
Project: Voy Finance
Website: http://Voyfinance.com
Platform: Ethereum
Language: Solidity
Date: November 2nd, 2022

http://voyfinance.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 16

Audit Findings …………………………………………………………………………………… 17

Conclusion ………………………………………………………………………………………. 26

Our Methodology ………………………………………………………………………………... 27

Disclaimers ………………………………………………………………………………………. 29

Appendix

● Code Flow Diagram ……………………………………………………………………... 30

● Slither Results Log ………………………………………………………………………. 37

● Solidity static analysis ….……………………………………………………………….. 46

● Solhint Linter …………………………………………………………………….……….. 61

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Voy Finance to perform the Security audit of the Voy
Finance protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on November 2nd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Voy Finance Contract is a Pooling DeFi to trade digitalisation and ESG smart contract,

having functions like mint, burn, stake, unStake, deposit, migrate, pause, unpause, claim,

withdraw, withdrawAll, etc. The Voy Finance contract inherits Ownable, ERC20, IERC20,

SafeERC20, Pausable, SafeMath, AccessControl standard smart contracts from the

OpenZeppelin library. These OpenZeppelin contracts are considered community audited

and time tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Voy Finance Protocol Smart Contracts

Platform Ethereum / Solidity

File 1 VoySale.sol

File 1 MD5 Hash DAD18FE9557684BA5330D4C31E11F1BE

Updated File 1 MD5 Hash 0F18C4485FEFB59993230C7AEED70A76

File 2 VoyToken.sol

File 2 MD5 Hash 11E4EA4CFF80DE5028C0E55C6855DCA3

Updated File 2 MD5 Hash EF9A76785663D0B31B022AD913A5C9C2

File 3 VoyXDCToken.sol

File 3 MD5 Hash 768462FE08C85E935FBD4F5FF26254DE

Updated File 3 MD5 Hash 2CBC8F4EB6382F40B2A2FD610D2760F4

File 4 XDCBridge.sol

File 4 MD5 Hash EC4C73E3A928A17161D92CFF5A1CDA65

File 5 MasterChef.sol

File 5 MD5 Hash 3D643CC5B29A43C837B15B2164F1A1F4

Updated File 5 MD5 Hash 0083376AAFDFA2BECB7C50E78B513FA5

File 6 VoyStaking.sol

File 6 MD5 Hash 3263033B48E19BCFBC7A757AAD318D43

Updated File 6 MD5 Hash 496CC77BEA00ADEE840414A713700D86

File 7 VoyVesting.sol

File 7 MD5 Hash 05E8EE06EED46194AC419D1A9C6FF7D5

Audit Date November 2nd, 2022

Revise Audit Date November 4th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 VoySale.sol
● Owner can set Whitelist addresses.

● Owner can recover tokens and ether.

YES, This is valid.

File 2 XDCBridge.sol
● Owner can return the swap.

● Owner can initiate a swap.

YES, This is valid.

File 3 VoyXDCToken.sol
● Name: Voy Token

● Symbol: VOY

● Owner can mint unlimited tokens.

YES, This is valid.

File 4 MasterChef.sol
● Owner can add a new LP to the pool.

● Owner can update the given pool's VOY allocation point.

● Owner can set the migrator contract.

YES, This is valid.

File 5 VoyStaking.sol
● Owner can set a Harvest Fee.

● Owner can set an UnStake Fee.

● Owner can add and remove an UnStake Fee.

YES, This is valid.

File 6 VoyToken.sol
● Name: Voy Token

● Symbol: VOY

● Initial supply: 40 Million

● Total Max Supply: 500 Million

● The VoyToken contract implements a continuous minting

function.

YES, This is valid.

File 7 VoyVesting.sol
● Vesting Period: 180 Days

YES, This is valid.

● Owner can set the Vesting Period.

● Owner can withdraw all tokens from the account.

● Users can claim the amount.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 2 high, 1 medium and 8 low and some very low level issues.
All the issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Voy Finance Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Voy Finance Protocol.

