@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Reign Token

Website: https://reignprotocol.io/
Platform: Binance Smart Chain
Language: Solidity

Date: July 29th, 2022

https://reignprotocol.io/

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 20
(@ 0] 1Y/ =1 1 T To [o] 0T) 21
DISCIAIMEIS ... e 23
Appendix
o Code FIoW Diagramououoiiii s 24
o Shther RESUIS LOGuiiiiii e 25
e Solidity staticanalysis ... 28
® SOININt LiNtEr oo 31

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Reign Token team to perform the Security audit of
the Reign Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on July 29th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Reign Contract is a smart contract, having functions like setFees, mint,
checkFeeExempt, bonusTime, setFees, swapBack, stake, claim, unstake,
setBUSD, etc.

e The Reign contract inherits OwnableUpgradeable, ReentrancyGuardUpgradeable,
ERC20Upgradeable, IERC20, SafeMathUpgradeable standard smart contracts from
the OpenZeppelin library. And inherits VRFCoordinatorV2Interface standard smart
contracts from the chainlink library. And also inherits the console library from
standard smart contracts from the hardhat library.

e These OpenZeppelin contracts, chainlink contracts and hardhat contracts are
considered community audited and time tested, and hence are not part of the audit

scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Reign Token Smart Contract

Platform BSC / Solidity
File ReignERC20.sol
File MD5 Hash 64D06AAGBEBF246AD8CE1C7C32CE5643

Updated File MD5 Hash | 74C64556CESFCE304524A2932F4C723C

Audit Date July 29th, 2022

Revise Audit Date August 2nd, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Reign
e Symbol: REIGN
e Decimals: 18

e Initial Fragments Supply: 0.4 Million

Ownership Control: YES, This is valid.
e The owner can set a blacklist of addresses.
e The owner can set the next rebase value.
e The owner can set the fee exempt, buy fees,

sell fees, transfer fees.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium and 3 low and some very low level issues.

All the issues have been resolved/acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code

Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Reign Token are part of its logical algorithm. A library is a different type
of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Reign Token.

The Reign Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Reign Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.
As mentioned above, code parts are not commented on. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://reignprotocol.io/ which

provided rich information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://reignprotocol.io/

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ ReentrancyGuard_init internal access only No Issue
Initializing
3 | __ReentrancyGuard_init_unch | internal access only No Issue
ained Initializing
4 | nonReentrant modifier No Issue
5 nonReentrantBefore write Passed No Issue
6 nonReentrantAfter write Passed No Issue
7 | __Ownable_init internal access only No Issue
Initializing
8 | _ Ownable_init_unchained internal access only No Issue
Initializing
9 | onlyOwner modifier Passed No Issue
10 | owner read Passed No Issue
11 checkOwner internal Passed No Issue
12 | renounceOwnership write access only Owner No Issue
13 [transferOwnership write access only Owner No Issue
14 | transferOwnership internal Passed No Issue
15 | _ ERC20_init internal access only No Issue
Initializing
16 | _ ERC20_init_unchained internal access only No Issue
Initializing
17 | name read Passed No Issue
18 [symbol read Passed No Issue
19 | decimals read Passed No Issue
20 | totalSupply read Passed No Issue
21 | balanceOf read Passed No Issue
22 | transfer write Passed No Issue
23 | allowance read Passed No Issue
24 | approve write Passed No Issue
25 | transferFrom write Passed No Issue
26 | increaseAllowance write Passed No Issue
27 | decreaseAllowance write Passed No Issue
28 | transfer internal Passed No Issue
29 | mint internal Passed No Issue
30 [burn internal Passed No Issue
31 | approve internal Passed No Issue
32 | spendAllowance internal Passed No Issue
33 | beforeTokenTransfer internal Passed No Issue
34 | afterTokenTransfer internal Passed No Issue
35 | swapping modifier Passed No Issue
36 | validRecipient modifier Passed No Issue
37 | initialize write access by initializer No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

