@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: The Holy Vessel-Pot Pass
Website:  www.plutuslandglobal.com

Platform: Ethereum

Language: Solidity
DEIH September 13th, 2022


https://www.plutuslandglobal.com/

Table of contents

Introduction

................................................................................................... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Features ...........cooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T ) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagram ........ououoiiii s 19
o Shther RESUIS LOG .. ..uiiiiii e 20
e Solidity staticanalysis ... 22
®  SOININt LiNtEr oo 24

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io


https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Introduction

EtherAuthority was contracted by the The Holy Vessel-Pot Pass Token team to perform the
Security audit of the The Holy Vessel-Pot Pass Token smart contract code. The audit has
been performed using manual analysis as well as using automated software tools. This
report presents all the findings regarding the audit performed on September 13th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e The Holy Vessel-Pot Pass is an ERC721 contract in which any user can mint a NFT
only once. Special address wallet, set by the owner, can mint 100 NFT.

e The Holy Vessel-Pot Pass contract inherits the ERC721, ERC721Enumerable,
Address, Counters, Pausable, Ownable, MerkleProof standard smart contracts from
the OpenZeppelin library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for The
Holy Vessel-Pot Pass Token Smart Contract
Platform Ethereum / Solidity
File PremintCreatorKey.sol
File MD5 Hash 5282FFD4622C55F99825DF0CE4927642
Audit Date September 13th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: The Holy Vessel-Pot Pass
e Symbol: The Holy Vessel-Pot Pass

e Unlimited token minting possibility

Other Specifications YES, This is valid.
e Open Zeppelin standard code is used.
e Owner can get a baseURI and a special
address.
e Owner can set a baseURI and a special

address.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. Also, these contracts do contain owner control, which does not make
them fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed

Critical operation lacks event log
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code

Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the The Holy Vessel-Pot Pass Token are part of its logical algorithm. A
library is a different type of smart contract that contains reusable code. Once deployed on
the blockchain (only once), it is assigned a specific address and its properties / methods

can be reused many times by other contracts in the The Holy Vessel-Pot Pass Token.

The Holy Vessel-Pot PassToken team has not provided scenario and unit test scripts,

which would have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given The Holy Vessel-Pot Pass Token smart contract code in the form of a file.

The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented but the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://www.plutuslandglobal.com/

which provided rich information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io


https://www.plutuslandglobal.com/

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write

2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write | access only Owner No Issue
6 | whenNotPaused modifier Passed No Issue
7 | whenPaused modifier Passed No Issue
8 | paused read Passed No Issue
9 requireNotPaused internal Passed No Issue
10 | requirePaused internal Passed No Issue
11 | pause internal Passed No Issue
12 | unpause internal Passed No Issue
13 | supportsinterface read Passed No Issue
14 | balanceOf read Passed No Issue
15 | ownerOf read Passed No Issue
16 | name read Passed No Issue
17 | symbol read Passed No Issue
18 | tokenURI read Passed No Issue
19 | baseURI internal Passed No Issue
20 | approve write Passed No Issue
21 | getApproved read Passed No Issue
22 | setApprovalForAll write Passed No Issue
23 | isApprovedForAll read Passed No Issue
24 | transferFrom write Passed No Issue
25 | safeTransferFrom write Passed No Issue
26 | safeTransferFrom write Passed No Issue
27 | ownerOf internal Passed No Issue
28 | safeTransfer internal Passed No Issue
29 | exists internal Passed No Issue
30 [ isApprovedOrOwner internal Passed No Issue
31 | safeMint internal Passed No Issue
32 | safeMint internal Passed No Issue
33 | mint internal Passed No Issue
34 [ burn internal Passed No Issue
35 | transfer internal Passed No Issue
36 | approve internal Passed No Issue
37 | setApprovalForAll internal Passed No Issue
38 [ requireMinted internal Passed No Issue
39 [ checkOnERC721Received write Passed No Issue
40 | beforeTokenTransfer internal Passed No Issue
41 | afterTokenTransfer internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




