@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: TeamEnvoy

Website: http://Voyfinance.com
Platform: Ethereum/L1 network XDC
Language: Solidity

Date: July 6th, 2022

http://voyfinance.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 10
AUt FINAINGS oo e 11
@70 o T3 1017 T o 14
(@ 0] 1Y/ =1 1 T To [o] 0T) 15
DISCIAIMEIS ... e 17
Appendix
o Code FIoW Diagramououoiiii s 18
o Shther RESUIS LOGuiiiiii e 19
e Solidity staticanalysis ... 22
® SOININt LiNtEr oo 24

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the TeamEnvoy team to perform the Security audit of the
TeamEnvoy smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on July 6th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

TeamEnvoy is a staking smart contract having functions like: createStake, calculateAPY,
increaseLocking, finishStake, createEmbargo, finishEmbargo, etc. The TeamEnvoy
contract inherits the IERC20, Pausable, AccessControl standard smart contracts from the
OpenZeppelin library. These OpenZeppelin contracts are considered community-audited

and time-tested, and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
TeamEnvoy Smart Contract
Platform Ethereum / L1 network XDC / Solidity
File EnvoyStaking.sol
File MD5 Hash 3dea5b11b9d656345351e844a3c7ebf7

Updated File MD5 Hash | 6E751092833106ABA94403EB1DD0A263

Online Code Link https://qgithub.com/TeamEnvoy/staking-smart-contracts/b
lob/main/EnvoyStaking.sol

Audit Date July 6th, 2022

Revise Audit Date July 8th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/TeamEnvoy/staking-smart-contracts/blob/main/EnvoyStaking.sol
https://github.com/TeamEnvoy/staking-smart-contracts/blob/main/EnvoyStaking.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

o APY_1:5%

o APY_3:8%

o APY_6:11%
o APY _9:13%
e APY_12:15%

e Minimum stake amount: 1 VOY

YES, This is valid. Admin
wallet’s private key must be
handled very securely.
Because if that is
compromised, then it will

create problems.

Ownership Control:
e Admin can access pause and unpause
status.

e Admin can set new APY and remove APY.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

All the issues have been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in TeamEnvoy are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the TeamEnvoy.

The TeamEnvoy team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a TeamEnvoy smart contract code in the form of a Github web link. The

hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website http://\Voyfinance.com which provided

rich information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

http://voyfinance.com

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | whenNotPaused modifier Passed No Issue
3 | whenPaused modifier Passed No Issue
4 | paused read Passed No Issue
5 requireNotPaused internal Passed No Issue
6 requirePaused internal Passed No Issue
7 pause internal Passed No Issue
8 unpause internal Passed No Issue
9 | onlyRole modifier Passed No Issue
10 | supportsinterface read Passed No Issue
11 | hasRole read Passed No Issue
12 | checkRole internal Passed No Issue
13 | checkRole internal Passed No Issue
14 | getRoleAdmin read Passed No Issue
15 | grantRole write access only Role No Issue
16 | revokeRole write access only Role No Issue
17 | renounceRole write Passed No Issue
18 | setupRole internal Passed No Issue
19 | setRoleAdmin internal Passed No Issue
20 | grantRole internal Passed No Issue
21 | revokeRole internal Passed No Issue
22 | getTotalAPYs read Passed No Issue
23 | createStake write Passed No Issue
24 | calculateAPY read Passed No Issue
25 | addStake internal Passed No Issue
26 | finishStake write Passed No Issue
27 | finishStake internal Passed No Issue
28 | calculateRewards write Passed No Issue
29 | calculateFinishTimestamp read Passed No Issue
30 | calculateFinishTimestamp internal Passed No Issue
31 | setMinimumStake write access only Role No Issue
32 | increaselocking write access only Role No Issue
33 | releaseFromlLocking write access only Role No Issue
34 | createEmbargo write access only Role No Issue
35 | setAPY write access only Role No Issue
36 | removeAPY write access only Role No Issue
37 [finishEmbargo write Passed No Issue
38 | setuplnitialAPYs write Passed No Issue
39 [extract write Passed No Issue
40 | getStake external Passed No Issue
41 | pause write access only Role No Issue
42 | unpause write access only Role No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.
Low

