@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: WP Smart Contracts
Website: wpsmartcontracts.com
Platform: Ethereum

Language: Solidity

Date: June 14th, 2022

https://wpsmartcontracts.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 17
(@ 0] 1Y/ =1 1 T To [o] 0T) 18
DISCIAIMEIS ... e 20
Appendix
o Code FIoW Diagramououoiiii s 21
o Shther RESUIS LOGuiiiiii e 24
e Solidity staticanalysis ... 27
® SOININt LiNtEr oo 31

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the WP Smart Contracts team to perform the Security
audit of the smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on June 14th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The WP Smart Contracts provides the smart contract solutions to the wordpress users.
They develop various WP plugins which lets WP websites use the smart contract
deployment quickly. We audited their Azuki(ERC1155) and Ikasumi(ERC1155),
YuzuFlattened(ERC1155) smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
WP Smart Contracts Protocol Smart Contracts

Platform Ethereum / Solidity

File 1 Azuki.sol

File 1 MD5 Hash

93C8EDFO0E49792E16DBBB875CD6129D9

Updated File 1 MD5 Hash

2FEE78B06749BFB03531E7BAA6543FDE

File 2

lkasumi.sol

File 2 MD5 Hash

F49BC49A57F047FA20098CFFDC13B439

Updated File 2 MD5 Hash

BDBDDB3E992B94A0C1C7D80CB5BEFESB

File 3

YuzuFlattened.sol

File 3 MD5 Hash

2B3052B1658BA3D9CDA293D2319773B1

Audit Date

June 14th, 2022

Revise Audit Date

June 17th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://rinkeby.etherscan.io/address/0x1Ec6F73354CE822bb1da2eB053A62f30307ad092#code
https://rinkeby.etherscan.io/address/0xeA4d5bF08Ec9bf1024DEf298bedC3b80C87C46Eb#code
https://rinkeby.etherscan.io/address/0x8F89A3a8BBAf65f9f0415f4445065489c9AA2cF4#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Azuki.sol YES, This is valid.
e Signature Version: 1
e Signing Domain: ERC1155Azuki-Voucher

File 2 lkasumi.sol YES, This is valid.
e Signature Version: 1

e Signing Domain: ERC1155lkasumi-Voucher

File 3 YuzuFlattened.sol YES, This is valid.
e YuzuFlattened has functions like: autoMint, mint,

etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium and 2 low and some very low level issues.

All the issues have been resolved / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result

Contract Solidity version not specified Passed

Programming Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Features claimed Passed

Other programming issues Passed

Code Function visibility not explicitly declared Passed

Specification Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Unused code Passed

Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop

High consumption ‘storage’ storage Passed

Assert() misuse Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the WP Smart Contracts Protocol are part of its logical algorithm. A library
is a different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the WP Smart Contracts Protocol.

The WP Smart Contracts team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a WP Smart Contracts Protocol smart contract code in the form of an

Etherscan web link. The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://wpsmartcontracts.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://wpsmartcontracts.com

AS-IS overview

Azuki.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 domainSeparatorV4 internal Passed No Issue
3 buildDomainSeparator read Passed No Issue
4 hashTypedDataV4 internal Passed No Issue
5 |sell write Passed No Issue
6 | returnTheChange internal Passed No Issue
7 | buy write Passed No Issue
8 | cancelSale external Passed No Issue
9 | bid external Passed No Issue
10 | cancelBid external Passed No Issue
11 | acceptBid external Passed No Issue
12 | distributeFunds write Passed No Issue
13 | mint internal Passed No Issue
14 | mintBatch internal Passed No Issue
15 | callOptionalReturn write Passed No Issue
16 | updateAdmin external Passed No Issue
17 | updateOwner external Passed No Issue
18 | redeem write Passed No Issue
19 | domainSeparator external Passed No Issue
20 | verify internal Passed No Issue
21 | getChainld read Passed No Issue

lkasumi.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 domainSeparatorV4 internal Passed No Issue
3 buildDomainSeparator read Passed No Issue
4 hashTypedDataV4 internal Passed No Issue
5 | sell write Passed No Issue
6 | returnTheChange internal Passed No Issue
7 | buy write Passed No Issue
8 | cancelSale external Passed No Issue
9 | bid external Passed No Issue
10 | cancelBid external Passed No Issue
11 | acceptBid external Passed No Issue
12 | distributeFunds write Passed No Issue
13 | mint internal Passed No Issue
14 | mintBatch internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