42 | beforeConsecutiveTokenTransfer | internal Passed No Issue
43 | afterConsecutiveTokenTransfer internal Passed No Issue
44 | supportsinterface read Passed No Issue
45 | tokenOfOwnerBylIndex read Passed No Issue
46 | totalSupply read Passed No Issue
47 | tokenBylndex read Passed No Issue
48 | beforeTokenTransfer internal Passed No Issue
49 | addTokenToOwnerEnumeration write Passed No Issue
50 | addTokenToAllTokensEnumeratio | write Passed No Issue
n
51 | _removeTokenFromOwnerEnumer | write Passed No Issue
ation
52 | _removeTokenFromAllTokensEnu write Passed No Issue
meration
53 | mint external Set appropriate Refer Audit
error message Findings
54 | multimint write Passed No Issue
55 | pause external | access only Owner No Issue
56 | unpause external | access only Owner No Issue
57 | totalSupply read | Wrong value return | Refer Audit
Findings
58 | tokenURI read Passed No Issue
59 [ getBaseURI read Passed No Issue
60 | setBaseURI write Critical operation Refer Audit
lacks event log Findings
61 | baseURI internal Passed No Issue
62 | supportsinterface read Passed No Issue
63 [ beforeTokenTransfer internal Passed No Issue
64 | setSpecialAddress write Critical operation Refer Audit
lacks event log Findings
65 | getSpecialAddress read access only Owner No Issue
66 | getnftamount read Passed No Issue
67 | nftAdd internal Passed No Issue
68 [ nftSub internal Unused internal Refer Audit
function Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.
Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Set appropriate error message:

function mint(bytes32[] calldata _merkleProof) external whenNotPaused {

address to=msg.sender;
require(
luserStatus[to]

2
"repeat mint"

)
bytes32 leaf = keccak256(abi.encodePacked(to));
require(
MerkleProof.verify(_merkleProof, merkle ,leaf)
3
"aaa"
)

The “required” with an irrelevant error message in mint() function.

Resolution: We suggest writing appropriate error messages to get the failure of the

transaction.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



(2) Critical operation lacks event log:
Missing event log for:

e setBaseURI()

e setSpecialAddress()

Resolution: Please write an event log for listed events.

(3) Unused internal function / variable:

function nftSub(uint256 a) internal pure returns (uint256) {
a--;
return a;

}

nftSub function has been defined as internal but not used anywhere.

|address private ownera; |

bytes32 private merkle=@xee963cd8daef5f5clfd8d06e8b9788667¢c51dad3a0719721bledfb45

constructor() ERC721("The Holy Vessel-Pot Pass", "The Holy Vessel-Pot Pass") {
baseURI = "https://ipfs.io/ipfs/bafybeibrogistiqyxg2p3sdnjintj6égqgwledacdléwsSmw

hextTokenId.increment();
ownera=msg.sender;
//beneficiary = payable(msg.sender);

}

ownera variable has been defined as private and set in constructor but never used.

Resolution: We suggest removing unused variables and functions.

(4) Wrong value return:

// (@notice Returns the total number of mints
function totalSupply() public view override returns (uint256) {
return nextTokenId.current();

>

Comment shows that totalSupply should return the total number of tokens minted, but

actually it returns the next token number to be minted.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Resolution: We suggest either changing the comment or correct the return value by

totalSupply function.

(5) Initialized by default value:

string private baseURI = "";

Counters.Counter private nextTokenld;

mapping{address =»> bool) private userStatus;

address private specialAddress=0x522c6F7BC1T43326AABFefa72bASDEDEOC3ITFES;
| uint256 private nowTotalCount=0; |

address private ownera;

These 2 variables have been initialized by default value.