(1) Critical operation lacks event log:
Missing event log for:
o _setAPY
e _removeAPY
Resolution: Write an event log for listed events.
Status: Fixed.
(2) Function input parameters lack of check:
Variable validation is not performed in below functions:
e createEmbargo = _account

e increaselLocking = _beneficiary

e setMinimumStake = _minimumStake

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

Status: Fixed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Missing Error Message:

Error Messages are missing in some functions.

function setMinimumStake(uint256 _minimumStake) public {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender)); g—m—m"

minimumStake = _minimumStake;

¥

function increaselocking(address _beneficiary, uint256 _total) public {

require(hasRole(LOCKINGS_ROLE, msg.sender)); —
require(IERC28(token).transferFrom{msg.sender, address(this), _total), "Couldn't take the tokens");
lockings[_beneficiary] += _total;

emit LockingIncreased(_beneficiary, _total);

¥

function releaseFromLocking(address _beneficiary, uint256 _total) public {

require(hasRole(LOCKINGS_ROLE, msg.sender)); 40—
require(lockings[_beneficiary] »>= _total, "Not enough locked tokens™);

lockings[_beneficiary] -= _total;

Resolution: We suggest adding appropriate error messages required to track the actual
error for failed transactions.

Status: Fixed.
(2) Make variables constant:

APY_1, APY_3, APY_6, APY_9, APY_12 These variables will be unchanged. So, please

make them constant. It will save some gas.

Resolution: We advise to declare those variables as constant. Just put a constant

keyword. And define constants in the constructor.

Status: Fixed.

(3) Initialize by default value:

minimumStake variable has been initialized by 0. In solidity, the integer variable has

default value as 0. So no need to initialize by default value.
Resolution: We suggest not to initialize integer variables by 0.

Status: Fixed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

_setAPY: Admin can set a new APY.

_removeAPY: Admin can remove APY.

e createEmbargo: Admin can create a new embargo.

e releaseFromLocking: Admin can release from locking.
e increaselLocking: Admin can increase locking.

e finishEmbargo: Admin can set the finish stake address.
e extract: Admin can extract accounts.

e pause: Admin can trigger a stopped state.

e unpause: Admin can return to normal state.

e setMinimumStake: Admin can set minimum stake.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a Github web link. And we have used all
possible tests based on given objects as files. We have not observed any major issues.

So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - TeamEnvoy

@ EnvoyStaking

Pausable
AccessContral

bytes32 PAUSER _ROLE
bytes32 EMEBARGOES ROLE
bytes32 LOCKINGS ROLE
bytes32 RATES ROLE
IERC20 token

uirt256 AP _1

uint256 APY_3

uint256 APY_G

uirt256 APY_9

uirt256 APY_12

uiNt256 totalStakes

uirnt256 totalActiveStakes
uirmt 256 total&ctiveStaked
uirt256 totalStaked

uirt 256 totalStakeClaimed
uiNt256 totalRewards Claimed
uUiNtZ56 minimumStake
address==5Stake stakes
addres: uirMt25E lockings
uint256==null apys

0000|0C00000000000000{0000

<
L]
<

ooooo000000O0O0CO0

Q,_getTotalAPYs()

_ constructor__ ()
createStake()

D calculate P ()
_addStake])
finishStake()
_finishStake()

S calculateRewards()
A calculateFinishTimestamp()
Q,_calculateFinishTimestamp()
setMinimumStake()
increaselocking()
releaseFromLocking()
createEmbargo)
_setAPY()
_removesPY)
finishEmbargao()
_setupinitial AP =)
_extract()
QgetStake()

pause)

unpause)

@ Strings

O bytes16 _HEX SYMBOLS
O uintg ADDRESS | EMGTH

“F OoStringl)
< RtoHexString()

@ AccessControl

Context

ERCTES

O bool _paused

AccessControl

bytes32=-RoleData
bytes32 DEFALULT _ADMIM_ROLE

_roles

@ Qpaused()