38 | setBlacklist external | access only Owner No Issue
39 | noBlacklist modifier Passed No Issue
40 | allowance read Passed No Issue
41 | balanceOf read Passed No Issue
42 | transfer write Passed No Issue
43 | basicTransfer internal Passed No Issue
44 | transferFrom internal Passed No Issue
45 | transferFrom write Passed No Issue
46 | totalSupply read Passed No Issue
47 | getCirculatingSupply read Passed No Issue
48 | mint external Mint doesn’t work Refer audit
without stake findings
49 | decreaseAllowance write Passed No Issue
50 [increaseAllowance write Passed No Issue
51 | approve write Passed No Issue
52 | setNextRebase external | access only Owner No Issue
53 | shouldRebase internal Passed No Issue
54 | rebase write Passed No Issue
55 [setAutoRebase external | access only Owner No Issue
56 | getYield read Passed No Issue
57 [manualRebase external Passed No Issue
58 | setRebaseFrequency external | access only Owner No Issue
59 | setBotForBonus external access only Owner No Issue
60 | bonusTime external Missing Error Refer audit
Message findings
61 [getNextRebaseToken external Passed No Issue
62 | setChainLinkParam external | access only Owner No Issue
63 | rawFulfilRandomWords external | Range validation is Refer audit
missing findings
64 | fulfilRandomWords internal Range validation is Refer audit
missing findings
65 | resetYieldStaking external Missing Error Refer audit
Message findings
66 | setFeeExempt external | access only Owner No Issue
67 | setSwapBackSettings external Division before Refer audit
multiplication findings
68 | checkFeeExempt external Passed No Issue
69 | setFees external | access only Owner No Issue
70 | shouldTakeFee internal Passed No Issue
71 | takeFee internal Division before Refer audit
multiplication findings
72 | setRouter external Function input Refer audit
parameters lack of findings
check
73 | setFeeReceivers external Function input Refer audit
parameters lack of findings
check
74 | checkSwapThreshold external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

75 | shouldSwapBack internal Passed No Issue
76 | swapAndLiquify write Passed No Issue
77 | addLiquidityStable write Passed No Issue
78 | swapTokensForStable write Passed No Issue
79 | swapBack internal Passed No Issue
80 | manualSwapBack external | access only Owner No Issue
81 [stake external Passed No Issue
82 | claim external Passed No Issue
83 | unstake external Passed No Issue
84 | setStakingTypeCount external | access only Owner No Issue
85 | setStakeDuration external | access only Owner No Issue
86 | getStakingAmount external Passed No Issue
87 | getStakingUnlocked external Passed No Issue
88 | getStakingAmountinitial external Passed No Issue
89 | getTotalStaked external Passed No Issue
90 [getStakedTokens external Passed No Issue
91 | getNewRebaseStakedToken external Passed No Issue
92 | getRebaseDailyStakedToken external Passed No Issue
93 | getMaxSellAmount read Passed No Issue
94 | setPresalePeriod external | access only Owner No Issue
95 | buyPresale external Passed No Issue
96 | setBUSD external Function input Refer audit
parameters lack of findings
check
97 | setAutomatedMarketMakerPair write AutomatedMarketMak | Refer audit
erPair set manually findings
after setting router
98 | setlnitialDistributionFinished external | access only Owner No Issue
99 | clearStuckBalance external | access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.
High Severity

No High severity vulnerabilities were found.

Medium

(1) Fee Percentage limit is not set:

setFees

_buyFees: | [400,200]

m

_sellFeas: | [100,200]

_transferFees: | [140,200]

_feeDenominator: | 10

The owner can set the individual fee percentage to any variable. This might deter investors

as they could be wary that these fees might one day be set to 100% to force transfers to
go to the contract owner.

Resolution: Consider adding an explicit limit to the fee percentage.
Status: Fixed

(2) Range validation is missing:

function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external {
(msg.sender I= vrfCoordinator) {
revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator);
L
fulfillRandomWords(requestId, randombWords);
b

function fulfillRandomWords(uint256 requestId, uint256[] memory randomness) internal {
uint256 randoml = (randomness[@] % 14530000) + 6300000;
uint256 random?2 = (randomness[1] % 14530000) + 6300000;
uint256 random3 = (randomness[2] % 14530000) + 6300000;

rewardYields = [3541667, randoml, random2, random3];

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

A rawFulfillRandomWords function has a randomWords array input which requires 3 index

input. It reverts if input is <3 array index.
Resolution: We suggest checking for the minimum length of the array.

