
Project: Starfish OS Protocol
Website: https://www.sfos.io/
Platform: Binance Smart Chain
Language: Solidity
Date: June 16th, 2022

https://www.sfos.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 39

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Starfish OS team to perform the Security audit of the
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on June 16th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Starfish organizational consensus collaboration system. Starfish OS is a value

community that aggregates users, KOLs, media and organizations.

● Starfish OS is a Web3 ecosystem that integrates linked games, NFT, DAO, and

DeFi.

● Starfish OS is a lightweight nurturance GameFi Starfish needs to be fed to grow!

Value loop The consumption and output of starfish SFO keep a dynamic

balance.Consensus lock Lock the consensus of ecological long-term value with the

formation mechanism.

● Starfish OS is an NFT smart contract having functions like daoEdit, daoList,

daoRemove, daoCouncliList, proposalEdit, app, nftTranfer, etc.

Audit scope

Name Code Review and Security Analysis Report for
Starfish OS Protocol Smart Contracts

Platform BSC / Solidity

File 1 KOL_ProtectV2.sol

File 1 MD5 Hash 6391A739854F05E2B6DFEC2CE4447275

File 2 SFO_DAO.sol

File 2 MD5 Hash 3E0D292F690E175E028E2C8EC3BE0C7C

File 3 SKT.sol

File 3 MD5 Hash 102284E2A576A13D0E1F9B7FBA153F7F

File 4 SPT.sol

File 4 MD5 Hash 4376E12509D30DE853E622CBEEE65C6B

File 5 SMT.sol

File 5 MD5 Hash AC37733EF845A17C85F984A51AC81B60

File 6 SUT.sol

File 6 MD5 Hash 2AFB01A5D47B1AEF76FFF8A37CF9D81C

Audit Date June 16th, 2022

https://github.com/starfishos/contracts/blob/main/KOLProtectV2.sol
https://github.com/starfishos/contracts/blob/main/SFO_DAO.sol
https://github.com/starfishos/contracts/blob/main/SKT.sol
https://github.com/starfishos/contracts/blob/main/SPT.sol
https://github.com/starfishos/contracts/blob/main/SMT.sol
https://github.com/starfishos/contracts/blob/main/SUT.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 KOL_ProtectV2.sol
● KOL_ProtectV2 has functions like: app, setProtect,

etc.

YES, This is valid.

File 2 SFO_DAO.sol
● SFO_DAO has functions like: daoAdd, daoEdit,

daoExist, daoRemove, etc.

YES, This is valid.

File 3 SKT.sol
● Name: StarFish-KOL-NFT

● Symbol: SKT

YES, This is valid.

File 4 SPT.sol
● Name: StarFish-Pro-NFT

● Symbol: SPT.

YES, This is valid.

File 5 SMT.sol
● Name: StarFish-KOL-NFT

● Symbol: SMT

YES, This is valid.

File 6 SUT.sol
● Name: StarFish-KOL-NFT

● Symbol: SUT

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Starfish OS Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Starfish OS Protocol.

The Starfish OS team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Starfish OS Protocol smart contract code in the form of a Github web

link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://www.sfos.io/ which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.sfos.io/

AS-IS overview

KOL_ProtectV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 onERC721Received write Passed No Issue
8 app external Passed No Issue
9 setProtect external access only Owner No Issue
10 tokenTranfer external access only Owner No Issue
11 nftTranfer external access only Owner No Issue

SFO_DAO.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 setTokenAllow external access only Owner No Issue
9 daoAdd external Passed No Issue
10 daoEdit external Passed No Issue
11 daoList external Passed No Issue
12 daoExist read Passed No Issue
13 daoRemove external access only Owner No Issue
14 daoCouncliList external Passed No Issue
15 councliAssign external Infinite loop, Critical

operation lacks event
log

Refer Audit
Findings

16 councliApply external Passed No Issue
17 councliQuit external Passed No Issue
18 councliAt read Passed No Issue
19 lpToTokenPrice read Passed No Issue
20 proposalAdd external Passed No Issue
21 proposalEdit external Passed No Issue
22 proposalFinsh external Passed No Issue

23 proposalRemove external Critical operation
lacks event log

Refer Audit
Findings

24 prosalList external Passed No Issue
25 daoJoin external Passed No Issue
26 userDaoList external Passed No Issue
27 daoQuit external Passed No Issue
28 vote external Infinite loop Refer Audit

Findings
29 voteFinsh external Infinite loop Refer Audit

Findings
30 voteRecord external Passed No Issue
31 voteRecordList external Passed No Issue
32 userCouncli read Passed No Issue
33 userVoteRecordQuery external Passed No Issue
34 voteRecordConcat write Passed No Issue
35 voteRecordResolve external Passed No Issue

SKT.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _baseURI internal Passed No Issue
3 mint write Passed No Issue
4 pause write Passed No Issue
5 unpause write Passed No Issue
6 _baseURI internal Passed No Issue
7 setBaseTokenURI write Passed No Issue

SPT.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _baseURI internal Passed No Issue
3 mint write Passed No Issue
4 pause write Passed No Issue
5 unpause write Passed No Issue
6 _baseURI internal Passed No Issue
7 setBaseTokenURI write Passed No Issue
8 _beforeTokenTransfer internal Passed No Issue

