@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: SleeFi Protocol
Website: https://sleefi.com/en/
Platform: Avalanche Network
Language: Solidity

DEICK June 21st, 2022

https://sleefi.com/en/

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 17
(@ 0] 1Y/ =1 1 T To [o] 0T) 18
DISCIAIMEIS ... e 20
Appendix
o Code FIoW Diagramououoiiii s 21
o Shther RESUIS LOGuiiiiii e 24
e Solidity staticanalysis ... 27
® SOININt LiNtEr oo 30

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the SleeFi team to perform the Security audit of the
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on June 21st, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

SleeFi protocol is using SLGT as a governance token, SLFT as a utility token and vesting
protocol is for VCs. SleeFi contract inherits the OwnableUpgradeable,
SafeERC20Upgradeable, IERC20Upgradeable, n ERC20Upgradeable, Initializable,
ERC20BurnableUpgradeable standard smart contracts from the OpenZeppelin library.
These OpenZeppelin contracts are considered community-audited and time-tested, and

hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
SleeFi Protocol Smart Contracts

Platform Avalanche / Solidity
File 1 SLFTToken.sol
File 1 MD5 Hash BC56A982DE3B231839DE84A59B1B4152
File 2 SLGTToken.sol
File 2 MD5 Hash 2E8BFEOEBC85FAEC009909E03A656058
File 3 SleeFiVestingVault.sol
File 3 MD5 Hash FF8E08965425A93ABF5C7D3DAD671C5C
Audit Date June 21st, 2022
Revision Date June 23rd, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://snowtrace.io/address/0x813f65d0fB158EEFB43c1Cdd3ddabcF5fD177F43#code
https://snowtrace.io/address/0xE7f0c8aD68bB70E6F2395d2Fc51AeD630D6b767E#code
https://snowtrace.io/address/0xF3E13F5ff753821238bE0Ca17d3e8F6FC6eb228d#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
File 1 SLFTToken.sol YES, This is valid.
e Name: SLFT

e Symbol: SLFT

File 2 SLGTToken.sol YES, This is valid.
e Name: SLGT
e Symbol: SLGT
e Total Supply: 12 billion

File 3 SleeFiVestingVault.sol YES, This is valid.
e SleeFiVestingVault can apply Vesting.
e SleeFiVestingVault owner can update Vesting
Schedule.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 3 low and some very low level issues.

All the issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check Moderated
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed

Business Risk The maximum limit for mintage not set Acknowledged

“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the SleeFi Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the SleeFi Protocol.

The SleeFi team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a SleeFi Protocol smart contract code in the form of a snowtrace.io web

link. The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://sleefi.com/en/ which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://sleefi.com/en/

AS-IS overview

SLFTToken.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initializer modifier Passed No Issue
3 | reinitializer modifier Passed No Issue
4 | onlylnitializing modifier Passed No Issue
5 disablelnitializers internal Passed No Issue
6 | __ Ownable_init internal access only No Issue
Initializing
7 | __Ownable_init_unchain internal access only No Issue
ed Initializing
8 [onlyOwner modifier Passed No Issue
9 |[owner read Passed No Issue
10 | checkOwner internal Passed No Issue
11 | renounceOwnership write access only Owner No Issue
12 | transferOwnership write access only Owner No Issue
13 | transferOwnership internal Passed No Issue
14 | _ ERC20Burnable_init internal access only No Issue
Initializing
15 | _ ERC20Burnable_init_u | internal access only No Issue
nchained Initializing
16 | burn write Passed No Issue
17 | burnFrom write Passed No Issue
18 | initialize external access by initializer No Issue
19 [_mint internal No Max minting of Acknowledged
the tokens set
20 | afterTokenTransfer internal Empty function used Acknowledged
21 | beforeTokenTransfer internal | Empty function used Acknowledged
SLGTToken.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initializer modifier Passed No Issue
3 | reinitializer modifier Passed No Issue
4 | onlylnitializing modifier Passed No Issue
5 disablelnitializers internal Passed No Issue
6 | _ Ownable init internal access only No Issue
Initializing
7 | __Ownable_init_unchain internal access only No Issue
ed Initializing

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 | onlyOwner modifier Passed No Issue