Status:

Low

(1) Function input parameters lack of check:
Variable validation is not performed in below functions:

e setFeeReceivers = _liquidityReceiver, _treasuryReceiver, _teamReceiver,

__burnReceiver
e setBUSD = busdToken

e setRouter = router

Resolution: We advise to put validation : int type variables should not be empty and
greater than 0 and address type variables should not be address(0).

Status:

(2) AutomatedMarketMakerPair set manually after setting router:

Currently, the token owner needs to take care to manually call
setAutomatedMarketMakerPair whenever they call setRouter. If they forget to do this, then
the automatedMarketMakerPairs mapping will fail to contain the updated liquidity pair

address.
Resolution: Add a call to setAutomatedMarketMakerPair from setRouter.

Status:

(3) Invalid parameters:

In the buyPresale function, a transfer event has been logged for sending REIGN tokens
from caller to contract address. But the actual transfer has been done from the contract

address to the caller.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

function buyPresale(uint256 amount) external {
require(isInPresale, "Not yet in presale period");
require(tokenBuyPerPerson[msg.sender] < 869_565, “"You can't buy more than 2k");
console.log(amount.mul{23).div(10688));
IERC28(busdToken).transferFrom(msg.sender, address(this), amount.mul{23).div(18608});
_gonBalances[msg.sender] += amount.mul(getYield());
tokenBuyPerPerson[msg.sender] += amount;

(alreadyHolder[msg.sender]
alreadyHolder[msg.sender]
holders += 1;

¥

= false) {
true;

I emit Transfer(address(this), msg.sender, amount); |

Resolution: We suggest correcting the transfer event parameters.

Status:

Very Low / Informational / Best practices:

(1) Immutable variables:

rewardYieldDenominator is set only in the initialize function.
Resolution: We suggest declaring it as an Immutable variable. It will save some gas.

Status:
(2) Unused variables / Events:
Unused Variables:

e MAX_ SUPPLY
e percentageForLessThanSevenDays
e percentageForMoreThanSevenDays

Unused Events:

e SetRewardYield
e SetlsLiquiditylnBnb

Resolution: We suggest removing unused variables and events.

Status:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Division before multiplication:

function setSwapBackSettings(
bool enabled,
uint256 num,
uint256 _denom
) external onlyOwner {
swapEnabled = enabled;
gonSwapThreshold = totalSupply.div(_denom).mul{ num);
emit SetSwapBackSettings(_enabled, num, _denom);

function takeFee(
address sender,
address recipient,
uint256 gonfmount,
uint256 gonsPerFragment
) imternal returns (uint256) {
uint256 _realFee = totalTransferFee;
{automatedMarketMakerPairs[recipient]) {
_realFee = totalSellFee;
(getMaxSellAmount(sender) < gonAmount.div(gonsPerFragment)) _realFee += 48;

h

(automatedMarketMakerPairs[sender]) _realFee = totalBuyFee;
uint256 contractGons = get¥ield();

uint256 fesfmount = gonfmount.div(gonsPerFragment).mul(contractGons).mul{_realFee).div(feeDenominator);

_gonBalances[address(this)] = _gonBalances[address(this)].add(
feeAmount
);

emit Transfer(sender, address(this), feeAmount.div(contractGons));

return gonfmount.sub(feeAmount.div({contractGons).mul{gonsPerFragment));

Solidity being resource constraint language, dividing any amount and then multiplying will
cause discrepancy in the outcome. Therefore always multiply the amount first and then
divide it.

Resolution: Consider ordering multiplication before division.

Status: Acknowledged

(4) Missing Error Message:

function resetYieldStaking() external {
require(msg.sender == botForBonus); <
rewardYields = [3541667, 3958333, 4375000, 4791667];

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

function bonusTime() external {

require(msg.sender == botForBonus);
COORDINATOR. requestRandomWords (
keyHash,
s_subscriptionId,
requestConfirmations,
callbackGasLimit,
numhords

);

Error Messages are missing in some functions. Requirements must have error messages.
Resolution: We suggest adding appropriate Error Messages if required.

