
Project: WP Smart Contracts
Website: wpsmartcontracts.com
Platform: Ethereum
Language: Solidity
Date: June 14th, 2022

https://wpsmartcontracts.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 31

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the WP Smart Contracts team to perform the Security
audit of the smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on June 14th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The WP Smart Contracts provides the smart contract solutions to the wordpress users.

They develop various WP plugins which lets WP websites use the smart contract

deployment quickly. We audited their Azuki(ERC1155) and Ikasumi(ERC1155),

YuzuFlattened(ERC1155) smart contracts.

Audit scope

Name Code Review and Security Analysis Report for
WP Smart Contracts Protocol Smart Contracts

Platform Ethereum / Solidity

File 1 Azuki.sol

File 1 MD5 Hash 93C8EDF0E49792E16DBBB875CD6129D9

Updated File 1 MD5 Hash 2FEE78B06749BFB03531E7BAA6543FDE

File 2 Ikasumi.sol

File 2 MD5 Hash F49BC49A57F047FA20098CFFDC13B439

Updated File 2 MD5 Hash BDBDDB3E992B94A0C1C7D80CB5BEFE8B

File 3 YuzuFlattened.sol

File 3 MD5 Hash 2B3052B1658BA3D9CDA293D2319773B1

Audit Date June 14th, 2022

Revise Audit Date June 17th, 2022

https://rinkeby.etherscan.io/address/0x1Ec6F73354CE822bb1da2eB053A62f30307ad092#code
https://rinkeby.etherscan.io/address/0xeA4d5bF08Ec9bf1024DEf298bedC3b80C87C46Eb#code
https://rinkeby.etherscan.io/address/0x8F89A3a8BBAf65f9f0415f4445065489c9AA2cF4#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Azuki.sol
● Signature Version: 1

● Signing Domain: ERC1155Azuki-Voucher

YES, This is valid.

File 2 Ikasumi.sol
● Signature Version: 1

● Signing Domain: ERC1155Ikasumi-Voucher

YES, This is valid.

File 3 YuzuFlattened.sol
● YuzuFlattened has functions like: autoMint, mint,

etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium and 2 low and some very low level issues.
All the issues have been resolved / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the WP Smart Contracts Protocol are part of its logical algorithm. A library

is a different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the WP Smart Contracts Protocol.

The WP Smart Contracts team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a WP Smart Contracts Protocol smart contract code in the form of an

Etherscan web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://wpsmartcontracts.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://wpsmartcontracts.com

AS-IS overview

Azuki.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _domainSeparatorV4 internal Passed No Issue
3 _buildDomainSeparator read Passed No Issue
4 _hashTypedDataV4 internal Passed No Issue
5 sell write Passed No Issue
6 returnTheChange internal Passed No Issue
7 buy write Passed No Issue
8 cancelSale external Passed No Issue
9 bid external Passed No Issue

10 cancelBid external Passed No Issue
11 acceptBid external Passed No Issue
12 distributeFunds write Passed No Issue
13 _mint internal Passed No Issue
14 _mintBatch internal Passed No Issue
15 callOptionalReturn write Passed No Issue
16 updateAdmin external Passed No Issue
17 updateOwner external Passed No Issue
18 redeem write Passed No Issue
19 domainSeparator external Passed No Issue
20 verify internal Passed No Issue
21 getChainId read Passed No Issue

Ikasumi.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _domainSeparatorV4 internal Passed No Issue
3 _buildDomainSeparator read Passed No Issue
4 _hashTypedDataV4 internal Passed No Issue
5 sell write Passed No Issue
6 returnTheChange internal Passed No Issue
7 buy write Passed No Issue
8 cancelSale external Passed No Issue
9 bid external Passed No Issue

10 cancelBid external Passed No Issue
11 acceptBid external Passed No Issue
12 distributeFunds write Passed No Issue
13 _mint internal Passed No Issue
14 _mintBatch internal Passed No Issue

15 callOptionalReturn write Passed No Issue
16 updateAdmin external Passed No Issue
17 updateOwner external Passed No Issue
18 redeem write Passed No Issue
19 domainSeparator external Passed No Issue
20 verify internal Passed No Issue
21 getChainId read Passed No Issue

YuzuFlattened.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRole modifier Passed No Issue
3 supportsInterface read Passed No Issue
4 hasRole read Passed No Issue
5 _checkRole internal Passed No Issue
6 getRoleAdmin read Passed No Issue
7 grantRole write access only Role No Issue
8 revokeRole write access only Role No Issue
9 renounceRole write Passed No Issue