9 | owner read Passed No Issue
10 | checkOwner internal Passed No Issue

11 | renounceOwnership write access only Owner No Issue
12 | transferOwnership write access only Owner No Issue
13 | transferOwnership internal Passed No Issue
14 | initialize external access by initializer No Issue
15 | afterTokenTransfer internal Empty function used Acknowledged
16 | beforeTokenTransfer internal Empty function used Acknowledged

SleeFiVestingVault.sol
Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue

2 |initializer modifier Passed No Issue

3 | reinitializer modifier Passed No Issue

4 | onlylnitializing modifier Passed No Issue

5 disablelnitializers internal Passed No Issue

6 |[__ Ownable_init internal access only No Issue

Initializing
7 |__Ownable_init_unchain internal access only No Issue
ed Initializing

8 | onlyOwner modifier Passed No Issue

9 | owner read Passed No Issue
10 | checkOwner internal Passed No Issue

11 | renounceOwnership write access only Owner No Issue
12 | transferOwnership write access only Owner No Issue
13 | transferOwnership internal Passed No Issue
14 | initialize external access by initializer No Issue
15 | getUserVestinginfo internal Passed No Issue
16 | getUserVestinglnfo external The msg.sender Acknowledged

used in view
function
17 | updateVestingSchedule external Function input Acknowledged
parameters lack of
check

18 | applyVesting internal Passed No Issue
19 | applyVesting external access only Owner No Issue
20 | claim external Passed No Issue
21 | effectiveDay internal Passed No Issue
22 | getVestedInfo internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

(1) No Max minting of the tokens set: SLFTToken.sol

function mint(address account, uint256 amount) internal virtual {
require(account l= address(®), "ERC20: mint to the zero address");

_beforeTokenTranster(address(®), account, amount);
_totalSupply += amount;
_balances[account] += amount;

emit Transfer(address(®), account, amount);

_afterTokenTransfer(address(®), account, amount);

Setting max minting for the tokens is good for tokenomics.Token minting without any

maximum limit is considered inappropriate for tokenomics.

Resolution: Token minting without any maximum limit is considered inappropriate for

tokenomics. We recommend placing some limit on token minting to mitigate this issue.

Status: This issue is acknowledged by the SleeFi team as a required business logic

as a necessity of the maximum supply because of the game system.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) Require can be merge: SleeFiVestingVault.sol

uint256 grantedAmount = user.amountOfGrant;
reguire(granteddmount != 8, "No wvesting info");
uint256 claimedAmount = userClaimedAmount[msg.sender][token];

reguire(claimedAmount < grantedfAmount, “"Nothing to claim™);

VestingSchedule storage userSchedule = vestingSchedule[msg.sender]|
token

15

require(userschedule.startTime != &, "No vesting info");

(, uint256 vestedfmount) = getVestedInfol

VestingInfo storage userInfo = wvestingInfo[beneficiary][token];

reguire(userInfo.amountldfGrant == @, "Already applied vesting");

VestingSchedule storage userSchedule = wvestingSchedule[beneficiary][
token

15

require{userschedule.startTime == @, "Already applied vesting");

In _applyVesting and Claim functions, 2 requirements with the same messages can be

merged to reduce some gas.

Resolution: We suggest merging both require in one.

Status: This issue is acknowledged by the SleeFi team as, It is a required gas to

deploy contract will decrease (we just need deploy 1 time only), but the gas to

execute these functions will be increase a little bit (these functions can be called

many time in future).

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) The msg.sender used in view function: SleeFiVestingVault.sol

function getUserVestingInto{uint256 onDayOrToday)
external

returns (VestingSummary[2] memory userVestingData)

userVestinghatal@]
msg.sender,
SLFT_CONTRACT,
onDayCrToday

_getlUserVestingInfo(

IH

userVestinghatal[1]
msg.sender,
SLGT_CONTRALCT,
onDayCrToday

_getlUserVestingInfo(

);

getUserVestinglnfo function is used to fetch the vesting info for the caller so it is using
msg.sender. But that does not give vesting info. As there is no other view function to fetch

the user’s vesting information, it will create problems while showing data at Ul.

Resolution: We suggest adding an address parameter and use it instead of msg.sender, it

will give vesting info.