Status:
(5) Mint doesn’t work without stake:

Mint reverts if the user has not staked any amount.

Resolution: If the user has any max limit to mint tokens then we suggest putting a

validation or alert message to acknowledge the user.

Status:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e setBlacklist: The owner can set Blacklist addresses.

e mint: The owner can mint a token.

o setNextRebase: The owner can set the next rebase.

e setAutoRebase: The owner can set the auto rebase.

e setRebaseFrequency: The owner can set rebase frequency value.

e setBotForBonus: The owner can set bot for bonuses.

e bonusTime: The owner can set bonus time.

e setChainLinkParam: The owner can set chain link parameter values.

e resetYieldStaking: The owner can reset yield staking values.

e setFeeExempt: The owner can set fee exempt addresses and values.

e setSwapBackSettings: The owner can set swap back settings value.

e setFees: The owner can set buy fee, sell fee and transfer fees.

e setRouter: The owner can set the router address.

e setFeeReceivers: The owner can set liquidity receiver fee, treasury receiver fee,
team receiver fee, burn receiver fees.

e setStakeDuration: The owner can set stake duration values.

e setStakingTypeCount: The owner can set staking type count values.

e setPresalePeriod: The owner can set the presale period value.

e setBUSD: The owner can set BUSD value.

o setAutomatedMarketMakerPair: The owner can set an automated market maker
pair address and value.

e setlnitialDistributionFinished: The owner can set initial distribution finished values.

e clearStuckBalance: The owner can clear the stuck balance address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file And we have used all possible tests
based on given objects as files. We have observed 2 medium severity issues, 3 low
severity issues and some informational issues. All the issues have been

resolved/acknowledged in the revised code. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Reign Token

@ rewmronn

ERC0Upgraduatie
Cuassiedgrade;

atie
ReAmancy G pgratsaate

S pImURrasabie for intzas

Brieasz KEY

VRFCa0rdngier ks fecs COORDMATOR
vies 52 KEY 1A

e
© Ut st e ypeTort

© boaThiid i Frished
© zasizme

© bool

© Uiz renard visds
rewaiaIaDanotar
o

2 lrtzss K UNT25R
) LriZS ML FRAGHENTS SUBSLY
ey

@ rencorerr

@ oo

@ ParcakeRout0?

wemcran
[xrr——

ToSetter()
© GuNT_CO0E_PAIR_HASH)

emcaca(

amReBaAsFreqIINGH)

aonuatines

QnttestRboneTebenl)
i

[T
© Cru SuckBslarrnt)

[for uint255 \ \
! | (@ ercaoupgraseabie
! Insizable
B 1 Comernpgr
;) iRz
IER e eractaCgradestie
(@) (rencakerouterot i .
3 Y 0 b ewarl25E_polances
v | () owmableUparsiaatia S N S
) @ o — == oy
@ rercan Commiimaresorse it
e aryAcey =
= e,
= crasts et i > Qs | e
& Qgeramacnmen) a 0 umzse ow
s - . ownavie_ry
] el CaTwadFranTorgel) e
o remavsconaaner) & RuerCaRekD @ wanaieromi) 3 TwepEracit 5 | Q_chectDanert)
2 cancaiBumacrptent) D) © dewapETHR orExuciToberred) e ey
- 0 rarstercanerengl)
 SgeimounioD rarsiaGnersrivt)
. wuribt)
® Sostamaurtscien
8 Goetameuriang | \
ZependAlowancel)
| \ TafeeTohenTanstort)
\ © ateTobetranstent)

@ reenmanescuaparateans ‘

Itiizabie | \

nonRe:
= Tnenftesmraaner)

|| (@) conetuagradeatia | \ 1
| [e / | @) momnicnaprasane]
| (ER Cavteraneaie
\ s _ow | ==
—Contert i) \ Qapmoay
[e | < Qe
& o
\ | 2=) |

@ iercacumasant)

(@) wmiatizable |

= LniE ntized

 SictatSupoiy ()

© smapieraaizers)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> ReignERC20.sol