The Voy Finance team has provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Voy Finance smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website http://Voyfinance.com which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

http://voyfinance.com

AS-IS overview

VoySale.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 setWhitelist write access only Owner No Issue
7 recoverTokens write access only Owner No Issue
8 recoverETH write access only Owner No Issue
9 buy write Hardcoded token

addresses
Refer Audit

Findings

VoyToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 onlyRole modifier Passed No Issue
21 supportsInterface read Passed No Issue
22 hasRole read Passed No Issue
23 _checkRole internal Passed No Issue
24 _checkRole internal Passed No Issue
25 getRoleAdmin read Passed No Issue

26 grantRole write access only Role No Issue
27 revokeRole write access only Role No Issue
28 renounceRole write Passed No Issue
29 _setupRole internal Passed No Issue
30 _setRoleAdmin internal Passed No Issue
31 _grantRole internal Passed No Issue
32 _revokeRole internal Passed No Issue
33 mint external access only Role No Issue
34 burn external access only Role No Issue
35 setBridge external access only Role No Issue
36 isContract internal Passed No Issue
37 swap external Passed No Issue
38 _beforeTokenTransfer internal Passed No Issue

XDCBridge.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 whenNotPaused modifier Passed No Issue
7 whenPaused modifier Passed No Issue
8 paused read Passed No Issue
9 _requireNotPaused internal Passed No Issue
10 _requirePaused internal Passed No Issue
11 _pause internal Passed No Issue
12 _unpause internal Passed No Issue
13 initiateSwap external Passed No Issue
14 returnSwap external access only Owner No Issue
15 pause external access only Owner No Issue
16 unpause external access only Owner No Issue

VoyXDCToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 owner read Passed No Issue
2 onlyOwner modifier Passed No Issue
3 renounceOwnership write access only Owner No Issue
4 transferOwnership write access only Owner No Issue
5 getOwner external Passed No Issue
6 name read Passed No Issue

7 decimals read Passed No Issue
8 symbol read Passed No Issue
9 totalSupply read Passed No Issue
10 balanceOf read Passed No Issue
11 transfer write Passed No Issue
12 allowance read Passed No Issue
13 approve write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 mint write Unlimited minting Refer Audit

Findings
18 _transfer internal Passed No Issue
19 _mint internal Passed No Issue
20 _burn internal Passed No Issue
21 _approve internal Passed No Issue
22 _burnFrom internal Passed No Issue
23 completeSwapFromEther

eum
external access only Owner No Issue

24 swapToEthereum external Passed No Issue

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 poolLength external Passed No Issue
7 add write access only Owner No Issue
8 set write Passed No Issue
9 setMigrator write access only Owner No Issue
10 migrate write Critical operation

lacks event log
Refer Audit Findings

11 getMultiplier read Passed No Issue
12 pendingVoy external Passed No Issue
13 massUpdatePools write Passed No Issue
14 updatePool write Passed No Issue
15 deposit write Passed No Issue
16 withdraw write Passed No Issue
17 emergencyWithdraw write Passed No Issue
18 safeVoyTransfer internal Passed No Issue

VoyStaking.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 init write Passed No Issue
7 setFeeWallet external access only Owner No Issue
8 setUnStakeFee external access only Owner No Issue
9 addUnStakeFee external Empty unStakeFees

array issue
Refer Audit

Findings
10 removeUnStakeFee external access only Owner No Issue
11 setHarvestFee external access only Owner No Issue
12 depositReward external access only Owner No Issue
13 stake external Passed No Issue
14 unStake external Passed No Issue
15 updateUserStatus write Passed No Issue
16 getMaxUnStakeFeeDays write Passed No Issue
17 harvest external Passed No Issue
18 getMultiplier external Passed No Issue
19 _getMultiplier internal Passed No Issue
20 getPending external Passed No Issue
21 _getPending read Passed No Issue
22 getRewardBalance external Passed No Issue
23 _updateStatus write Passed No Issue
24 _getUnStakeFeePercent internal Passed No Issue

VoyVesting.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 whenStartedVestingSeason modifier Passed No Issue
7 whenNotStartedVestingSeason modifier Passed No Issue
8 whenFinishedVestingPeriod modifier Passed No Issue
9 onlyUser modifier Passed No Issue
10 setVestingPeriod external access only Owner No Issue
11 deposit external access only Owner No Issue
12 addUsers external access only Owner No Issue
13 addUser external access only Owner No Issue

14 _addUser write access only Owner No Issue
15 stake external access only Owner No Issue
16 withdraw external access only Owner No Issue
17 withdrawAll external access only Owner No Issue
18 claim external Passed No Issue
19 getClaimAmount external Passed No Issue
20 _getClaimAmount internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Claim function not working: VoyVesting.sol

The voyvesting claim function is not working. The error occurs while the voystaking

contract has a harvest function which doesn’t have any parameters.