15 | callOptionalReturn write Passed No Issue
16 | updateAdmin external Passed No Issue
17 | updateOwner external Passed No Issue
18 | redeem write Passed No Issue
19 | domainSeparator external Passed No Issue
20 | verify internal Passed No Issue
21 | getChainld read Passed No Issue
YuzuFlattened.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyRole modifier Passed No Issue
3 | supportsinterface read Passed No Issue
4 | hasRole read Passed No Issue
5 checkRole internal Passed No Issue
6 | getRoleAdmin read Passed No Issue
7 | grantRole write access only Role No Issue
8 | revokeRole write access only Role No Issue
9 | renounceRole write Passed No Issue
10 | setupRole internal Passed No Issue
11 setRoleAdmin internal Passed No Issue
12 | grantRole write Passed No Issue
13 | revokeRole write Passed No Issue
14 | totalSupply read Passed No Issue
15 | exists read Passed No Issue
16 | mint internal Passed No Issue
17 | mintBatch internal Passed No Issue
18 | name read Passed No Issue
19 | symbol read Passed No Issue
20 | autoMint write access only Minter No Issue
21 | autoMintBatch write Infinite loops Refer Audit
possibility Findings
22 | mint write access only Minter No Issue
23 | mintBatch write Infinite loops Refer Audit
possibility Findings
24 | supportsinterface read Passed No Issue
25 | addMinter write access only Minter No Issue
26 | isMinter read Passed No Issue
27 | canlMint read Passed No Issue
28 | onlyMinter modifier Passed No Issue
29 | supportsinterface read Passed No Issue
30 | uri read Passed No Issue
31 [balanceOf read Passed No Issue
32 | balanceOfBatch read Infinite loops Refer Audit
possibility Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

33 | setApprovalForAll write Passed No Issue
34 | isApprovedForAll read Passed No Issue
35 | safeTransferFrom write Passed No Issue
36 | safeBatchTransferFrom write Infinite loops Refer Audit
possibility Findings
37 | safeTransferFrom internal Passed No Issue
38 | safeBatchTransferFrom internal Passed No Issue
39 [setURI internal Passed No Issue
40 | mint internal Passed No Issue
41 | mintBatch internal Passed No Issue
42 | doSafeTransferAccepta write Passed No Issue
nceCheck
43 | doSafeBatchTransferAc write Passed No Issue
ceptanceCheck
44 | asSingletonArray write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

(1) ltem creator can bid/buy his own item: Ikasumi.sol, Azuki.sol

Item creator can bid/buy his own item. This is meaningless.

Resolution: We suggest not allowing the item creator to bid/buy his own item. If this is a
part of the plan then disregard this issue.

Status: Fixed

(2) Commission and Royalty rate can be 100%: Ikasumi.sol, Azuki.sol

F o) oo b o [i 21
function updateAdmin({address _admin, uint256 _commissionRate, uint256 _royaltiesCommissionRate, bool _anyoneCanMint, IERC28 _paymentToken) external onlyOwner() {
require(_admin != address(@), "Ikasumi: admin should not be rero address");

TEQULrel_COMMISSIONNGtE <= 199, TLOMMLSs10m rate Nas Lo De cqual or lower than 188 71;

require(_royaltiesCommissionRate <= 188, "Royalties commission rate has to be equal or lower than 188");
require(_commissionRate + _royaltiesCommissionRate <= 188, "Commision plus royalties has to be equal or lower than 188")
i -3

commissionRate = _commissionRate;
rovaltiesCommissionRate = _rovaltiesCommissionRate;
anyoneCanMint = _anyoneCanMint;

paymentToken = _paymentToken;

The owner can set commission and royalty rate to 100%. Hence the bid owner gets 0 as
payment.

Resolution: We suggest setting some range below than 100% so that the bid owner will
get some token as payment for sure.

Status: Fixed

Low

(1) Infinite loops possibility - YuzuFlattened.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

function balanceOfBatch(address[] memory accounts, uint256[] memory ids)
public
view
virtual
override
returns (uint256[] memory)

require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch™);
uint256[] memory batchBalances = new uint256[](accounts.length);

for (uint256 i = @; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts[i], ids[i]);

function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
require(to l= address(@), "ERC1155: transfer to the zero address™);

address operator = msgSender();
for (uint256 i = @; i < ids.length; ++i) {

uint256 id = ids[i];
uint256 amount = amounts[i];

Other owner functions are:
e mintBatch() -> _mintBatch() - ids.length.

e autoMintBatch() - amounts.length

Resolution: Adjust logic to replace loops with mapping or other code structure or validate
for some length of array only.