:Detectors:

oken.se tC\cl|L1|ch|crlL1|tf4 L1|t““,) shadows:

rence:
Detectors:
ken.initialize
- bus
Token. initiali

akeFac atePa s(this), (Re 8.50l#2511-2514)
Token.se nus { 2 |) C 2 3

_owner (ReignERC20.s0l#2839) lacks

_wrfCoerdinator (ReignERC28.s

https

INFO:Detectors:
Reentrancy in Rei oken.buyPresale{uint256) (ReignERC20.sol#
External
ress{this),

etYiel
RC20.s0
s,address) (ReignERC20.
ess(this),busdToken)
ess(this)][p
ss{this)][
Pair{pair,tru
tMakerPairs[_|
_pair
Reentrancy i en. initiali

2511-2514)

uint256).max (ReignERC20.sol#2

_totalSupp TOTAL_GONS .d1iv(_tot

- _s
.SW ¢ac ce (enss o T erTokens (tokenAmount, ,rec ,block. timestamp)
ignERC20.sol#

(otherHalf

iguidity .8, liguidityReceiver ,block.timestamp)

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Event emitted after the call(s):
SwapAndL iguify({half,newBalance,otherdalf) (ReignERC20.s0l#3018)
Reentrancy in ReignToken._transferFrom(address,address,uint256) (ReignERC20.s50l#262
External calls:
- swapBack() (ReignERC28.sol#2643
- router. addquuidity.ajjlQSS'thlS},bqu oken, tokenAmount ,stableAmount,8,8,liguidityReceiver,block.timestamp)
ReignERC20. sol#3016-3625)
- router.swapExactTokensForTokensSupportingFeeOnTrans ferTokens(tokenAmount,®,path, receiver,block.timestamp) (Re
ignERC20.s501#3033-3039)
Event emitted after the call(s):
- LogRebase(epoch) {ReignERC2
- _rebase() (ReignERC]
- Transfer(sender,address(this), feeAmount. div /(contractGons)) {ReignERC20.sol#29
- gonAmountReceived = takAFAAIsandn|,|éc1plant gonAmountTo, gAtY191jI}}
- Transfer(sender,recipient,gonAmountReceived.di .gAtYlaljllll {ReignERC20.s
Reentrancy in ReignToken.buyPresale{uint256) (ReignERC20.sol#3267-32
External calls:
- IERC28({busdToken).transferFrom{msg.sender,address{this),amount.mul({23).d1x
Event emitted after the call(s):
- Transfer(msg.sender,address(this),amount) EReigﬁERCE“.SDI?BZSﬁ\
Reentrancy in ReignToken.initialize({address,address) {ReignERC20.s0l#2499-2
External calls:
- pair = IPancakeFactory(factory).createPair(address{this),busdToken) {ReignERC20.s0l#2511-2514)
Event emitted after the call(s):
- SetAutomatedMarketMakerPair(_pair,_value) EReigﬁERCED.sol#%EQQ‘
- setAutomatedMarketMakerPair(pair,true) (ReignERC20.so0l#251
Reentrancy in ReignToken.initilalize({address,address) {ReignERC20. sol+4499—45
External calls:
- pair = IPancakeFactory(factory).createPair(address{this},busdToken) {ReignERC20.s0l#2511-2514)
- IERC28{busdToken).approve({address(router),type(){uint256).max) {ReignERC20.sol#2521)
Event emitted after the call(s):
- Transfer(address(0x0),msg.sender,_totalSupply) (ReignERC20.s50l#2538)
Reentrancy in ReignToken.swapBack() (ReignERC20.s0l#30842-3126):
External calls:
- _swapAndLiguify(amountToLiguify) (ReignERC20.s0l#3104)
- router.addlLiquidity{address(this),busdToken, tokenAmount,stableAmount,8,8,liguidityReceiver,block.timestamp) |
ReignERC20.s0l#3016-3025)