Resolution: We suggest not to initialize by default value. It will save some gas.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e pause: Owner can trigger stopped state.

e unpause: Owner can return to normal state.

e setBaseURI: Owner can allow to change the baseURI.
e setSpecialAddress: Owner can set a special address.

e getSpecialAddress: Owner can get a special address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Conclusion

We were given a contract code in the form of a file and we have used all possible tests
based on given objects as files. We have not observed any major issues in the token

smart contract. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Appendix

Code Flow Diagram - The Holy Vessel-Pot Pass Token

® MerkieProar

oot}

o QprocessProaiCalatal)

© QUmuiProof\Verifyt)

© QumukiProof\erityCaldatat)
O QprocessiAProof()

© QprocesshutProcfCalkiatal)
® Q_hashPar()

m Q_efficiertHash()

|/ for Counters. Counter
‘

(®) counters

© Seurrent()
< increment)
<o

@ onERCT21 Received()

)
© reset()

This is a private and confidential document.

(@) PremintCrastoricey

ERCTZY
ERCTZIEnumerable
Cwaable

Pausable

O Lirt256 nowTotalCourt
O address ownera
O byles32 merkle

__constructor__{}
mrt{}

© A_baseURH)
@ Qsupportsinerface() A

< _peforeTokenTransfer()

SctSpecial
B getSpecialAddrass()
= Qgeinftanou
> QnfAdd() \
< AnfSub \
[ '
/ '
% '

(@ Erc721Enumerabls | !

i
‘ ERCT21
IERCTZ1ENumeraDie
| O address=o,

supportsiterface()
= QuakenDrOwnerSyknaex()
® SQuotalSupply()

ng UINZSE=>WM256 _ownedTokerns | N
eciTahensindex |

® QuokenByinde:x()
< _beforeTokenTransfer()

h < “betoreConsecuiveTokenTranster()

, ™ _addTokenToOwnerEnumeration()
B _aadTokenToAlTokensEnumeratian()
f remaveTokenFromOwner Enumeration() |
¥ B _removeT okenfromAlT ckensEnumeration) |
' |
' f \
[ |
' / \ |
| for address f \

@) ierc721Enumerasie
‘| rerczz1
@ QtotaSuppiy()

QskenOfOumerSyindex)) |
2| @ QiokenByindex()

>

Il

for uint256

@ ERG721

Context
| ERC165
fERCTZT
{ JER CT21Metactats

/ anagaress for address
nStrings for SitI5E

O string _name
O string
O int: e
O sddres:

ovals

© _constructor_()
® Qsupportsimerface()

Saymboll)

@ SrokenURIC

© a_jaseURI()

® spproved)

® Sgctépproved()

© s=tApprovalForal)
Qs Ao oved

© Ztransfer()
O _spprovei)
© _setApprovaForAl()
© By_recuirenntea)
¢ | B _checkorERCT21ReceivedD)
4 beforaTokenTranster()
L © ZsMerTokenTransfer

3 nsecutiveTakanTransfar()
, aMerConsecutiveTokenTranser ()

O 3ooress=>mapping addrsss=>baal _operator Approvais

| v
| [

for adaress for wint256

@) acaress

© QuisContract()

> functionCailVihValue()
W _functionCaIkVERValuel)

Context
O bool _paused

O sddress _awner o comstrocior 0|
® _constructor__(}

* _eonstructor_() ® Qpaused()

& Quwnerr) @ Q_requireNotPaused()

- wo | © i

® transferCwnershipg) © _pause()

- © “unpause()

(©) conten

/ N o
f ¢ | ~ Y
| | @) rercrzmstaaats) | (@) swings
| [ercrzs D bpesis_sviBoLs
| = = O Urts _ADORESS_LENGTH
® Qsymboiny < Questrinat)
| © QokenUAIl) o

© O,_msgSender(}
< A msghatag

' 7 &
{ / @ ercies

IERC188

| © Qsupportsitertace()

. IERC 72;

IERC1ES

® Qbslanceor()

© approvel}

® seiApprovalorAll
© QgetApproved)

© Qisapprovedrorall)

® QsupportsieerfaceD |
J

Mo part of this document should

be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io




Slither Results Log

Slither Log >> PremintCreatorKey.sol

INFO:Detectors:
PremintCreatorkKey.s 1 2ss r ) pecialAddress
X & ss IPr r1|tC'

ddress,address,uint256,bytes). / IZPl‘»:r’irtC|'-:at-:|'K-:;,-.

tes) (PremintCreator . #154 69) potentially used
r (PremintCreatork

i eatorKey

potentially used

, ).reason (PremintCreatorKey
mintCreatorKey. #1547- 156 potentially used
+ reason,m ( (PremintC
2 : https //github.com, ytic/sli ; i/De t»-t"|—E--Lr-|tct1
INFD Detectors
Reentrancy in PremintCreatorKey. multimint(a ess,uint256) (PremintCreatorKey.s
External calls:
- _safeMint(to,
(PremintCreatorKey.