Status: This issue is acknowledged by the SleeFi team as being unnecessary for the
Ul to get the information of a VC at the "Get Vesting Info’ screen. The input

parameter was removed because It was not desired to get the VC vesting info easily.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Function input parameters lack of check: SleeFiVestingVault.sol

functicn updatevestingscheduls(
address beneficiary,
address vestingToken,
uint2se start,
uint2se cliff,
uint2se dur,
uint256 percent
y external onlyOuner §
vestingschedule storage userSchedule = _wvestingschedule[beneficiary][
vestingToken
1;
requiref{userschedule.startTime > & &%
block.timestamp < userschedule.startTime,
"Mo vesting info or westing started”
}H
userschedule.startTime = start;
userschedule.cliffDuration = cliff;
userschedule.duraticn = dur;
userschedule.unlockPercent = percent;

emit vestingScheduleUpdated(
benaficiary,
vestingToken,
start,
cliff,
dur,
percent

i

In updateVestingSchedule function owner can set any amount of percent in vesting and

there may be misuse of this function.

Resolution: Add a “require” condition in updateVestingSchedule for parent and check if its
not > BASE_PRECISION, also not allow more than 100%.

Status: This issue is acknowledged by the SleeFi team as this will be taken care of

by the owner when updating the vesting schedule.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Empty function used:
SLFTToken.sol

function afterTokenTransfer(
address from,
address to,
uint256 amount

) internal virtual {}

function beforeTokenTranster(
address from,
address to,
uint256 amount

} internal wirtual {}

SLGTToken.sol

function _beforeTokenTransfer(
address from,
address fo,
uint2se amcount

} imternal wirtwal {}

JrE

* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.

* Calling conditions:

en “from® and “to” are both mon-zero, Tamount® of T from’ T 's tokens

* has been transferred to “to’.

en “from is zero, “amount’ tokens hav
-

/e been minted for “to”.
#* _ when “to” iz zero, “amount’ of ~from " 's tokens have been burned.

* _ "from” and “to’ are never both zero.
*# To learn more about hooks, head to xref:ROOT:extending-contracts.adocgusing-hooks[Using Hooks].

function _afterTokenTransfer(
address from,
address fo,
uint2se amcount

} imternal wirtwal {}

The _beforeTokenTransfer and _afterTokenTransfer are hooks and used many times but

have no effect on code or anything.

Resolution: This function can be used as a hook.

Status: Acknowledged.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Variable should be immutable: SleeFiVestingVault.sol

address public SLFT_CONTRACT:
address public SLGT_CONTRACT;

uint256 public constant SECONDS_PER_MONTH = 68 * 6@ * 24 * 3@;

[uint256 public BASE PRECLISION;]

Variables that are defined within the constructor, but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution: Consider marking this variable as immutable.

Status: Acknowledged.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e updateVestingSchedule: SleeFiVestingVault owner can update vesting schedule.
e applyVesting: SleeFiVestingVault owner can apply vesting.

e mint: SLFTToken owner can mint a token.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of snowtrace.io web link. And we have used all
possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - SleeFi Protocol

SLFTToken Diagram

© SLFTToken

Initializable
Ownablelpgradeable
ERC20Burnablelpgradeable

O string TOKEN_NAWME
O string TOKEN_S¥YMBOL
® inttialize()

® mirt()

@ ERC20BurnablelUpgradeahble

Initializable
ContextUpgradeable \
ERCZO0Upgradeable

O uint256 __gap
<» __ERC20Burnable_init()

< __FRCZ0Burnable_init_unchained()
@ burn()

@ purnFromi) \

(€) Erca0Uparadeable [

Initializable |
Contextlpgradeable |
TER C20Upgradeable |
IER C20Metadatallpgradeable |