- router.swapExactTokensForTokensSupportingFee0OnTransferTokens(tokenAmount,®,path,receiver,block.timestamp) (Re
ignERC20.s501#3033-3039)
- _swapTokensForStable({amountToTreasury,treasuryReceiver) (ReignERC20.s501#3108)
- router.swapExactTokensForTokensSupportingFeeOnTransferTokens(tokenAmount,®,path,receiver,block.timestamp) (Re
ignERC20.s501#3033-3039)
- _swapTokensForStable(amountToTeam, teamReceiver) (ReignERC20.s0l#3112)
- router.swapExactT okensForTokensSupportingFeeOnTransferTokens{ tokenAmount,8,path,receiver,block.timestamp) (Re
ignERC20.s01#3033-30
- transfer({burnReceiver,amountToBurn) (ReignERC28 .sol#3116)
- router. aijlquljltvlajjlQSS'thlS},bqu oken, tokenAmount ,stableAmount,8,8,liguidityReceiver,block.timestamp)
ReignERC20.501#3016-30
router.swapExactTokensForTokensSupportingFeeOnTrans ferTokens (tokenAmount,®,path, receiver,block.timestamp) (Re
ignERC20.s501#3033-3039)
vent emitted after the call(s):
LogRebase(epoch) (ReignERC28.s
- transfer{burnReceiver, amountT DBurn) (ReignERC20.s0l#
swapAndL iguify(alf,newBalance,otherHalf} (ReignERC20.501#3010
- transfer(burnReceiver,amountToBurn) (ReignERC20.so0l#3116)
SwapBack (buyAmount.add(sellAmount).add(transferAmount),amountTolL iquify,amountToTreasury,amountToTeam, amountToBurn) (R
eignERC20.s01#3119-3125)
- transfer{burnReceiver,amountToBurn) {ReignERC20.s0l#3116)
SwapBack(buyAmount . add(sellAmount).add{transferAmount),amountTolL iguify,amountToTreasury,amountToTeam, amountToBurn) (R
eignERC20.s01#3119-3125)
Transfer(from,to,amount) (ReignERC20.s0l#2618)
- transfer(burnReceiver,amountToBurn) (ReignERC20.s0l#3116)
Transfer(sender,address(this),feeAmount.div(contractGons)) (ReignERC20.s0l#2
- transfer(burnReceiver,amountToBurn) IRQignERCED.sol#SllG}
Transfer(sender,recipient,gonAmountReceived.div(getyield())) (ReignERC28.sol#2 -2667)
- t|ansTn|lbU|nRac91 jer ,amountToBurn) IRQignERCED.sol#SllG)
Reference: https,ffglthub.CDWJC|ytlcfsl1therfwikifDetector—Docuwentation#reentrancy—wulnerabilities—3
INFO:Detectors:
ReignToken._transferFrom(address,address,uint256) (ReignERC20.501#2623-2674) uses timestamp for comparisons
Dangerous comparisons:
- shouldRebase() && autoRebase (ReignERC20.sol#2669)
ReignToken.shouldRebase() (ReilgnERC20.501#2760-2762) uses timestamp for comparisons
Dangerous cCOmMparisons:
- nextRebase <= block.timestamp (ReignERC20.s0l#2761

ReignToken.manualRebase() (ReignERC20.s0l#2791-2797) uses timestamp for comparisons
Dangerous comparisons:
- reguire(bool,string)({nextRebase == block.timestamp,Not in time) (ReignERC20.s0l#2793
ReignToken.unstake{uint256) (ReignERC20.s50l#3175-3188) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string){stacking[msg.sender][stakingType].unlockDate <= block.timestamp,You need to wait the unstake dat
e) (ReignERC20.s0l#3179)
R91gh oken.getStakingUnlocked(address) (ReignERC28.s0l#3 3212) uses timestamp for comparisons
Dangerous comparisons:
- used[1i] = stacking[user][i].unlockDate < block.timestamp (ReignERC20.s0l#3269)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
console._sendLogPayload(bytes) (ReignERC28.sol#2 7) assembly
- INLINE ASM ‘RﬂlghERC4“.501$4r5 266)
AddressUpgradeable._revert(bytes,string) (ReignERC20.s0l#1915-1924) uses assembly
- INLINE ASM ‘RglghERCA“.Solﬁlolf—lo
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
ReignToken._transferFrom{address,address,uint256) (ReignERC20.s0l#2623-2674) compares to a boolean constant:
—allAaijole\[|Ac1p19nt] = TalSQ (ReignERC20.s50l#2658)
ReignToken.buyPresale(uint256) (ReignERC20.s0l#3267-3281) compares to a boolean constant:
—a1|9aij01jA\[wsg sender] false (ReignERC20.s501#3275)
ReignToken.swapping() (ReignERC20.s0l#2478-2475) compares to a boolean constant:
-require({bool,string){ inSwap == false,ReentrancyGuard: reentrant call) (ReignERC28.sol#2471)
ReignToken.noBlacklist{address) (ReignERC20.s0l#2573-2576) compares to a boolean constant:
-require{bool,string){blacklist[user] == false,You're blacklist) (ReignERC20.sol#25
thub.com/crytic/slither/wiki/Detector-Documentation#boolean-equality