Resolution: We advise to re-check the code and use appropriate staking contracts to

claim.

Status: Fixed

(2) Need approval to transfer the tokens: VoySale.sol

In the recoverTokens function, transferFrom is used to transfer tokens from contract to the

owner, which needs approval of the contract to the owner. But no approval has been given,

so the token transfer is not working.

Resolution: We suggest using the “transfer” function instead of “transferFrom” function Or

add code to give approval before the “transferFrom” function.

Status: Fixed

Medium

(1) Duplicate LP token: Masterchef.sol

In add function, users can add the same lp token multiple times. The rewards will be

messed up if you add a duplicate LP token.

Resolution: We advise to put validation to check for duplicate LP tokens.

Status: Fixed

Low

(1) Empty unStakeFees array issue: VoyStaking.sol

In addUnStakeFee function, there are 2 required conditions which uses

unStakeFees.length - 1 to validate mindays and feePercentage. Here, if the unStakeFees

array is empty then unStakeFees.length -1 will throw an error and execution will be

reverted.

Resolution: We suggest putting conditions before these 2 require statements to check

unStakeFees.length should be greater than 0.

Status: Acknowledged

(2) Other Programming Issue: VoyStaking.sol

In updateUserStatus function, function parameter and defined variable both have the same

name.This declaration shadows an existing declaration and Unused function parameter.

Resolution: We suggest to either change the variable name for UserInfo Or function

parameter name.

Status: Fixed

(3) Function input parameters lack of check:

Variable validation is not performed in below functions:

VoyToken.sol

● swap = _bridge

Resolution: We advise to put validation: integer type variables should be greater than 0

and address type variables should not be address(0).

Status: Fixed

(4) Other Programming Issue: VoyStaking.sol

In getMaxUnStakeFeeDays function, Function state mutability can be restricted to view.

Resolution: We suggest adding the "view" keyword after the "public" keyword.

Status: Fixed

(5) Unlimited minting: VoyXDCToken.sol

Owner can mint unlimited tokens.

Resolution: We suggest using a minting limit.

Status: Acknowledged

(6) Critical operation lacks event log: Masterchef.sol

Missing event log for:

● add

● set

● migrate

● updatePool

Resolution: Write an event log for listed events.

Status: Fixed

(7) Event parameter mismatched: Masterchef.sol

In LogUpdatePool event, lastRewardBlock parameter has a uint64 type which does not

match with pool info element lastRewardBlock.

Resolution: We suggest changing the lastRewardBlock parameter type in the

LogUpdatePool event.

Status: Fixed

(8) Wrong parameter name: Masterchef.sol

In add function, LogPoolAddition emit has wrong parameter "allocPoint".

Resolution: We suggest changing the parameter name from "allocPoint" to "_allocPoint".

Status: Fixed

Very Low / Informational / Best practices:

(1) Missing SPDX-License-Identifier: Masterchef.sol

SPDX-License-Identifier is written but with wrong syntax.

Resolution: We advise adding the correct SPDX License Identifier.

Status: Fixed

(2) Hardcoded token addresses: VoySale.sol

In the buy function, for USDT and WBTC assets ERC20 tokens are hardcoded.

Resolution: We suggest always making sure hardcoded addresses are correct token

addresses before deploying contracts.

Status: Acknowledged

(3) Consider specifying function visibility to “external” instead of “public”, if that function is

not being called internally. It will save some gas as well.

https://ethereum.stackexchange.com/questions/32353/what-is-the-difference-between-an-i

nternal-external-and-public-private-function/32464

Status: Acknowledged

https://ethereum.stackexchange.com/questions/32353/what-is-the-difference-between-an-internal-external-and-public-private-function/32464
https://ethereum.stackexchange.com/questions/32353/what-is-the-difference-between-an-internal-external-and-public-private-function/32464

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● add: MasterChef owner can add a new lp to the pool.

● set: MasterChef owner can update the given pool's VOY allocation point.

● setMigrator: MasterChef owner can set the migrator contract.