< _pausel)

@ _ constructor__ ()

O _requirehotPaused()
< O _requirePaused()

S hasRole)

gramtRole])
revokeRole()

peoege0(oD

o _unpause)

“r _setupRole()

< _grantRole()
< _revokeRole()

A supportsinterface()
Q,_checkRole()

O, getRoleAdmind)
renounceRole)

O _setRolesdrming

@ -t-_":onte-xt

@ rAccessControf

@ IERC20

SiotalSupply()
Q balance)
transfer()
Qallowance()
approve])
transferFromi)

go2000Q

-
(e Erciss

O O,_msgSender()
G _msgDatal)

S hasRole()

O getRolesdming)

IERC1685

revokeRale()

@ Qsupportsinterface)

-
(=]
@ gramtRole()
[
[

renounceRole()

@ néﬁc 165

@ Azupportzinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> TeamEnvoy.sol

INFO:Detectors:
Reentrancy in EnvoyStaking._addStake(address,uint256,uint256,bool,uint256) (EnvoyStaking.sol#639-665):
External calls
- require(bool,string)(IERC20(token).transferFrom(msg.sender,address(this),_totalStake),Couldn't take the tokens) (Env
oyStaking.sol#642)
State variables written after the call(s):
- stakes[_beneficiary] = stake (EnvoyStaking.sol#657)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
Reentrancy in En Staking._addStake({address,uint256,uint256,bool,uint256) (EnvoyStaking.sol#639-665):

ol,string){IERC20(token).transferFrom{msg.sender,address(this),_totalStake),Couldn't take the tokens) (Env

riables written after the call(s):
i taked += _tota 1‘tck» (Er
takes ++ I'E|

talstakes ++ (En 3 . 3
cy in En Staking.increaselock ing(ess,uint256) (EnvoyStaking.sol#7
Externa :
i .transferFrom(msg.sender,address({this),_total),Couldn't take the tokens) (En

Reference: //ai Jerytic/slither, (i/Dete ancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in En Staking._addStake({address,uint256,uint256,bool,uint256) (EnvoyStaking.sol#639-665):
Externa
i ol,string){IERC20(token).transferFrom{msg.sender,address(this),_totalStake),Couldn't take the tokens)

_isEmbargo) (EnvoyStaking.sol#664
Reentrancy
Externa
i ,totalRewards),Couldn't transfer the tokens) (Enwc

_lockupPer ,_1isEmbar (EnvoyStak ing.sol#664)
ess) (EnvoyStaking.sol

g.sender,totalRewards),Couldn't transfer the tokens) (EnvoyStaking.sol#6908)

20(token).transferFrom{msg.sender,address(this),_total),Couldn't take the tokens) (En

Reentrancy n Sta eleaseFrom ess,uint2 (En Staking.sol#7
Externa
i al),Couldn't send the tokens) (En

2 : Ittr
II\IFD Detectors i
(Envoys c 65) uses timestamp for comparisons

.exists,Stake alres cr) (EnvoyStaking.sol#640)
) uses timestamp for i

T rl.L,'LI'»""
EnvoyStak ir

) 74)
, ck finishesOn,Can't be finishe = cing
uire(bool, 2 talRewards),Couldn't transf the tokens)
finishEmba (255) < .s0l7 1) uses timestamp for comparisons

_ac t an embarg (Staking.sol#768)
= rytic/slit /wiki/Dete Documentat ic lock-timestamp
INFD Detectors
pccessControl._setRoleAdmin{by ’,bytes32) (Em i sver used and should be
essControl. setupRole = g ss) { c B6) ever used and should be remo

INFD Detectors
Pragma version™@.8.4 (EnvoyStaking.sol#3) r sssitates a version too recent to be trusted. Consider deploying with 8.6.12/08.7.