a private and confidential document. No part of this document should
closed to third party without prior written perm of EtherAuthority.

Email: audit@EtherAuthority.io

INFO Detectors
ReignToken .setF »swut 56[],uint256[], Lirt““E[]_.u.rtEEE} {ReignERC20. = 5-2023) has costly operations inside =
h ces . length (Reig .sol#2910)
ReignToken. es{uint2 ‘:r[].L"LI"t_EE[],L,'LI‘t_ 6[],uint256) (ReignERC20. = 5-2923) costly operations inside
(yFee += buyFees[1] (ReignERC20.s0l1#2911)
Reig r'“k en. »:SIZLirtEEE[]_.Li|'t“-‘=F[],Li|'t“-=E[]_.Lu t256) (ReignERC20. #2806-2923) costly operations inside

Reig r'“k en F (uint2 =r[] L'Ll‘t 6[],uin 6], (Reign 20. 2 5-2923) costly operations inside
- to 5 1 ee += sellFees[1_scope :)
ReignToken .5e F (uint256[],uint256[], Lut-“[s) (Re # 5-2923) has costly erations inside a
1< tra|s‘r erF »51|-t|)]
- costly operations inside
—ttl|c|s“r erFee +- (
/github.com/crytic, ar/wiki/Detec on#costly-operations-inside-a-loop

necessitates a version too recent to be trusted. Consider deploying with 0.6.

r/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFD'Detectors
el call
- (succe : . e : 3
Low level call i n ¥ Value(ress, by “} (ReignERC20.501#1863-1872):
- (success,] tc -et.-:al'l{'-,-'alL»:: value}) "
: i Il- TL|-t1-|tht1_

c/slither/wiki/Detecto r-Docume |:c t1. |-r1.\ -level-calls
TNFD I']g_T_ngnrq

INFO:Detectors:
console.slitherConstructorConstanty cllcll es
CONSOLE_ADDRESS
Rei-;r‘-:ke| initialize(ad
- rewardYieldD
ReignToken. fulfillRan
- randoml = (ran
ReignToken. fulfillRan
- random2 = | [c 50)
Rei-;r‘-:k»:r.lefilchr (uint256,u1in 5[]) (Reign) 2864) ss literals wi
- random3 = (randomness[2] % 1453 i (Reign . #2861)
ReignToken.slitherConstructorConstan es() (Reign ol#) s Literals wi any digits:
- INITIAL_FRAGMENTS_SUPPLY : (
ReignToken.sLlither C Variables() {Reign 0. ; es literals wi many digits:
- DEAD = G L 0.)
ReignToken.slith c riables() (y D.50 s Literals wi many digits:
e i
Reference: https
INFD Detectors:
cyGuardUpgradeable._ gap IR»1-|EF\C2C.5 #2167
.KEY_HASH (Reig
.l-’A.‘A'._ELPPL‘f (Rei
eference: https i
INFO: Detectors

) (ReignERC20.501#2
externa
imals{) (ReignERC20.s0l#2241-2243

n.transferF
ess,uint
sable. increaseAll
.inc |*c‘5*r\11- an

, ress_. sI _Ll
en. initialize(a
getCirculatin y sI'-:Ll-: I:e
- Reil etl1

Reference: https hub. c om/crytic/sLit \-.-1.I<1. /Detector-Docume rt ation# #public-function-that-could-be-declared-external