O address=>uint256 _balances |
O address==mapping address==uint256 _allowances | @ o o r—
O uint256 _totalSupply | | wnablelUpgradeable
m] ing |
o i:::g _:imzm | | Initializable

g |
O uint255 _ gap | |I Contextlipgradeable

< __ERC20_int()
< _ERC20_init_unchained() | | O address _owner
@ G namel) | | O uint256 _ gap
@ | |
: 3:;2:1‘;':20 [\ < __ownable_init()

| | < __ Ownable_init_unchained()
@ CitaotalSupply () | \ @ Sowner()
g tcrkaiasI?::E]?OfO | | < B _checkOwner()
© Qallowance() | | @ renounceCwnership()
@ approve() | | @ transferOwnership()
& transferFram() | |I < _transferCwnership()
@ increaseAllowance() | | T
@ decreaseAllowance() | | 4 |
< _transfer() | | i {
< _mirt() | | i !
““ _burn(y | |/ |
< _approve() | i -'
< _spendAllowance() |
< _heforeTokenTransfer() |
< _afterTokenTransfer() II

s / © ContextUpgradeahble |

@ IERC 20Metadatalpgradeable f Intializable | /
f | |

IER C20Upgradeable |
| o ui {
@ Qname() | uirt256 __gap '.
@ Qsymbol() ! @ _ Cortest_jnit() |)
@ Qeecimals() < __Contesxt_init_unchained() \
< O,_msgSender() |)
Y < Q_msgDatal) | |
. | |
\ | S
. | V4
., {
(@) rerc20upgradeable ~— - v L
© Initializable
@ QrotalSupply()
@ QhalanceOf() O uird® _intialized
@ transfer() O kool _initializing
© Qallowance() < _disableinttializers()

@ approve()
@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SLGTToken Diagram

® Addrass

@TransparentUpgradeahlePrux'g.r

ERCA9E7 Proxy

@ IBeacon

@ Qimplementation()

@ StorageSiot

 QgetAddressSlot()
< Q getBooleanSlot()
< O getBytes32SIet()
< QgetUint256Slot()

o QisContract()

< sendValuel)

< functionCall)

< functionCallithY alue()
o 4 functionStaticCall()
< functionDelegateCall)
m 9_verifyCalResult()

@ é&__constructor_()
@ admini)

@ implemertation?)

@ changeAdming)

D upgradeTaol)

@ éupgradeToAndCall)
< 0, _admin()

< _peforeFallback()

@ ERC1967Proxy

Proxy
ERC1967Upgrade

@ & __constructor_{()
8, implementation)

.r ‘.

-1
*,

L
g

' |
@ ERC1967Upgrads

I‘_/
@ Proy

O bytes32 ROLLBACK _SLOT

< pytes32 IMPLEMENTATION_SLOT
< bytes32 _ADMIN_SLOT

0 pytes32 BEACOMN_SLOT

< _delegate)

< q_jmplementation()
< _fallback(}

@ &___constructor__ ()
2 _heforeFalback()

< 0,_getimplementation()

B _setimplementation()

< _upgradeTo()

< _upgradeTosndCall)

< _upgradeTofndCallSecure()
< _upgradeBeaconToAndCall)
< Q,_getAdming)

B _setAdmin)

< _changefdming)

& 0,_getBeacon()

B _setBeacon()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SleeFiVestingVault Diagram

@ SleeFivestingvault

Initializable
OwnableUpgradeable
MSafeER C20Upgradeabie for IER C20Upgradeable
O address SLFT_CONTRACT
@JEECEGU‘@"’&“’E&D"E o address SLGT_CONTRACT
O wint256 SECONDS _PER_MOMTH
@ QiotalSupply() O wint256 BASE_PRECISION
@ QbalanceDf() < address=>mapping address=>"estingSchedule _vestingSchedule
@ transfer() “* address=>mapping address==estinglnfo _vestinginfo
@ Qallowance() O address==mapping address=>uint256 userClaimedAmount
@ approve() o
@ initial
@ transferFrom() initialize()

G _getUserVestinginfol)
@ O getlservestinginfol)
@ updateVestingSchedule()
= _applyvestingl)

@ apply\esting()

@ claim()

< q, effectiveDay()

& O,_getvestedinfal)
7

P

for IERC20Upgradeable

|]
Y .

