
Project: SleeFi Protocol
Website: https://sleefi.com/en/
Platform: Avalanche Network
Language: Solidity
Date: June 21st, 2022

https://sleefi.com/en/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the SleeFi team to perform the Security audit of the
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on June 21st, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
SleeFi protocol is using SLGT as a governance token, SLFT as a utility token and vesting

protocol is for VCs. SleeFi contract inherits the OwnableUpgradeable,

SafeERC20Upgradeable, IERC20Upgradeable, ERC20Upgradeable, Initializable,

ERC20BurnableUpgradeable standard smart contracts from the OpenZeppelin library.

These OpenZeppelin contracts are considered community-audited and time-tested, and

hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
SleeFi Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 SLFTToken.sol

File 1 MD5 Hash BC56A982DE3B231839DE84A59B1B4152

File 2 SLGTToken.sol

File 2 MD5 Hash 2E8BFE0EBC85FAEC009909E03A656058

File 3 SleeFiVestingVault.sol

File 3 MD5 Hash FF8E08965425A93ABF5C7D3DAD671C5C

Audit Date June 21st, 2022

Revision Date June 23rd, 2022

https://snowtrace.io/address/0x813f65d0fB158EEFB43c1Cdd3ddabcF5fD177F43#code
https://snowtrace.io/address/0xE7f0c8aD68bB70E6F2395d2Fc51AeD630D6b767E#code
https://snowtrace.io/address/0xF3E13F5ff753821238bE0Ca17d3e8F6FC6eb228d#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 SLFTToken.sol
● Name: SLFT

● Symbol: SLFT

YES, This is valid.

File 2 SLGTToken.sol
● Name: SLGT

● Symbol: SLGT

● Total Supply: 12 billion

YES, This is valid.

File 3 SleeFiVestingVault.sol
● SleeFiVestingVault can apply Vesting.

● SleeFiVestingVault owner can update Vesting

Schedule.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 3 low and some very low level issues.
All the issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Acknowledged

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the SleeFi Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the SleeFi Protocol.

The SleeFi team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a SleeFi Protocol smart contract code in the form of a snowtrace.io web

link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://sleefi.com/en/ which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://sleefi.com/en/

AS-IS overview

SLFTToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal access only

Initializing
No Issue

7 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue

10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 __ERC20Burnable_init internal access only

Initializing
No Issue

15 __ERC20Burnable_init_u
nchained

internal access only
Initializing

No Issue

16 burn write Passed No Issue
17 burnFrom write Passed No Issue
18 initialize external access by initializer No Issue
19 _mint internal No Max minting of

the tokens set
Acknowledged

20 _afterTokenTransfer internal Empty function used Acknowledged
21 _beforeTokenTransfer internal Empty function used Acknowledged

SLGTToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal access only

Initializing
No Issue

7 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue

10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 initialize external access by initializer No Issue
15 _afterTokenTransfer internal Empty function used Acknowledged
16 _beforeTokenTransfer internal Empty function used Acknowledged

SleeFiVestingVault.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __Ownable_init internal access only

Initializing
No Issue

7 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue

10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 initialize external access by initializer No Issue
15 _getUserVestingInfo internal Passed No Issue
16 getUserVestingInfo external The msg.sender

used in view
function

Acknowledged

17 updateVestingSchedule external Function input
parameters lack of

check

Acknowledged

18 _applyVesting internal Passed No Issue
19 applyVesting external access only Owner No Issue
20 claim external Passed No Issue
21 _effectiveDay internal Passed No Issue
22 _getVestedInfo internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

(1) No Max minting of the tokens set: SLFTToken.sol

Setting max minting for the tokens is good for tokenomics.Token minting without any

maximum limit is considered inappropriate for tokenomics.

Resolution: Token minting without any maximum limit is considered inappropriate for

tokenomics. We recommend placing some limit on token minting to mitigate this issue.

Status: This issue is acknowledged by the SleeFi team as a required business logic
as a necessity of the maximum supply because of the game system.

Low

(1) Require can be merge: SleeFiVestingVault.sol

In _applyVesting and Claim functions, 2 requirements with the same messages can be

merged to reduce some gas.

Resolution: We suggest merging both require in one.

Status: This issue is acknowledged by the SleeFi team as, It is a required gas to
deploy contract will decrease (we just need deploy 1 time only), but the gas to
execute these functions will be increase a little bit (these functions can be called
many time in future).

(2) The msg.sender used in view function: SleeFiVestingVault.sol

getUserVestingInfo function is used to fetch the vesting info for the caller so it is using

msg.sender. But that does not give vesting info. As there is no other view function to fetch

the user’s vesting information, it will create problems while showing data at UI.

Resolution: We suggest adding an address parameter and use it instead of msg.sender, it

will give vesting info.

Status: This issue is acknowledged by the SleeFi team as being unnecessary for the
UI to get the information of a VC at the `Get Vesting Info` screen. The input
parameter was removed because It was not desired to get the VC vesting info easily.

(3) Function input parameters lack of check: SleeFiVestingVault.sol

In updateVestingSchedule function owner can set any amount of percent in vesting and

there may be misuse of this function.

Resolution: Add a “require” condition in updateVestingSchedule for parent and check if its

not > BASE_PRECISION, also not allow more than 100%.

Status: This issue is acknowledged by the SleeFi team as this will be taken care of
by the owner when updating the vesting schedule.

Very Low / Informational / Best practices:

(1) Empty function used:

SLFTToken.sol

SLGTToken.sol

The _beforeTokenTransfer and _afterTokenTransfer are hooks and used many times but

have no effect on code or anything.

Resolution: This function can be used as a hook.

Status: Acknowledged.

(2) Variable should be immutable: SleeFiVestingVault.sol

Variables that are defined within the constructor, but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution: Consider marking this variable as immutable.

Status: Acknowledged.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● updateVestingSchedule: SleeFiVestingVault owner can update vesting schedule.

● applyVesting: SleeFiVestingVault owner can apply vesting.

● mint: SLFTToken owner can mint a token.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of snowtrace.io web link. And we have used all

possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - SleeFi Protocol

SLFTToken Diagram

SLGTToken Diagram

SleeFiVestingVault Diagram

Slither Results Log

Slither log >> SLFTToken.sol

Slither log >> SLGTToken.sol

Slither log >> SleeFiVestingVault.sol

Solidity Static Analysis

SLFTToken.sol

SLGTToken.sol

SleeFiVestingVault.sol

Solhint Linter

SLFTToken.sol

SLFTToken.sol:440:18: Error: Parse error: missing ';' at '{'
SLFTToken.sol:473:18: Error: Parse error: missing ';' at '{'
SLFTToken.sol:522:18: Error: Parse error: missing ';' at '{'
SLFTToken.sol:573:22: Error: Parse error: missing ';' at '{'

SLGTToken.sol

SLGTToken.sol:440:18: Error: Parse error: missing ';' at '{'
SLGTToken.sol:473:18: Error: Parse error: missing ';' at '{'
SLGTToken.sol:522:18: Error: Parse error: missing ';' at '{'
SLGTToken.sol:573:22: Error: Parse error: missing ';' at '{'

SleeFiVestingVault.sol

SleeFiVestingVault.sol:325:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