INFO:51ither: RelgnERCZG sol analyzed (2@ contracts with 75 detectors), 568 result(s) found
INFO:51ither:Us crytic. o/ to Lt ors and Github integra

; a private and confidential document. No part of this document should
closed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

ReignERC20.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in ReignToken._swapAndLiquify(uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 3834:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in ReignToken.buyPresale(uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 4108:4:

Block timestamp:

Use of "block.timestamp™: "block timestamp” can be influenced by miners to a certain degree. That means

that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of a transaction in
the mined block.

more
Pos: 3990:12:

Block timestamp:

Use of "block timestamp™: "block timestamp" can be influenced by miners to a certain degree. That means
that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of a transaction in
the mined block.

more

Pos: 4018:64:

Gas & Economy

Gas costs:

Gas requirement of function ReignToken.getCirculatingSupply is infinite: If the gas requirement of a function
is higher than the block gas Llimit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 3524:4:

Gas costs:

Gas requirement of function ReignToken.mint is infinite: If the gas requirement of a function is higher than
the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 3528:4:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function ReignToken.getStakedTokens is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that

modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 4069:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values, have
to be used carefully. Due to the block gas limit, transactions can only consume a certain amount of gas. The
number of iterations in a loop can grow beyond the block gas limit which can cause the complete contract to
be stalled at a certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas costs.
Carefully test how many items at maximum you can pass to such functions to make it successful.

more

Pos: 3751:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values, have
to be used carefully. Due to the block gas limit, transactions can only consume a certain amount of gas. The
number of iterations in a loop can grow beyond the block gas limit which can cause the complete contract to
be stalled at a certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas costs.
Carefully test how many items at maximum you can pass to such functions to make it successful.

more

Pos: 3755:8:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 162:4:

Miscellaneous

Constant/View/Pure functions:

ReignToken.getStakingAmountinitial(address) : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 4053:4:

Constant/View/Pure functions:

ReignToken.getNewRebaseStakedToken(address) : Is constant but potentially should not be. Note: Modifiers
are currently not considered by this static analysis.

more

Pos: 4073:4:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

ReignToken.getStakingAmount(address) : Variables have very similar names "used" and "user". Note:
Modifiers are currently not considered by this static analysis.
Pos: 4042:15:

Similar variable names:

ReignToken.clearStuckBalance(address) : Variables have very similar names "_balances" and "balance".
Note: Modifiers are currently not considered by this static analysis.
Pos: 4151:8:

Similar variable names:

ReignToken.clearStuckBalance(address) : Variables have very similar names "_balances" and "balance".
Note: Modifiers are currently not considered by this static analysis.
Pos: 4152:36:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code).
Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more

Pos: 3710:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code).
Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more

Pos: 3977:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of 0.1 since the
result is an integer again. This does not hold for division of (only) literal values since those yield rational
constants.

Pos: 4076:26:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of 0.1 since the
result is an integer again. This does not hold for division of {only) literal values since those yield rational
constants.

Pos: 4083:22:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of 0.1 since the

result is an integer again. This does not hold for division of (only) literal values since those yield rational

constants.
Pos: 4094:51:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

ReignERC20.sol

g g
SLRO))
=

Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:

D)
0
D

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing

error: missing '; at
error: mismatched input

W

ReignERC20.
RC20.

N N

O J 01 D W
(¢}

w J Ul

O

[0)

("g)
©
=
D

DN DN DN

"g)
W)
=

ReignERC20.
ReignERC20.
ReignERC2
ReignERC2
ReignERC20.

(e0]
@

NN DN

S D W0 NN N
D

(@]
(O))

o]
o]
[p] 5
nn n n n non
® ® O

® @

) N
V]
N

w
(@)
9
) O O W

w
(@)
ol
S
BB B BB

w
o
o)
—
' ' 0 U 'd o o
[URSCICY
D

w
=
(@]
(0]

5 B
0 O n 0 n 0
()

g g
[ORN)
B R

® O

20.s501:: :48: : Pars ~or: mismatched input
l’.l,

ReignERC20.s01:3220:62: DT 2 ~S : extraneous input
expecting {';"',
ReignERC20.s501:3685:44: : Ps ey : mismatched input

expecting {';"',

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