Status: Acknowledged

(2) Critical operation lacks event log: lkasumi.sol, Azuki.sol
Missing event log for:

e cancelSale

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e cancelBid

Resolution: Write an event log for listed events.
Status: Fixed

Very Low / Informational / Best practices:

No Very Low severity vulnerabilities were found.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e autoMint: YuzuFlattened minter can automatically mint tokens from an account.

e autoMintBatch: YuzuFlattened minter can automatically mint tokens from an
account batch vise.

e mint: YuzuFlattened minter can mint a token.

e mintBatch: YuzuFlattened minter can mint a token batch vise.

e addMinter: YuzuFlattened minter can add minter address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of Rinkeby Etherscan weblink. And we have
used all possible tests based on given objects as files. We had observed some issues in
the smart contracts, and those issues have been resolved / acknowledged in the revised

code. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - WP Smart Contracts Protocol

@ erorissan

ERC1155Marketplace
12

(@) ecosa

Azuki Diagram

toEthSigneciiessageHashi)
< QoTypedDataHash()

O string SIGNING_DOMAIN

(@) stings

VERSION

oo

AteString()
QtoHexStrin

EX_S¥MBOLS

al)

© Gverity()
© CugsiChainid()

/ (©) ErRc1155MarkemIace

y. © address samin
i © address contractOwner
© Lint256 commissionRate
@ errz © LiniD5E rayateatomm
= byles32 _CACHED_DOMARN_SEPARATOR =
O U256 _CACHED_CHAN_ID =
O ByIES32 HASHED_NAME 2
O bytes32 HASHED_VERSION 5 e

O byles32 _TYPE_HASH

& __constructor __()

_domainSeparatory 40

= S_bulldDomsinSeparator(}
@ _hashTypedData'/d()

seh)

ERC1155Yuzuinternal
| Reentrancy Guard

magdress for agdress

Lini2SE—>urt256 openOffersLengtn
__constructor__()

retumTheChangel)
dbuy()

Bbid()

)He 000000

_m
B

ol

_n atchi)

CallOptionafeturn()
update Aaming)
updateCwner()

@ reerrancycuara
5 wet75e o cureRe
o Sotace trenen

S rere e

© __constructor__()

() erc115svRUIntEmal

Context
coess
ErC1155Swpt
anCounters for Counters Counter
O sting _name

O sting _symbal

© byles3s MINTER_ROLE
Couners Courter _token)

© bool anyoneCarhint

__constructor__(}
Tname()
© Qsymbol()y

° Scanimnti)

ERC1155

for address

® QrotaEsupply ()
® Qeists()

o _mint)

< _mirtBatch()

(@) erc11sssUPDY

O Lint256=>urk 256 _fotalSupply

@ cerctiss

Context
ERC165

IERC1155
IERC1155MetadataiRi
mAddress for address

uint

o audress=~uri2s6 _balances
o g s

O string _uri

0
interface()

Q)
QbslanceoTO)
‘QbalanceOTBatch()
LotAperovaorAl)

° chTransferFrom()

o _sateTransterFrom()

© “satesatchTranstersrami)
“setURI()

' © Zmirk()

& JmirtBatchiy
= _doSafeTransfer AcceptanceCheck()

L]
)
i

I = T_ssSingletonarray()

+ for address

7

@) Acaress o

QisCortracit) @) rerc115ovetscatsurrf |
send\Vae() = — "} |
functionCail) (ERC1155

e & aurity \
 functiorDeiegateCall) \

- SwerifyCalResunt) \

@ accesscontol

Context
RccessControf
ERG165

bytes32=-RoleData _roles
bytes32 DEFALLT_ADME_ROLE

Qsupportsinterface()

(@) raccesscontros

-)
IERC 165 © QgetRale Adming

= © granifele()

@ r;Echas

IERC165

QbalanceOf()
Ao

setapprovalFor
SsApprovedFor AN}

s=feTransferFrom{}
@ safeBatchTransfesFrem()

0
Al

@ Gsuppertsinterface()
)

° 1]
® renounceRole()

{ (X) rercr1soRecemer

IERC16S

® OnERC1155Received()
© onERC1155BatchReceived()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ ECDSA

Ilkasumi Diagram

EPTI2

= G _theowErron()

@ s

@ ERC1155lkasumi

ERC1155Marketpiace

O string SIGMNG:
SIGNATURE_VERSION
256=>uini256 wouchersMimedGty

© UIM2SE=>unt256 vouchershF Tids

16 X, IBOLS
© QiryRecovert) e PR S TR o
© Qrecover() © GgoString()
o o
© QioTypedDataHash() e .
® redeem;
® QuomainSeparatorn)
© Qvenify()
® QgetChainid()

. IERC20

® Qotalsupply()
© ap

© transfer()
® Qalowance()
© approve()

® transterfrom()