ctor-Documentation#incorrect-versions-of-solidity
INFO: Detectors
Function En 3))
Parameter i ateStake(uin . 2 iNt256) (i) is not in mixedCase
Para <1 ates a.:_ in suin in 5 3 { 7 is not in mix ase
Para <l 1 ,ul ,ui 5) L S cing. 1 t in mixedCase
Parameter <1 C < (i ol#612) 1s nc i i ..:Ces—:
Parameter <1 z ress). _ac (ak 1 -':- i in mixedCase
Parameter ¢ = 5 (uint256) C mixedCase
Parameter i i el ocki . { 1 7) is not in mixedCase
Para <1 i i ,ut _t < c 3) 1 t in mixedCase
Parameter <1 < (,ul 5 (EnvoyStaki l) is not in mixedCase
Parameter i / c

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Variable EnvoyStaking.APY 9 (En aking.sol#563) is not in mixedCase
Variable EnvoyStaking.APY_12 (EnvoyStaking.sol#564) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Variable EnvoyStaking.createEmbargo(address,uint256,uint256,uint256). totalStake (EnvoyStaking.sol#734) is too similar to Envo
yStaking.totalStaked (EnvoyStaking.sol#569)
Variable EnvoyStaking.createStake(uint256,uint256,uint256). totalStake (EnvoyStaking.sol#606) is too similar to EnvoyStaking.t
otalStaked (EnvoyStaking.sol#569)
Variable EnvoyStaking. addStake(address,uint256,uint256,bool,uint256)._ totalStake (EnvoyStaking.sol#639) is too similar to Env
oyStaking. totalStaked {EnvoyStaking.sol#569)
Variable EnvoyStaking.createEmbargo(address,uint256,uint256,uint256). totalStake (EnvoyStaking.sol#734) 1is too similar to Envo
yStaking.totalStakes (EnvoyStaking.sol#566)
Variable Envoystaking. addStake({address,uint256,uint256,bool,uint256). totalStake (EnvoyStaking.sol#639) is too similar to Env
oyStaking. totalStakes {EnvoyStaking. sol#‘ffn
Variable EnvoyStaking.createStake(uint256,uint256,uint256). totalStake (EnvoyStaking.sol#666) is too similar to EnvoyStaking.t
otalStakes (EnvoyStaking.sol#566)
Ua{iabla EnvoyStaking.totalActiveStaked (EnvoyStaking.sol#568) is too similar to EnvoyStaking.totalActiveStakes (EnvoyStaking.
sol#567)
Variable EnvoyStaking.totalStaked (EnvoyStaking.sol#569) is too similar to EnvoyStaking.totalStakes (EnvoyStaking.sol#566)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-are-too-similar
INFO:Detectors:
EnvoyStaking._setupInitialAPYs() (EnvoyStaking.sol#773-813) uses literals with too many digits:
- _setapY(1,9, % 1218) (Env etaku.g sol#774)
voyStaking. . literals with too many digits:
- SATHPYII, * e ", B * 1) (Env Dvctaklﬂg sol#775)
voyStaking. sntupInltlalHPYSIl (En taking.s0l#773-813) uses literals with too many digits:
- _setAPY(1, lh * 1 * 1g18, lEh Dvctaklhg solﬁ;;ru
voyStaking. .) ’ too many digits:
- SQtHPY|1 50 * le * le) U 'Qtaklhg Solﬁfffl
voyStaking. sntuplnltlaluPYSIl (En 3-813) uses literals with too many digits:
- _setAPY(1, * 1218, * 1e13,[;5} (EnvoyStaking.sol#778)
voyStaking. sntupInltlaluPYSIl (En aklhg s0l#773-813) uses literals with too many digits:
- _setAPY(1, * leld, * 1e18,575) (EnvoyStaking.sol#779)
voyStaking. setupInitialAPYs() fEr.)vqtaking sol#??%-&l%] uses literals with too many digits:
- _setAPY(1, * 1el8,10 * 1e18,500) (EnvoyStaking.sol#730)
voyStaking. setupInitialAPYs() LEnf- ng.sol#773-813) uses literals with too many digits:
- _setAPY(3,0 * 1el8 * 1el8,16 (yStaking.sol#782)