) (PremintCre y
: https g1 h.com/erytic/slither/wiki/Detector cumentation#reen ncy-vulnerabilities-2
INFO: Detectors
MerkleProof._efficientHash{by
- INLINE ASM 'PIrFlltCI ct
Math.mulDiv{uint256 ,uint256,uint256
- INLINE ASM (PremintCres
- INLINE ASM (PremintCreatork
- INLINE ASM (PremintCreatorke )
Strings.toString({uint256) (PremintCrea ley. : 591) uses assembly
- INLINE ASM (PremintCreatork 7
- INLINE ASM (PremintCreatork
Address.isContract(address) (PremintCr 2y #643-654) uses assembly
- INLINE ASM (PremintCrea
Address._functionCallWithvalue(addre ytes,ui string) (PremintCreatorKey.sol#751-777) uses assembly
- INLINE ASM (PremintCreat

ERC721._che 7 (addre 55, Uint256 es) {PremintCreatorKey.sol#1547-1569) uses assembly

Reference: it .comfcry slltk:r:\lkl Detector- Documentation#assembly-usage
INFD Detectors
ess._functionCallwWithValue{address,.bytes,uint256,string) (PremintCreatorKey.sol#751-7

) IPr*r1|tU
es,uint256)

(address,uint25s (PremintCreatorKey
fPr‘ri|tC|-ct. ol#933-93
(PremintCreat
tIC LIt—IS C th { intCreato .50l4 N used and shoul
onsecutiveTokenTransfer(address,a ,uin 6,uint96) (PremintCreatorkey B 538) is never used and shou

(PremintCreatorkKey. #122 225) 1 ever used and should be rem
iveTokenTrans =T = 5 ess,uint256,uint96) (PremintCreato

fP| FiItCIbct;FK
should be remo

ounding)
) (PremintCrea
) {Pre Fl\tC

remoy

es32[]) (PremintCreatorKey.s ) 1 = = should be rem

VerifyCalldata(bytes32[],bool[],bytes32,bytes32[]) (PremintCreatorKey.sol# ) is never used and shoul

essMultiProof( : s 2532[]) (PremintCreatorKey.
essMultiPr albytes32[], 2532[]) (PremintCr

6 fPF%FiFtCIrc o
(PremintCrea
lPrer1|tCrect

uint256) (Pre

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written perm of EtherAuthority.

Email: audit@EtherAuthority.io




Re htt
INFO:Detector

INFO:S1l1ither:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



Solidity Static Analysis

PremintCreatorKey.sol

Gas & Economy

Gas costs:

Gas requirement of function PremintCreatorKey.mint is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 37:2:

Gas costs:

Gas requirement of function PremintCreatorKey.pause Is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 80:2:

Gas costs:

Gas requirement of function PremintCreatorKey.getnftamount is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 161:2:

Miscellaneous

Constant/View/Pure functions:

PremintCreatorKey._beforeTokenTransfer(address,address,uint256) :
Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

maore

Pos: 144:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Similar variable names:

PremintCreatorKey.() : Variables have very similar names "ownera" and
"_owners". Note: Modifiers are currently not considered by this static analysis.
Pos: 32:4:

Similar variable names:

PremintCreatorKey.() : Variables have very similar names "ownera" and
"_owner". Note: Madifiers are currently not considered by this static analysis.
Pos: 32:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 40:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 46:6:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more
Pos: 100:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io




Solhint Linter

PremintCreatorKey.sol

PremintCreatorKey.sol:2:1: Error: Compiler version >=0.8.9 does not
satisfy the r semver requirement

~

PremintCreatorKey.so0l:29:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io



