
Project: Reign Token
Website: https://reignprotocol.io/
Platform: Binance Smart Chain
Language: Solidity
Date: July 29th, 2022

https://reignprotocol.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 31

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Reign Token team to perform the Security audit of
the Reign Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on July 29th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Reign Contract is a smart contract, having functions like setFees, mint,

checkFeeExempt, bonusTime, setFees, swapBack, stake, claim, unstake,

setBUSD, etc.

● The Reign contract inherits OwnableUpgradeable, ReentrancyGuardUpgradeable,

ERC20Upgradeable, IERC20, SafeMathUpgradeable standard smart contracts from

the OpenZeppelin library. And inherits VRFCoordinatorV2Interface standard smart

contracts from the chainlink library. And also inherits the console library from

standard smart contracts from the hardhat library.

● These OpenZeppelin contracts, chainlink contracts and hardhat contracts are

considered community audited and time tested, and hence are not part of the audit

scope.

Audit scope

Name Code Review and Security Analysis Report for
Reign Token Smart Contract

Platform BSC / Solidity

File ReignERC20.sol

File MD5 Hash 64D06AA68EBF246AD8CE1C7C32CE5643

Updated File MD5 Hash 74C64556CE5FCE304524A2932F4C723C

Audit Date July 29th, 2022

Revise Audit Date August 2nd, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Reign

● Symbol: REIGN

● Decimals: 18

● Initial Fragments Supply: 0.4 Million

YES, This is valid.

Ownership Control:
● The owner can set a blacklist of addresses.

● The owner can set the next rebase value.

● The owner can set the fee exempt, buy fees,

sell fees, transfer fees.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium and 3 low and some very low level issues.
All the issues have been resolved/acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Reign Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Reign Token.

The Reign Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Reign Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not commented on. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://reignprotocol.io/ which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://reignprotocol.io/

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __ReentrancyGuard_init internal access only

Initializing
No Issue

3 __ReentrancyGuard_init_unch
ained

internal access only
Initializing

No Issue

4 nonReentrant modifier No Issue
5 _nonReentrantBefore write Passed No Issue
6 _nonReentrantAfter write Passed No Issue
7 __Ownable_init internal access only

Initializing
No Issue

8 __Ownable_init_unchained internal access only
Initializing

No Issue

9 onlyOwner modifier Passed No Issue
10 owner read Passed No Issue
11 _checkOwner internal Passed No Issue
12 renounceOwnership write access only Owner No Issue
13 transferOwnership write access only Owner No Issue
14 _transferOwnership internal Passed No Issue
15 __ERC20_init internal access only

Initializing
No Issue

16 __ERC20_init_unchained internal access only
Initializing

No Issue

17 name read Passed No Issue
18 symbol read Passed No Issue
19 decimals read Passed No Issue
20 totalSupply read Passed No Issue
21 balanceOf read Passed No Issue
22 transfer write Passed No Issue
23 allowance read Passed No Issue
24 approve write Passed No Issue
25 transferFrom write Passed No Issue
26 increaseAllowance write Passed No Issue
27 decreaseAllowance write Passed No Issue
28 _transfer internal Passed No Issue
29 _mint internal Passed No Issue
30 _burn internal Passed No Issue
31 _approve internal Passed No Issue
32 _spendAllowance internal Passed No Issue
33 _beforeTokenTransfer internal Passed No Issue
34 _afterTokenTransfer internal Passed No Issue
35 swapping modifier Passed No Issue
36 validRecipient modifier Passed No Issue
37 initialize write access by initializer No Issue