- _setAPY(32,0, * 1el8 * 1el8,16 (Env ”Ctaklng sol#782)

woyStaking. setupInitialAPYs() (EnvoyStaking. sol# -813) uses literals with too many digits:
- _setAPY(3,5 * 118 * e 440) (EnvoyStaking.sol#783)

voyStaking. Ys() (En aking.sol#773-813) uses literals with too many digits:
- _setA ‘:”, B * e * 1e18,1280) (EnvoyStaking.sol#784)

voyStaking._setupInitialAPYsi} (EnvoyStaking.sol#773-813) uses literals with too many digits:
- _seth 3) * 1e18,1 * 1e18,1120) (EnvoyStaking.sol#785)

'voyEtaking._setupInltialAPYs[) (En taking.sol#773-813) uses literals with too many digits:
- _setAPY(3, * 1el8, B0 * 1e18,1000) (EnvoyStaking.sol#786)

nvoyStaking. setupInitialAPYs() (En aking.sol#773-813) uses literals with too many digits:
- _setAPY(3,5 * e * 1e18,920) (EnvoyStaking.sol#787)

nvoyStaking. setupInitialAPYs() (EnvoyStaking.sol#773-813) uses literals with too many digits:
- setAPY(3,10 * lel * 1e218,800) fEn'ovctaklng sol#788)

nvoyStaking. sntupInltlaluPYSIl (En ng.sol#773- olsl uses literals with too many digits:
- _setAPY(6 * 1el8,) (EnvoyStaking. sol# 7908)

voyStaking. sntuplnitiaIAPst\ (En D”Ctaking.sol#TTS—SIB) uses literals with too many digits:
- SAtHPflf,E B * le B * 1e18,1988) (EnvoyStaking.sol#791)

voyStaking. taking.sol#773-813) uses literals hlth too many digits:
- SAtHFYIf * e * 1e18,) (EnvoyStaking.sol#

woyStaking. () (En aking.sol#773-813) uses literals with too many digits:
- _satHPYlf,. * e * 1e18,15408) (EnvoyStaking.sol#

nvoyStaking. setupInitialAPYs() (EnvoyStaking.sol#773-813) uses literals with too many digits:
- _setAPY(6,10 * 1el8,5¢ * 1e18,1375) (EnvoyStaking.sol#794)

nvoyStaking. setupInitialAPYs() (En taking.sol#773-813) uses literals with too many digits:
- _setAPY(6,5 * 1e18, 1 * 1e18,1265) (EnvoyStaking.sol#795)

nvoyStaking. sntupInitialﬂPst\ (Env oyStaking.sol#773-813) uses literals with too many digits:
- _setAPY(6,10 ; =3 1910 1180) (EnvoyStaking.sol#796)

voyStaking. sntuplnltlaluPYSIl IEn T -813) uses literals with too many digits:
- _setAPY(9 (yStaking.sol#798)

voyStaking. setupInitialAPYs() “(Envoy . t773-813) uses literals with too many digits:
- SAtHFYIO,E 3 8 3 2) (EnvoyStaking.sol#799)

woyStaking. -813) uses literals with too many digits:
- _SAtHPYIO, * e * e ,“) (EnvoyStaking.sol#260)

nvoyStaking. setupInitialAPYs() (En taking.sol#773-813) uses literals 1th too many digits:
- _setAPY(9,5) * 1elB,1 * 1e18,1820) (Env Dvctaklh; sol#801

'voyStaking sntuplnitiaIAPst\ (EnvoyStaking. sol#773- 813) uses literals \1th too many digits:
- : B * 1e18,1625) (EnvoyStaking.sol#262)

