURI;

for (uint256 1 = @; 1 < amount; i++) {

_sateMint(to, startTokenId + i};

h
}

// @notice Mint function for the owner of the contract
// function gift(address to, uint256 amount) external onlyOwner {
// _multimint(to, amount);

/1 }

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



There is an unwanted comment code added in the smart contract.
Resolution: We suggest removing unwanted commented codes.

Status: Fixed

(3) Unused for loop in mint tokens:

/// @dev (internal) Mint amount of tokens to address

function multimint(address to, uint256 amount) private {

nextTokenId++;

uint256 startTokenId = nextTokenId;

tokenID[to] = nextTokenId;

// tokeuri[nextTokenId] = baseURI;

for (uint256 1 = 0; i < amount; i++) {
_safeMint(to, startTokenId + i);

)

The Mint function has an internal function _multimint() which is used to execute a loop for
multiple token ID minting to the same address. but the Mint function is used to mint only 1

token at the time.

Resolution: We suggest removing the loop and execute the _safeMint() function while

minting the token id.
Status: Fixed

(4) No need to define an amount variable for use in minting:

// @param amount the number of tokens to mint
function mint(string memory uri) external payable whenNotPaused {
address payable to = payable(msg.sender);
require(status[to] == @,"already mint");
uint256 amount = 1; |
require(
msg.value >= getPrice()|* amount,
"Ether value sent is not correct”
)5
setBaseURI(uri);
nftamount = nftAdd(nftamount);
| _multimint(to, amount);

beneficiary.sendValue(getPrice()| * amount);
status[to] = 1;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



In the mint() function, the amount variable is set to static value 1 and used for further

processing in minting.

Resolution: We suggest removing this variable and use a direct number for minting the

token, It will save some gas.
Status: Fixed

(5) Checked both validation user is owner or not:

/// @notice Sets the recipient of revenues.

function setBeneficiary(address payable _beneficiary) public onlyOwner {
require(msg.sender == ownera, "you no owner"); -
beneficiary = beneficiary;

}

In the setBeneficiary() function, these use the "onlyOwner" modifier and "require" to check

if the caller user is the owner or not. So two times checking has been done here.

Resolution: We suggest removing this requirement to reduce some gas fee. Also remove

“ownera’” variable.
Status: Fixed

(6) Owner can stop the contract anytime:

There is a feature to enable/disable contact activity with contact status; the owner can

enable or disable contract activity anytime.

(7) Owner is assigned the same address:

/{/ @notice Sets the recipient of revenues.

function setBeneficiary(address payable beneficiary) public {
require(contractstatus == 8, "contract no't recovery");
require(msg.sender == ownera, "you no owner”);
ownera = payable(msg.sender);
DeEneticiary = _DensTiciarys

}

This function validates that the caller should be owner, and then again it sets the caller as

owner. This is meaningless.

Resolution: We suggest removing the owner assignment by the same address to save
some gas.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e setBaseURI: The owner can set a new BaseURI.

e setBeneficiary: The owner can set the recipient of revenues.
e setPrice: The owner can set the new mint price.

e contractstop: The owner can stop the contract.

e contractrecovery: The owner can restart the contract.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Conclusion

We were given a contract code in the form of a file And we have used all possible tests
based on given objects as files. We have observed some issues in the smart contracts
and those issues have been resolved/acknowledged in the revised code. So, the smart

contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Appendix

Code Flow Diagram - Key4 Token

(©) ercrz1Enumerabie

ERGT21
JERCT21Enumerable

O address=>1 ing uint256=>wint256 _ownedTokens
O unt256=>uint256 _ownedTokensindex

O unt256 _allTokens

O uint256=>Uint256 _allTokensindex

© Qsupportsinterface()

© QokenOfOwnerByindex()

® QotalSupply()

® QickenByindex()

< _beforeTokenTransfer()