● setFeeWallet: VoyStaking owner can set fee wallet address.

● setUnStakeFee: VoyStaking owner can set an unstake fee percentage.

● addUnStakeFee: VoyStaking owner can add an unstake fee percentage.

● removeUnStakeFee: VoyStaking owner can remove unstake fee percentage.

● setHarvestFee: VoyStaking owner can set harvest fee percentage.

● depositReward: VoyStaking owner can deposit reward amount.

● stake: VoyStaking owner can stake amount.

● setVestingPeriod: VoyVesting owner can set vesting period.

● deposit: VoyVesting owner can deposit amount.

● addUsers: VoyVesting owner can add new users addresses.

● addUser: VoyVesting owner can add a new user address.

● _addUser: VoyVesting owner can add a new user address.

● stake: VoyVesting owner can stake amount.

● withdraw: VoyVesting owners can withdraw amounts.

● withdrawAll: VoyVesting owners can withdraw all maximum amounts from account.

● claim: VoyVesting owners can claim the amount.

● setWhitelist: VoySale owners can set whitelist addresses.

● recoverTokens: VoySale owners can recover tokens from addresses.

● recoverETH: VoySale owners can recover ether from addresses.

● mint: VoyToken role owners can mint tokens to addresses.

● burn: VoyToken role owners can burn tokens from addresses.

● setBridge: VoyToken role owners can set bridge address enabled status true.

● completeSwapFromEthereum: VoyXDCToken owner can complete swap from

ethereum address.

● initiateSwap: XDCBridge owner can initiate swap address.

● returnSwap: XDCBridge owner can return swap address.

● pause: XDCBridge owner can trigger stopped state.

● unpause: XDCBridge owner can return to normal state.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have observed 2 high severity issues, 1 medium

severity issue, 8 low severity issues and some informational issues in the smart contracts.

All the issues have been fixed / acknowledged in the revised code. So, it’s good to go for
the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Voy Finance Protocol

VoySale Diagram

VoyToken Diagram

XDCBridge Diagram

VoyXDCToken Diagram

MasterChef Diagram

VoyStaking Diagram

VoyVesting Diagram

Slither Results Log

Slither log >> VoySale.sol

Slither log >> VoyToken.sol

Slither log >> XDCBridge.sol

Slither log >> VoyXDCToken.sol

Slither log >> MasterChef.sol

Slither log >> VoyStaking.sol

Slither log >> VoyVesting.sol

Solidity Static Analysis

VoySale.sol

VoyToken.sol

XDCBridge.sol

VoyXDCToken.sol

MasterChef.sol

VoyStaking.sol

VoyVesting.sol

Solhint Linter

VoySale.sol

VoySale.sol:2:1: Error: Compiler version >=0.8.0 does not satisfy the
r semver requirement
VoySale.sol:24:5: Error: Explicitly mark visibility of state
VoySale.sol:26:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
VoySale.sol:44:17: Error: Avoid to make time-based decisions in your
business logic
VoySale.sol:44:56: Error: Avoid to make time-based decisions in your
business logic

VoyToken.sol

VoyToken.sol:2:1: Error: Compiler version >=0.8.0 does not satisfy
the r semver requirement
VoyToken.sol:17:20: Error: Variable name must be in mixedCase
VoyToken.sol:20:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
VoyToken.sol:45:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

XDCBridge.sol

XDCBridge.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
XDCBridge.sol:11:5: Error: Explicitly mark visibility of state
XDCBridge.sol:16:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

VoyXDCToken.sol

VoyXDCToken.sol:2:1: Error: Compiler version >=0.8.0 does not satisfy
the r semver requirement
VoyXDCToken.sol:15:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

MasterChef.sol

MasterChef.sol:2:1: Error: Compiler version >=0.8.0 does not satisfy
the r semver requirement
MasterChef.sol:83:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

VoyStaking.sol

VoyStaking.sol:3:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
VoyStaking.sol:55:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
VoyStaking.sol:341:59: Error: Avoid to make time-based decisions in
your business logic

VoyVesting.sol

VoyVesting.sol:3:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
VoyVesting.sol:44:17: Error: Avoid to make time-based decisions in
your business logic
VoyVesting.sol:58:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
VoyVesting.sol:102:19: Error: Avoid to make time-based decisions in
your business logic
VoyVesting.sol:149:23: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