© OwnableUpgradeable

| Initializable
@ SafeERC20Upgradeable . ContextUpgradeable
|
mAddressUpgradeable for address |

O address _owner
< safeTransfer() | P p——
O uint256 _ ga|
<+ safeTransferFrom() [— P
» safeApprove() |
< gafelncreaselllowance()

o Dwnable_init()
[< Ownable_init_unchained()
< safeDecreasellowance() | @ Qaowner()
B _calloptionalReturni) '
I

| G _checkOwner()
@ renounceOwnership()
| @ transferOwnership()
| r _transferOwnership()
[|
|
|
|

T .
| [\

for address |
|

Wi | I.' '-_.\‘I
- '- @ ContextUpgradeable
@ AddressUpgradeable '. |
| { Initializable
< QisgContract()

“ sendValue() | |)

< functionCall() \ [O uim236 _gap

2 functionCallvithalue() | / o Context_init()

< Q functionStaticCall() \ / < Context_init_unchained()
< QuuerifyCalResutt() | | < Q,_megSender()

\ | o Q_msgDatal)

(©) initializable
O uintd _initialized
0O bool _initializing

< _disablentializers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> SLFTToken.sol

INFD Detectors:

p = g 2V E d should be rem
L||c|1 Lr 2. () { . %) is n o
urnableUp . ER chai (
Initializable isableInitializers() (S
https://github.com/crytic/

INFé Detectors
cessitates a version too recent to be trusted.

ar/wiki/Detector-Documentation#inc

_ Context_init{) (S .s0l#17 72) is not in mixedCase

C“rt:xt_irit_chFair (SLF cen. #174-175) is not in mixedCase
Variable :
Function
Function
Variable f
Function
Function
Variable
Function 2
Function urnablely
Variable
Parameter S
Parameter

n mixedCase
) is not in mixedCase

not in mixedCase
) i in mixedCase

urnableUpgra 2. '. -Z F . #628-62 ? is not in mixedCase
(is not in mixedCase

15 not in rl/:cCase
1 Case
to-solidity-naming-cenventions

in SLFTToken (SLFTT
-Documentat ion#unused-state

:Detectors:
nership()
-0 rell Lp =

#297-299)

) (SLFTToken.sol#385-387)
external:

FTToken.sol#32

TToken.sol#

transfer(address

approve(address,uint2
dress,uint256
should be dec

(ess,uint256) (5LFTToken.sol#652-656)
»/t»rral

afe i ot 511t|»|:\1k1 Detector- .ch»|t tion#public-function-that-could-be-declared-externa
INFO: Sllther SLFTToken sol analyzed (8 contracts thh ?5 detectors) 41 result(s) found

5 |1.I|1t1=11' (is should be
github.com/ i 3 ~ode

cessitates a version too recent to trusted. Conside oying with 8.6
orrect-versions-of-solidity

INFD Detectors

Function ContextUpgra = ntext_init() (SLGTToken.sol#17) is not in mixedCase

Function ContextUp = =._ Conte /t_1|1t_chFair (SLG cen. #174-175) 1s not in mixedCase

Variable extUp e (S 0 #189) 1is not in

Function g

Function

mixedCase
is not in mixedCase

Function 15 not in mixedCase

Function 292) is not in mixedCase
Variable
Refere

INFO: Detectors
ERC

Ref

ce-to-solidity-naming-co ntions

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:
renouncedwnership() should be declared external:

- OwnableUpgradeable. renounceOwnership() (SLGTToken.sol#236-238)
transferOwnership(address) should be declared external:

- OwnableUpgradeable.transferOwnership(address) (SLGTTeken.sol#244-247)
name() should be declared externa

- ERC20Upgradeable.name({) (5LGTToken.sol#287-29
symbol{) should be declared external:

- ERC20Upgradeable.symbol() (SLGTToken.sol#:
decimals{) should be declared externa

- ERC20Upgradeable.decimals() (SLGTT
totalSupply() should be declared external:

- ERC20Upgradeable.totalSupply() (SLGTToken.sol#329-331)
balance0f{address) should be declared externa

- ERC28Upgradeable.balance0f(address) (SLGTToken.sol#336-338
transfer{address,uint256) should be declared external:

- ERC20Upgradeable.transfer{address,uint256) (5LGTToken.sol#348-
approve(address,uint256) should be declared external:

- ERC20Upgradeable.appro ddress,uint256) (5LGTToken.sol#371-375)
transferFrom(address,address,uint256) should be declared external:

- ER “WLpgrajnabla transTn|F|DWIajj|ass address,uint256) (SLGTToken.sol#393-402)
increaseAllowance(address,uint256) should be jnclalnj nxtnlnal:

- ERC dea _." reaseh wance(address,uint2 (SLGTToken.sol#416-420)
decreaseAllowance({address,uint256) should be declared externa

- ERC20Upgradeable.decreaseAllowance(address,uint {5LGTToken.sol#436-445)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-externa
INFO:51lither: SLGTToken sol analyzed (? contracts thh ?5 detectors), 31 result(s) found
INFO:Slither:Use https: y : ccess t itional ors and Github tegration

INFO:Detectors:
SleeFivestingVault. initialize(address,address)._slft (5leeFivestingvault.sol#591) lacks a zero-check on
- SLFT_CONTRACT = _slft (SleeFiVestingVault.sol#594)
SleeFivestingVault. initialize(address,address)._slgt (SleeFiVestingVault.sol#591) lacks a zero-check on
- SLGT_CONTRACT = _slgt (SleeFivestingVault.sol#595)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in SleeFivestingVault.applyvesting({address,address,uint256,uint256,uint256,uint256,uint256) (SleeFiVestingvault.sol#

External calls:
appleAstlnglbannT1c1a|v, sestingToken,vestingAmount,startTime,cliffDuration,duration,unlockPercent) {SleeFiVestingVa

- returndata = address{token).functionCall({data,SafeERC20: low-level call failed) leeFiVestingVault.sol#344)
- [success,returndata) = target.call{value: value}(data) (SleeFiVestingVault.sol#209)
- IERCL“LngadﬁablﬁlTDthl.SaTQ ransferFrom(msg.sender,address{this),amount) (5leeFiVestingVWault.sol#785-709)
External calls sending eth:
- _applyVesting({beneficiary,vestingToken,vestingAmount,startTime,cliffDuration,duration,unlockPercent) (SleeFiVestingVa
ult.sol#721-729)
- {success,returndata) = target.call{value: value}({data) ({SleeFiVestingVault.sol#2089)
Event emitted after the call(s):
- VestingApplied({beneficiary,vestingToken,vestingAmount,startTime,cliffDuration,duration,unlockPercent) (SleeFivestingV
ault.sol#731-739)
Reentrancy in SleeFiVestingVault.claim(address) (SleeFivestingVault.sol#742-76
External calls:
- IERC20Upgradeable(teoken).transfer{msg.sender,claimimount) (SleeFivVestingVault.sol#764)
Event emitted after the call(s):
- Claimed(msg.sender,token,claimAmount) (SleeFiVestingVault.sol#7
Reference: https://github. CDWfCIuTICfsllthQIf\lklfDQTQCTDF Documentation#reentr ancy-vulnerabilities-3
INFO:Detectors:
SleeFivestingVault.updateVestingSchedule(address,address,uint256,uint256,uint256,uint256) (SleeFivestingVault.sol#658-678) uses
timestamp for comparisons