_addTokenToOwnerEnumeration()
addTokenToAlTokensEnumer ation()

emaove TokenFromOwnerEnumeration()

= _removeTokenFromAlTokensEnumeration()

@ Fausable

Context

0 bool _paused

__constructor__()
© Qpaused()

© Q_requireNotPaused()
© @ _requirePaused()

< _pause()

< _unpause()

. IERC721Enumerable
IERC721

renounceCwnership()
transterOwnership()

W _setowner()

< a_msgSender()

© Q,_msgData()

@©) wint

ERC721
Ownable
Pausable

O string baseUR]

_muttimink(y
setBeneficiary()

® QgetBaseURK)
| @ setBaseURi()
| © @ _baseURI))

p ® refund()

s QgettaieniD()
® Qgetnftamount()
4 < Qnftade()

@ anfsub()

© transferFrom()

@ approve()

Address for address
nStrings for wint256
@ Counters for Counters. Counter

O address=>uint256 status
O wint256 pricePer Taken

© wint256 nftamournt
< wint256 nextTokenld
address beneficiary

© Q_checkOwner()

® Qsupportsinterface()
< _peforeTokenTransfer()

© setApprovalFor All()

® safeTransferFrom()

@ icrcr21Receier

© onERC721Received()

transferOwnership() ~

© ercr21

Context

ERC165
IERCT21
IERCT21Metadata

wnAddress for address
mnStrings for uint256

O string _name
O string _symbol

balances
_tokenApprovals

o addres:
o

address=>mapping address=>bool _operator Approvals

__constructor __()
© Qsupportsinterface()
© QbalanceOf()

© Qownerof()

© Qname()

® Qsymbol()

© QtokenURI)

< Q_baseURK)
approve()
QugetApproved()

© setApprovaForAlQ)
© QisApprovedForAllQ)
© transferFrom()

© safeTransferFromi)

© _safeTransfer()

< Q_exists()

< QisApprovedOrOwner()

© beforeTokenTransfer(}
_afterTokenTransfer()

@ Counters

\
| \ \
\

@) 1ercT21Metadata
IERCT21

@ Qname()
@ Qsymbol()
® CgokenURI()

@ ercies

IERC165

® Qsupportsinter face()

IERC165

© QpalanceOf()

® QownerOf()

© safeTransferFrom()
© transferFrom()

© approve()

® setApprovalForall()
© QgetApproved()

© QisApprovedFor Al

\

& Iva
%
. IERC165

® Qsupportsinterface()

< Qcurrent()
< increment()
< decrement()
< reset()
~
~
for uint256 .
~
N
N L

@) strings

O bytes16 _HEX_SYMBOLS
O wintB _ADDRESS_L ENGTH
© QtoString()

© QitoHexString()

|
|
|
[
|
|

1
1
|
|
[
[
[
[
[
I
'
|
|
|
'
|
'

for uint256

@ Address

< QisContract()

© sendvalue()

© functionCail()

© functionCalthy alue()

© QfunctionStaticCall(y

“ functionDelegateCall()

QverifyCalResutFromTarget()

* QuerifyCallResult()
Q_reven()

o0

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Slither Results Log

Slither Log >> Mint.sol

INFO:Detectors:
Reentrancy in Mint.mint{string) (Mint.sol#1295-1308):
External calls:
- _multimint(to,amount) (Mint.sol#1365)
- IERC721Receiver(to).onERC721Received(_msgSender(),from, tokenId,data) (Mint.sol#1867-1078)
- beneficiary.sendvalue(getPrice() * amount) (Mint.sol#1306)
State variables written after the call(s):
- status[to] = 1 (Mint.sol#1387)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
ERC721._checkOnERC721Received(address,address,uint256,bytes) (Mint.sol#1068-1032) ignores return value by IERC721Receiver(to).
onERC721Received(_msgSender( ), from, tokenId, data\ fMlnt sol#1067-16078)
Reference: https:ffgithub.cowfcrytlcfsl1therfu1k1fDetector Documentation#unused-return
INFO:Detectors:
Mint.setBeneficiary(a

