
Project: The Holy Vessel-Pot Pass
Website: www.plutuslandglobal.com
Platform: Ethereum
Language: Solidity
Date: September 13th, 2022

https://www.plutuslandglobal.com/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 24

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the The Holy Vessel-Pot Pass Token team to perform the
Security audit of the The Holy Vessel-Pot Pass Token smart contract code. The audit has
been performed using manual analysis as well as using automated software tools. This
report presents all the findings regarding the audit performed on September 13th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The Holy Vessel-Pot Pass is an ERC721 contract in which any user can mint a NFT

only once. Special address wallet, set by the owner, can mint 100 NFT.

● The Holy Vessel-Pot Pass contract inherits the ERC721, ERC721Enumerable,

Address, Counters, Pausable, Ownable, MerkleProof standard smart contracts from

the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for The
Holy Vessel-Pot Pass Token Smart Contract

Platform Ethereum / Solidity

File PremintCreatorKey.sol

File MD5 Hash 5282FFD4622C55F99825DF0CE4927642

Audit Date September 13th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: The Holy Vessel-Pot Pass

● Symbol: The Holy Vessel-Pot Pass

● Unlimited token minting possibility

YES, This is valid.

Other Specifications
● Open Zeppelin standard code is used.

● Owner can get a baseURI and a special

address.

● Owner can set a baseURI and a special

address.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts do contain owner control, which does not make
them fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the The Holy Vessel-Pot Pass Token are part of its logical algorithm. A

library is a different type of smart contract that contains reusable code. Once deployed on

the blockchain (only once), it is assigned a specific address and its properties / methods

can be reused many times by other contracts in the The Holy Vessel-Pot Pass Token.

The Holy Vessel-Pot PassToken team has not provided scenario and unit test scripts,

which would have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given The Holy Vessel-Pot Pass Token smart contract code in the form of a file.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented but the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://www.plutuslandglobal.com/

which provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://www.plutuslandglobal.com/

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Unused internal

variable
Refer Audit

Findings
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 whenNotPaused modifier Passed No Issue
7 whenPaused modifier Passed No Issue
8 paused read Passed No Issue
9 _requireNotPaused internal Passed No Issue

10 _requirePaused internal Passed No Issue
11 _pause internal Passed No Issue
12 _unpause internal Passed No Issue
13 supportsInterface read Passed No Issue
14 balanceOf read Passed No Issue
15 ownerOf read Passed No Issue
16 name read Passed No Issue
17 symbol read Passed No Issue
18 tokenURI read Passed No Issue
19 _baseURI internal Passed No Issue
20 approve write Passed No Issue
21 getApproved read Passed No Issue
22 setApprovalForAll write Passed No Issue
23 isApprovedForAll read Passed No Issue
24 transferFrom write Passed No Issue
25 safeTransferFrom write Passed No Issue
26 safeTransferFrom write Passed No Issue
27 _ownerOf internal Passed No Issue
28 _safeTransfer internal Passed No Issue
29 _exists internal Passed No Issue
30 _isApprovedOrOwner internal Passed No Issue
31 _safeMint internal Passed No Issue
32 _safeMint internal Passed No Issue
33 _mint internal Passed No Issue
34 _burn internal Passed No Issue
35 _transfer internal Passed No Issue
36 _approve internal Passed No Issue
37 _setApprovalForAll internal Passed No Issue
38 _requireMinted internal Passed No Issue
39 _checkOnERC721Received write Passed No Issue
40 _beforeTokenTransfer internal Passed No Issue
41 _afterTokenTransfer internal Passed No Issue

42 _beforeConsecutiveTokenTransfer internal Passed No Issue
43 _afterConsecutiveTokenTransfer internal Passed No Issue
44 supportsInterface read Passed No Issue
45 tokenOfOwnerByIndex read Passed No Issue
46 totalSupply read Passed No Issue
47 tokenByIndex read Passed No Issue
48 _beforeTokenTransfer internal Passed No Issue
49 _addTokenToOwnerEnumeration write Passed No Issue
50 _addTokenToAllTokensEnumeratio

n
write Passed No Issue

51 _removeTokenFromOwnerEnumer
ation

write Passed No Issue

52 _removeTokenFromAllTokensEnu
meration

write Passed No Issue

53 mint external Set appropriate
error message

Refer Audit
Findings

54 _multimint write Passed No Issue
55 pause external access only Owner No Issue
56 unpause external access only Owner No Issue
57 totalSupply read Wrong value return Refer Audit

Findings
58 tokenURI read Passed No Issue
59 getBaseURI read Passed No Issue
60 setBaseURI write Critical operation

lacks event log
Refer Audit

Findings
61 _baseURI internal Passed No Issue
62 supportsInterface read Passed No Issue
63 _beforeTokenTransfer internal Passed No Issue
64 setSpecialAddress write Critical operation

lacks event log
Refer Audit

Findings
65 getSpecialAddress read access only Owner No Issue
66 getnftamount read Passed No Issue
67 nftAdd internal Passed No Issue
68 nftSub internal Unused internal

function
Refer Audit

Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Set appropriate error message:

The “required” with an irrelevant error message in mint() function.

Resolution: We suggest writing appropriate error messages to get the failure of the

transaction.

(2) Critical operation lacks event log:

Missing event log for:

● setBaseURI()

● setSpecialAddress()

Resolution: Please write an event log for listed events.

(3) Unused internal function / variable:

nftSub function has been defined as internal but not used anywhere.

ownera variable has been defined as private and set in constructor but never used.

Resolution: We suggest removing unused variables and functions.

(4) Wrong value return:

Comment shows that totalSupply should return the total number of tokens minted, but

actually it returns the next token number to be minted.

Resolution: We suggest either changing the comment or correct the return value by

totalSupply function.

(5) Initialized by default value:

These 2 variables have been initialized by default value.

Resolution: We suggest not to initialize by default value. It will save some gas.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● pause: Owner can trigger stopped state.

● unpause: Owner can return to normal state.

● setBaseURI: Owner can allow to change the baseURI.

● setSpecialAddress: Owner can set a special address.

● getSpecialAddress: Owner can get a special address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have not observed any major issues in the token

smart contract. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - The Holy Vessel-Pot Pass Token

Slither Results Log
Slither Log >> PremintCreatorKey.sol

Solidity Static Analysis
PremintCreatorKey.sol

Solhint Linter

PremintCreatorKey.sol

PremintCreatorKey.sol:2:1: Error: Compiler version >=0.8.9 does not
satisfy the r semver requirement
PremintCreatorKey.sol:29:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