Dangerous comparisons:
- reguire{bool,string){userschedule.startTime = 0 &% block.timestamp < userSchedule.startTime,No vesting info or westin
g started) (SleeFiVestingVault.sol#661-664)
SleeFiVvestingVault._ getVestedInfo({uint256,uint256,uint256,uint256,uint256,uint256) (SleeFiVestingVault.sol#778-814) uses timest
amp for comparisons
Dangerous comparisons:
- onDay = _startTime + _cliffDuration (5leeFiVestingVault.sol#790)
- onDay _startTime + (_cliffburation + _duration) 'CIQQFIJQStngJaUIt sol#795)
- vestedAmount > _grantedAmount (SleeFiVestingVault.sol#202)
Reference: https://github.com/crytic/slither/wiki/Detector- Documentation#block- -timestamp
INFO:Detectors:
AddressUpgradeable.verifyCallResult(bool,bytes,string) {SleeFiVestingVault.sol#246-
- INLINE ASM 'CIQQFIJQStIHgJGUIt SDl#;ES 261)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
AddressUpgradeable. functionCall{address,bytes) (SleeFivestingvault.sol#157-159) is never used and should be removed
Addrjsstqradeable.function(allwithValueiaddress,bytes,uintzsﬁ) (SleeFiVestingVault.sol#186-192) is never used and should be re
mover
AddressUpgradeable. functienStaticCall{address,bytes) (SleeFiVestingVault.sol#219-221) 1is never used and should be removed
AddressUpgradeable. functionStaticCall{address,bytes,string) (SleeFiVestingVault.sol#229-2 is never used and should be remove
d
AddressUpgradeable.sendvalue(address,uint256) (SleeFiVestingVault.sol#132-137) is never used and should be removed
ContextUpgradeable. Context_init() I°199F1495t1ng4au1t sol#432-433) 1is never used and should be removed
ContextUpgradeable._ Context_init_unchained() (SleeFiVestingVault.sol#435 6) is never used and should be removed
ContextUpgradeable. msgData() (SleeFiVestingVault.sol#441-443) is never used and should be removed
Initializable._disableInitializers{) (SleeFivestingVault.sol#422-428) is never used and should be removed
SafeERC208Upgradeable.safeApprove(IERC28Upgradeable, address ,uint256) (SleeFivestingVault.sol#296-3089) is never used and should b
e remov
SafeERC208Upgradeable.safeDecreaseAllowance(IERC20Upgradeable,address,uint256) (SleeFiVestingVault.sel#320-331) 1is never used an
d should be remowv
aTnERczﬁLpg|ajnablé safeIncreaseallowance(IERC20Upgradeable,address,uint256) (SleeFivestingVault.sol#311-318) 1is never used
j should be removed
SafeERC208Upgradeable.safeTransfer(IERC28Upgradeable,address,uint256) (SleeFivestingvault.sol#272-278) is never used and should
|>Q removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version”8.8.0 (5leeFiVestingVault.sol#2) necessitates a version too recent to be trusted. Consider deploying with 8.6.12

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

SLFTToken.sol

Gas costs:

Gas requirement of function SLFT Token.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 671:4:

Gas costs:

Gas requirement of function SLFT Token.mint is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 676:4:

Miscellaneous

Constant/View/Pure functions:

ERC20BurnableUpgradeable._ ERC20Burnable_init_unchained() : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 631:4:

Similar variable names:

ERC20BurnableUpgradeable.burnFrom({address,uint256) : Variables have very similar names
"account” and "amount”. Note: Modifiers are currently not considered by this static analysis.
Pos: 655:23:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require{x}" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 572:12:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SLGTToken.sol

Gas & Economy

Gas costs:

Gas requirement of function SLGT Token.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 632:4:

Miscellaneous

Constant/View/Pure functions:

ERC20Upgradeable._afterTokenTransfer(address,address,uint256) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by this static analysis.

more
Pos: 613:4:

Similar variable names:

ERC20Upgradeable._burn(address,uint256) : Variables have very similar names "account” and
"amount". Note: Modifiers are currently not considered by this static analysis.
Pos: 529:49:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 572:12:

SleeFiVestingVault.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in SleeFiVestingVault.claim(address):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered
by this static analysis.

Pos: 742:4:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.

more

Pos: 775:35:

Gas & Economy

Gas costs:

Gas requirement of function SleeFiVestingVault.initialize is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 591:4:

Miscellaneous

Constant/View/Pure functions:

SleeFiVestingVault._applyVesting(address,address,uint256,uint256,uint256,uint256,uint256) :
Potentially should be constant/view/pure but is not. Note: Modifiers are currently not considered
by this static analysis.

more

Pos: 680:4:

Similar variable names:

SleeFiVestingVault.claim(address) : Variables have very similar names "claimedAmount" and
"claimAmount”. Note: Modifiers are currently not considered by this static analysis.
Pos: 766:40:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component

more

Pos: 751:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 803:35:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

SLFTToken.sol

SLETToken.sol: 4 : Error: Parse error: missing
SLFTToken.s0l:473:18: Error: Parse error: missing

SLETToken.s :522:18: Error: Parse error: missing
SLETToken.sol: :22: Error: Parse error: missing

SLGTToken.sol

error: missing
error: missing
error: missing
error: missing

O

0 O
Ry

n n n 0
O

SleeFiVestingVault.sol:325: : ‘ ror: missing

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