38 setBlacklist external access only Owner No Issue
39 noBlacklist modifier Passed No Issue
40 allowance read Passed No Issue
41 balanceOf read Passed No Issue
42 transfer write Passed No Issue
43 _basicTransfer internal Passed No Issue
44 _transferFrom internal Passed No Issue
45 transferFrom write Passed No Issue
46 totalSupply read Passed No Issue
47 getCirculatingSupply read Passed No Issue
48 mint external Mint doesn’t work

without stake
Refer audit

findings
49 decreaseAllowance write Passed No Issue
50 increaseAllowance write Passed No Issue
51 approve write Passed No Issue
52 setNextRebase external access only Owner No Issue
53 shouldRebase internal Passed No Issue
54 _rebase write Passed No Issue
55 setAutoRebase external access only Owner No Issue
56 getYield read Passed No Issue
57 manualRebase external Passed No Issue
58 setRebaseFrequency external access only Owner No Issue
59 setBotForBonus external access only Owner No Issue
60 bonusTime external Missing Error

Message
Refer audit

findings
61 getNextRebaseToken external Passed No Issue
62 setChainLinkParam external access only Owner No Issue
63 rawFulfillRandomWords external Range validation is

missing
Refer audit

findings
64 fulfillRandomWords internal Range validation is

missing
Refer audit

findings
65 resetYieldStaking external Missing Error

Message
Refer audit

findings
66 setFeeExempt external access only Owner No Issue
67 setSwapBackSettings external Division before

multiplication
Refer audit

findings
68 checkFeeExempt external Passed No Issue
69 setFees external access only Owner No Issue
70 shouldTakeFee internal Passed No Issue
71 takeFee internal Division before

multiplication
Refer audit

findings
72 setRouter external Function input

parameters lack of
check

Refer audit
findings

73 setFeeReceivers external Function input
parameters lack of

check

Refer audit
findings

74 checkSwapThreshold external Passed No Issue

75 shouldSwapBack internal Passed No Issue
76 _swapAndLiquify write Passed No Issue
77 _addLiquidityStable write Passed No Issue
78 _swapTokensForStable write Passed No Issue
79 swapBack internal Passed No Issue
80 manualSwapBack external access only Owner No Issue
81 stake external Passed No Issue
82 claim external Passed No Issue
83 unstake external Passed No Issue
84 setStakingTypeCount external access only Owner No Issue
85 setStakeDuration external access only Owner No Issue
86 getStakingAmount external Passed No Issue
87 getStakingUnlocked external Passed No Issue
88 getStakingAmountInitial external Passed No Issue
89 getTotalStaked external Passed No Issue
90 getStakedTokens external Passed No Issue
91 getNewRebaseStakedToken external Passed No Issue
92 getRebaseDailyStakedToken external Passed No Issue
93 getMaxSellAmount read Passed No Issue
94 setPresalePeriod external access only Owner No Issue
95 buyPresale external Passed No Issue
96 setBUSD external Function input

parameters lack of
check

Refer audit
findings

97 setAutomatedMarketMakerPair write AutomatedMarketMak
erPair set manually
after setting router

Refer audit
findings

98 setInitialDistributionFinished external access only Owner No Issue
99 clearStuckBalance external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Fee Percentage limit is not set:

The owner can set the individual fee percentage to any variable. This might deter investors

as they could be wary that these fees might one day be set to 100% to force transfers to

go to the contract owner.

Resolution: Consider adding an explicit limit to the fee percentage.

Status: Fixed

(2) Range validation is missing:

A rawFulfillRandomWords function has a randomWords array input which requires 3 index

input. It reverts if input is <3 array index.

Resolution: We suggest checking for the minimum length of the array.

Status: Acknowledged

Low

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

● setFeeReceivers = _liquidityReceiver, _treasuryReceiver, _teamReceiver,

_burnReceiver

● setBUSD = _busdToken

● setRouter = _router

Resolution: We advise to put validation : int type variables should not be empty and

greater than 0 and address type variables should not be address(0).

Status: Acknowledged

(2) AutomatedMarketMakerPair set manually after setting router:

Currently, the token owner needs to take care to manually call

setAutomatedMarketMakerPair whenever they call setRouter. If they forget to do this, then

the automatedMarketMakerPairs mapping will fail to contain the updated liquidity pair

address.