10 _setupRole internal Passed No Issue
11 _setRoleAdmin internal Passed No Issue
12 _grantRole write Passed No Issue
13 _revokeRole write Passed No Issue
14 totalSupply read Passed No Issue
15 exists read Passed No Issue
16 _mint internal Passed No Issue
17 _mintBatch internal Passed No Issue
18 name read Passed No Issue
19 symbol read Passed No Issue
20 autoMint write access only Minter No Issue
21 autoMintBatch write Infinite loops

possibility
Refer Audit

Findings
22 mint write access only Minter No Issue
23 mintBatch write Infinite loops

possibility
Refer Audit

Findings
24 supportsInterface read Passed No Issue
25 addMinter write access only Minter No Issue
26 isMinter read Passed No Issue
27 canIMint read Passed No Issue
28 onlyMinter modifier Passed No Issue
29 supportsInterface read Passed No Issue
30 uri read Passed No Issue
31 balanceOf read Passed No Issue
32 balanceOfBatch read Infinite loops

possibility
Refer Audit

Findings

33 setApprovalForAll write Passed No Issue
34 isApprovedForAll read Passed No Issue
35 safeTransferFrom write Passed No Issue
36 safeBatchTransferFrom write Infinite loops

possibility
Refer Audit

Findings
37 _safeTransferFrom internal Passed No Issue
38 _safeBatchTransferFrom internal Passed No Issue
39 _setURI internal Passed No Issue
40 _mint internal Passed No Issue
41 _mintBatch internal Passed No Issue
42 _doSafeTransferAccepta

nceCheck
write Passed No Issue

43 _doSafeBatchTransferAc
ceptanceCheck

write Passed No Issue

44 _asSingletonArray write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Item creator can bid/buy his own item: Ikasumi.sol, Azuki.sol
Item creator can bid/buy his own item. This is meaningless.

Resolution: We suggest not allowing the item creator to bid/buy his own item. If this is a

part of the plan then disregard this issue.

Status: Fixed

(2) Commission and Royalty rate can be 100%: Ikasumi.sol, Azuki.sol

The owner can set commission and royalty rate to 100%. Hence the bid owner gets 0 as

payment.

Resolution: We suggest setting some range below than 100% so that the bid owner will

get some token as payment for sure.

Status: Fixed

Low

(1) Infinite loops possibility - YuzuFlattened.sol
As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Other owner functions are:

● mintBatch() -> _mintBatch() - ids.length.

● autoMintBatch() - amounts.length

Resolution: Adjust logic to replace loops with mapping or other code structure or validate

for some length of array only.

Status: Acknowledged

(2) Critical operation lacks event log: Ikasumi.sol, Azuki.sol
Missing event log for:

● cancelSale

● cancelBid

Resolution: Write an event log for listed events.

Status: Fixed

Very Low / Informational / Best practices:

No Very Low severity vulnerabilities were found.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● autoMint: YuzuFlattened minter can automatically mint tokens from an account.

● autoMintBatch: YuzuFlattened minter can automatically mint tokens from an

account batch vise.

● mint: YuzuFlattened minter can mint a token.

● mintBatch: YuzuFlattened minter can mint a token batch vise.

● addMinter: YuzuFlattened minter can add minter address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Rinkeby Etherscan weblink. And we have

used all possible tests based on given objects as files. We had observed some issues in

the smart contracts, and those issues have been resolved / acknowledged in the revised

code. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - WP Smart Contracts Protocol

Azuki Diagram

Ikasumi Diagram

YuzuFlattened Diagram

Slither Results Log

Slither log >> Azuki.sol

Slither log >> Ikasumi.sol

Slither log >> YuzuFlattened.sol

Solidity Static Analysis

Azuki.sol

Ikasumi.sol

YuzuFlattened.sol

Solhint Linter

Azuki.sol

Azuki.sol:1347:18: Error: Parse error: missing ';' at '{'
Azuki.sol:1385:22: Error: Parse error: missing ';' at '{'
Azuki.sol:1603:18: Error: Parse error: missing ';' at '{'
Azuki.sol:1611:18: Error: Parse error: missing ';' at '{'

Ikasumi.sol

Ikasumi.sol:1425:18: Error: Parse error: missing ';' at '{'
Ikasumi.sol:1463:22: Error: Parse error: missing ';' at '{'
Ikasumi.sol:1681:18: Error: Parse error: missing ';' at '{'
Ikasumi.sol:1689:18: Error: Parse error: missing ';' at '{'

YuzuFlattened.sol

YuzuFlattened.sol:1347:18: Error: Parse error: missing ';' at '{'
YuzuFlattened.sol:1385:22: Error: Parse error: missing ';' at '{'
YuzuFlattened.sol:1603:18: Error: Parse error: missing ';' at '{'
YuzuFlattened.sol:1611:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