SMT.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _baseURI internal Passed No Issue
3 mint write Passed No Issue
4 pause write Passed No Issue
5 unpause write Passed No Issue
6 _baseURI internal Passed No Issue
7 setBaseTokenURI write Passed No Issue
8 _beforeTokenTransfer internal Passed No Issue

SUT.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _baseURI internal Passed No Issue
3 mint write Passed No Issue
4 pause write Passed No Issue
5 unpause write Passed No Issue
6 _baseURI internal Passed No Issue
7 setBaseTokenURI write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log: SFO_DAO.sol
Missing event log for:

● councliAssign

● proposalRemove

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Infinite loop: SFO_DAO.sol
In below functions ,for loops do not have upper length limit , which costs more gas:

● voteFinsh

● vote

● councliAssign

Resolution: Upper bound should have a certain limit in for loops.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● nftTranfer: KOL_ProtectV2 owner can transfer NFT.

● tokenTranfer: KOL_ProtectV2 owner can transfer Token.

● setProtect: KOL_ProtectV2 owner can set protected status.

● setTokenAllow: SFO_DAO owner can set token allow address.

● daoRemove: SFO_DAO owner can remove dao.

● councliAssign: SFO_DAO owner can council assign address.

● proposalRemove: SFO_DAO owner can remove proposal.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Github weblink. And we have used all

possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Starfish OS Protocol

KOL_ProtectV2 Diagram

SFO_DAO Diagram

SKT Diagram

SPT Diagram

SMT Diagram

SUT Diagram

Slither Results Log

Slither log >> KOL_ProtectV2.sol

Slither log >> SFO_DAO.sol

Slither log >> SKT.sol

Slither log >> SPT.sol

Slither log >> SMT.sol

Slither log >> SUT.sol

Solidity Static Analysis

KOL_ProtectV2.sol

SFO_DAO.sol

SKT.sol

SPT.sol

SMT.sol

SUT.sol

Solhint Linter

KOL_ProtectV2.sol

KOL_ProtectV2.sol:227:18: Error: Parse error: missing ';' at '{'

SFO_DAO.sol

SFO_DAO.sol:327:18: Error: Parse error: missing ';' at '{'

SKT.sol

SKT.sol:195:18: Error: Parse error: missing ';' at '{'
SKT.sol:203:18: Error: Parse error: missing ';' at '{'
SKT.sol:1018:18: Error: Parse error: missing ';' at '{'
SKT.sol:1031:18: Error: Parse error: missing ';' at '{'
SKT.sol:1043:18: Error: Parse error: missing ';' at '{'
SKT.sol:1060:18: Error: Parse error: missing ';' at '{'
SKT.sol:1072:18: Error: Parse error: missing ';' at '{'
SKT.sol:1168:18: Error: Parse error: missing ';' at '{'
SKT.sol:1191:18: Error: Parse error: missing ';' at '{'
SKT.sol:1217:18: Error: Parse error: missing ';' at '{'

SPT.sol

SPT.sol:195:18: Error: Parse error: missing ';' at '{'
SPT.sol:203:18: Error: Parse error: missing ';' at '{'
SPT.sol:1018:18: Error: Parse error: missing ';' at '{'
SPT.sol:1031:18: Error: Parse error: missing ';' at '{'
SPT.sol:1043:18: Error: Parse error: missing ';' at '{'
SPT.sol:1060:18: Error: Parse error: missing ';' at '{'
SPT.sol:1072:18: Error: Parse error: missing ';' at '{'
SPT.sol:1168:18: Error: Parse error: missing ';' at '{'
SPT.sol:1191:18: Error: Parse error: missing ';' at '{'
SPT.sol:1217:18: Error: Parse error: missing ';' at '{'

SMT.sol

SMT.sol:195:18: Error: Parse error: missing ';' at '{'
SMT.sol:203:18: Error: Parse error: missing ';' at '{'
SMT.sol:1018:18: Error: Parse error: missing ';' at '{'

SMT.sol:1031:18: Error: Parse error: missing ';' at '{'
SMT.sol:1043:18: Error: Parse error: missing ';' at '{'
SMT.sol:1060:18: Error: Parse error: missing ';' at '{'
SMT.sol:1072:18: Error: Parse error: missing ';' at '{'
SMT.sol:1168:18: Error: Parse error: missing ';' at '{'
SMT.sol:1191:18: Error: Parse error: missing ';' at '{'
SMT.sol:1217:18: Error: Parse error: missing ';' at '{'

SUT.sol

SUT.sol:195:18: Error: Parse error: missing ';' at '{'
SUT.sol:203:18: Error: Parse error: missing ';' at '{'
SUT.sol:1017:18: Error: Parse error: missing ';' at '{'
SUT.sol:1030:18: Error: Parse error: missing ';' at '{'
SUT.sol:1042:18: Error: Parse error: missing ';' at '{'
SUT.sol:1059:18: Error: Parse error: missing ';' at '{'
SUT.sol:1071:18: Error: Parse error: missing ';' at '{'
SUT.sol:1167:18: Error: Parse error: missing ';' at '{'
SUT.sol:1190:18: Error: Parse error: missing ';' at '{'
SUT.sol:1216:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