Resolution: Add a call to setAutomatedMarketMakerPair from setRouter.

Status: Acknowledged

(3) Invalid parameters:

In the buyPresale function, a transfer event has been logged for sending REIGN tokens

from caller to contract address. But the actual transfer has been done from the contract

address to the caller.

Resolution: We suggest correcting the transfer event parameters.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Immutable variables:

rewardYieldDenominator is set only in the initialize function.

Resolution: We suggest declaring it as an Immutable variable. It will save some gas.

Status: Acknowledged

(2) Unused variables / Events:

Unused Variables:

● MAX_SUPPLY

● percentageForLessThanSevenDays

● percentageForMoreThanSevenDays

Unused Events:

● SetRewardYield

● SetIsLiquidityInBnb

Resolution: We suggest removing unused variables and events.

Status: Acknowledged

(3) Division before multiplication:

Solidity being resource constraint language, dividing any amount and then multiplying will

cause discrepancy in the outcome. Therefore always multiply the amount first and then

divide it.

Resolution: Consider ordering multiplication before division.

Status: Acknowledged

(4) Missing Error Message:

Error Messages are missing in some functions. Requirements must have error messages.

Resolution: We suggest adding appropriate Error Messages if required.

Status: Acknowledged

(5) Mint doesn’t work without stake:

Mint reverts if the user has not staked any amount.

Resolution: If the user has any max limit to mint tokens then we suggest putting a

validation or alert message to acknowledge the user.

Status: Acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setBlacklist: The owner can set Blacklist addresses.

● mint: The owner can mint a token.

● setNextRebase: The owner can set the next rebase.

● setAutoRebase: The owner can set the auto rebase.

● setRebaseFrequency: The owner can set rebase frequency value.

● setBotForBonus: The owner can set bot for bonuses.

● bonusTime: The owner can set bonus time.

● setChainLinkParam: The owner can set chain link parameter values.

● resetYieldStaking: The owner can reset yield staking values.

● setFeeExempt: The owner can set fee exempt addresses and values.

● setSwapBackSettings: The owner can set swap back settings value.

● setFees: The owner can set buy fee, sell fee and transfer fees.

● setRouter: The owner can set the router address.

● setFeeReceivers: The owner can set liquidity receiver fee, treasury receiver fee,

team receiver fee, burn receiver fees.

● setStakeDuration: The owner can set stake duration values.

● setStakingTypeCount: The owner can set staking type count values.

● setPresalePeriod: The owner can set the presale period value.

● setBUSD: The owner can set BUSD value.

● setAutomatedMarketMakerPair: The owner can set an automated market maker

pair address and value.

● setInitialDistributionFinished: The owner can set initial distribution finished values.

● clearStuckBalance: The owner can clear the stuck balance address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file And we have used all possible tests

based on given objects as files. We have observed 2 medium severity issues, 3 low

severity issues and some informational issues. All the issues have been

resolved/acknowledged in the revised code. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Reign Token

Slither Results Log
Slither Log >> ReignERC20.sol

Solidity Static Analysis
ReignERC20.sol

Solhint Linter

ReignERC20.sol

ReignERC20.sol:2233:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2246:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2258:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2275:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2287:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2383:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2406:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:2432:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:3021:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:3054:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:3081:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:3108:18: Error: Parse error: missing ';' at '{'
ReignERC20.sol:3160:22: Error: Parse error: missing ';' at '{'
ReignERC20.sol:3220:35: Error: Parse error: mismatched input '('
expecting {';', '='}
ReignERC20.sol:3220:48: Error: Parse error: mismatched input ','
expecting {';', '='}
ReignERC20.sol:3220:62: Error: Parse error: extraneous input ')'
expecting {';', '='}
ReignERC20.sol:3685:44: Error: Parse error: mismatched input '('
expecting {';', '='}

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