Reference: https:/, b.c Cry 1_, er/wiki/Detecto cumentation#missing-zero-addre validation
INFD Detectors:

55,Uint25

) potential

55,Uint25
potential

55,Uint256
potential

INFO: Detéctors
Address. vert(byte

ERC721. ¢ --kH|ERC:“1R»u' v = ess,uint256,bytes) (Mint.sol#1060-1082) uses assembly
) - INLINE ASM llllt 50 L#
Reference: https://gi b.c crytic/slither/wiki/Detector-Documentation#assembly-usage

INFD Detectors:

StaticCall(
allResult(
and should be rem
) {(Mint.sol#518-5
L\I-IthCLFt-FS Counter)
crement(Counters.Counter) Illlt sol#
Counters.increment(Counters.Counter) Illlt ]
Counters.rese t\C L|t ers.Counter) (Mi

INFé:ﬁeféctors:
version==0.8.4 (Mint.sol eSS i : version too rece o be tr ed. d oying w 0.6.12/

INFD Detectors
Low level call

(succe
Low

Low

( , ) (Mint.sol#1 E
Low level ¢ in A 2Call( tes,st|1
\ CESS r:tL|rPat53
Reference: https ithub.com,
INFO:Detectors:
Parameter Mint.setBeneficiary( ? "':' y (Mint.sol#1327) 1is not in mixedCase
Parameter Mint.setBaseURI{strin is not in mixedCase
Reference: https://github.c ytic/ Lither/w k etector-Documentation#conformance-to-solidity-naming
INFO:Detectors:

= : https://github.c C y c/slither/wiki/Detector-Documentation#redundant-statements
INFD Detectors
renounceOwnership( ) 0 e declared external:

- : ; o
transferOwnershi : : 1 exte ||cl
- l1|t transfero e 555 ) \l1|t sol#1442-
le.transfe h|s|i|taccress, (Mint.sol#6

name( ) C

symbal( )

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Solidity Static Analysis

Mint.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address.functionCallWithValue(address,bytes,uint256,string): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 154:4:

Low level calls:

Use of "delegatecall": should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.

more

Pos: 211:50:

Gas & Economy

Gas costs:

Gas requirement of function ERC721.name is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 744:4:

Gas costs:

Gas requirement of function Mint.safeTransferFrom is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1434:2:

Gas costs:

Gas requirement of function ERC721.approve is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1438:2:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Constant/View/Pure functions:

Mint._beforeTokenTransfer{address,address,uint256) : Potentially should be constant/view/pure
but is not. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 1385:2:

Similar variable names:

MinttokenURI(uint256) : Variables have very similar names "tokenlD" and "tokenld". Note:

Modifiers are currently not considered by this static analysis.
Pos: 1353:6:

Similar variable names:

Mint._beforeTokenTransfer(address,address,uint256) : Variables have very similar names "tokenlD"
and "tokenld". Note: Modifiers are currently not considered by this static analysis.
Pos: 1386:48:

No return:

IERC721Enumerable.tokenBylndex({uint256): Defines a return type but never explicitly returns a
value.
Pos: 681:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in

yvour code). Use "require(x}" if x can be false, due to e.g. invalid input or a failing external

component.
more
Pos: 1406:6:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
yvour code). Use "require(x}" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 1413:6:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 1268:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Solhint Linter

Mint.sol

Error: Parse error:
Error: Parse error:
Error:

Parse error:
Error:
Error:

Error:

Error:

S
w
KC\

Error:

1aN
1S
w

Error: Parse error:

missing ';
missing ';'

mismatched

mismatched

mismatched

mismatched

mismatched

mismatched

mismatched

input
input
input
input

input

input

expecting
expecting
expecting
expecting
expecting
expecting

expecting

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