'voy?taking._ : nitialAPYs() (EnvoyStakin 3 uses literals with toe many digits:
- _setAPY(9,100 * 1913,= : i25) (EnvoyStaking.sol#862)

nvoyStaking. setupInitialAPYs() (En takln; sol#773-813) uses literals with too many digits:
- _setAPY(9, * 1el8,) * 1e18,1495) (EnvoyStaking.sol#883)

nvoyStaking. _setupInitialAPYs() (EnvoyStaking sol#773- 813) uses literals with too many digits:
- _setAPY(9,10 B * lelB,10 * 1e18,1300) (EnvoyStaking.sol#804)

nvoyStaking._setupInitialAPYs({) (Env ng.sol#773-813) uses literals with too many digits:
- _setAPY(12,0 * 1el8 (EnvoyStaking.sol#866)

nvoyStaking. setupInitialAPYs() taklhg sol+aa: 813) uses literals with too many digits:
- _setAPY(12,5 * e B * 1e18,2700) (EnvoyStaking.sol#887)

woyStaking. satupInltlaluPKSIl IE| yStaking. sol# -813) uses literals with too many digits:
- _setAPY(12,10 * 1218 # =18, 8) (Env Dvctaklhg sol#808)

nvoyStaking. _setupInitialAPYs() iEr taking.sol#773-813) uses literals with too many digits:
- _setAPY(12,5 * 1el8, * 1e18,2100) (Env Dvctaklhg sol#8089)

nvoyStaking. setupInitialAPYs() (EnvoyStaking.sol#773-813) uses literals with too many digits:
- _setAPY(12,1 =zl) * 1e18,1875) (Env Dvctaklhg sol#810)

nvoyStaking. setupInitialAPYs() (Env taklng.sol#Ta; 813) uses literals with too many digits:
- _setAPY(12,5 * 1lels, * 1e18,1725) (EnvoyStaking.sol#811)

EnvoyStaking._setupInitialAPYs{) (Env ol#773-813) uses literals with too many digits:
_setAPY(12,1 A 8 B * 1e18,1560) (E aking.sol#812)
/github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

; a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FO:Detectors

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

TeamEnvoy.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
EnvoyStaking._addStake(address,uint256,uint256,bool,uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not
considered by this static analysis.

maore

Pos: 639:4:

Block timestamp:

Use of "block.timestamp™ "block.timestamp"” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 679:16:

Gas & Economy

Gas costs:

Gas requirement of function EnvoyStaking.getRoleAdmin is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 427:4:

Gas costs:

Gas requirement of function EnvoyStaking.unpause is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 834:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, fransactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 630:8:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 756:8:

Miscellaneous

Constant/View/Pure functions:

AccessControl._checkRole(bytes32,address) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 406:4:

Similar variable names:

EnvoyStaking._addStake(address,uint256,uint256,bool,uint256) : Variables have very similar
names "totalStaked" and "_totalStake". Note: Modifiers are currently not considered by this static
analysis.

Pos: 664:36:

Similar variable names:

EnwvoyStaking._finishStake(address) : WVariables have very similar names "totalActiveStakes" and
"totalActiveStaked". Note: Modifiers are currently not considered by this static analysis.
Pos: 685:8:

Similar variable names:

EnvoyStaking.getStake(address) : Variables have very similar names "stake" and "stakes". Note:
Modifiers are currently not considered by this static analysis.
Pos: 827:99:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 817:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 696:15:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

TeamEnvoy.sol

EnvoyStaking.sol:3:1: Error: Compiler version 70.8.15 does not
satisfy the r semver requirement
EnvoyStaking.so0l:266:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
EnvoyStaking.sol:547:1: Error: Contract has 16 states declarations
but allowed no more than 15
EnvoyStaking.sol:558:5: Error: Explicitly mark visibility of
EnvoyStaking.so0l:560:20: Error: Variable name must be in mixe
EnvoyStaking.so0l:561:20: Error: Variable name must be in mixedC
EnvoyStaking.so0l:562:20: Error: Variable name must be in mixedC
EnvoyStaking.so0l:563:20: Error: Variable name must be in mixedC
EnvoyStaking.so0l:564:20: Error: Variable name must be in
EnvoyStaking.so0l:590:5: Error: Explicitly mark visibility of state
EnvoyStaking.so0l:598:5: Error: Explicitly mark visibility in function
(Set ignoreCo ructors to true if using solidity >=0.7.0)

:650:48: Error: Avoid to make time-based decisions in

D

S

S
mixedCase

t

your business
EnvoyStaking.sol:679:17: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