J

(©) erc115sMarkstpiace

ERC1155Yuzuinternal
ReentrancyGuard

WhAdiress for address

L °
°
@ = SR
O bytesI2 _CACHED_DOMAIN_SEPARATOR e e e
O UNIZS6 _CACHED_CHAIN_ID Bt
(1 byles32 _HASHED_NAWE s
01 bytes32 _HASHED_VERSION o
O bytes32 _TYPE_HASH o
© _constructer_()
< B_domainSeparaor/4() &
™ buldbomanSeparator () N
> 0_hashT ypedDataV/A() :
°
°
° \
= AN
© _mint() N\
& mintEschy .
= CallOptionalReturn()
© updateAdmin)
updateOwnes () -
™
/ i N
/ I \
/ I \
I
| N
! (©) Erc1155vUzUInternal
/ ! Context
/ ! AccessContral
/ I ERC1155Supply
I
i s Counters for Countara. Counter
i
i 0O string_nane
(©) reenvancyouara i O string _symiel
i © bytesiz MNTER ROLE
O Lint256_NOT_ENTERED I Courters.Counter _takenidCaurter
O uintZ55 _ENTERED I © boal anyaneCaniint
O uintz56 _status |
o _constructor_() |
°
| © autolint()
| © autolintBatchi)
| © min() .
i © mintBatent)
| © Quupportsrtertace()
| addhinter()
| Qshlirter()
| © Cucaniliint() \
| v 5\
I ', for Countars. Counter |
! \
| \
I \
I ©) erci1555upplY Q \
i . — \
| ERC1155 Counters \
! @ \
| \
for address O u =>uint256 © Qeurrent() \
! | O Lat288-muini?56 totniSupply | © ncrement() |
@ QctalSuppiyl) @ decrement(y
| ® Qexiets() < resst()
I o ity |
: < _mintBatch() |
| ”
! |
I Ly
| |
I
| (€) erciss |
| Context
| ERG165
IERG1155
i
| IERC1155MetatatauR/ ®@ accosscontrol
I Context
I mAddress for sciimas AccessControl
i O Wnt258=>mapping address=>uin256 _balances encaes
o
| I
I 1 giing _urt 0 bytes32=>RoleData_rokes
I & _constructor_() bytes32 DEFALLT_ADMIN_ROLE
! 2 Jrpronsiiertaced © Qsupportsintertace()
i © QnasRok()
! © @_chechFole()
! © QgetfoleAdnin)
°
Il @ QisApprovedForall) - g:m-)n
I © safeTransferFrom() e e
i ® safcBatcnTransferFrom() = o
| @ _sareTransterFrom(y
I © sateBatcnTransterFrom() e e
! Al = ravakeRole()
@ _mirt() =
i]

doSafeTransferAcceptanceChechi)

' © _minBatch()
'

_doSafeBatcnTranser Acceptancecheck()

[= Q_asSngetonArray()

,
| + for address
,
T P
@ Address va

< BusContract() (@) rercr15ameracatauRy
© sendvalue()
“ functionCal) IERC1155
o
e e @ Quri(y
© functionDelegateCali() N
O QuverifyCalResult() “\

\/ 7

S
@ Context

4 i .m

ssControl

\ \
@ ERC165

IERC1ES

Qs)
© Q_msgDataf)

® Qsupportsinterface()

& QhasRole()
& QgetRoleAdmi

ity

® grantRole(}
-

\]
@ sercrrss

IERC16S

® Qb
Qb

nceot)
anceCBatch()
CLApprovalFor AN
QsapprovedForAl()

© sateTransterFram()

© satsBatchiransterFrom)

3
@ renounceRole()

@) rerc1155Recemer

f IERC1E5

©nERC1 SSRecenvea()
[© onERC11 S5BmchReceived()

. JERCI;&

® Qeupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ ECDSA

B Q_throwError()

© QiryRecover()

< Qrecover()

< QloFthSignedMessageHash()
< QoTypedDatatash()

@ Strings

O bytes16 HEX_SYMBOLS

YuzuFlattened Diagram

© err2

O byles32 _CACHED_DOMAIN_SEPARATOR
O uint256 _CACHED_CHAIN_ID

O bytes32 _HASHED_NAME

O byles32 _HASHED_VERSION

O bytes32 _TYPE_HASH

© _constructor_()
< Q_domainSeparatorV4()
B Q_puidDomainSeparator()
“q

_hashTypedData\4()

© ReentrancyGuard

O uirt?56 _MOT_ENTERED
O uint256 _ENTERED

< QtoString()
© QoHexString()

O uirt256 _status
© _constructor_()

(©) Erci1s5VI

Context
AccessControl
ERC1155Supply

nCounters for Counters. Counter

0O string _name
O string _symbol

© bytes32 MINTER_ROLE

< Counters Courter tokenldCounter
© bool anyonsCanhiint

© _constructor__()
@ Qname()

© Qsymbol()

© autobint()

© autohlintBatch()

© mirt()

© mintBatch()

© Qsupportsinterface()
@ addMinter()

@ Qishlinter() ‘\

© QcaniMint() N

[(©) Erc155SUDPIY

| ERC1155

| O Lint256=>Lint256 _totalSupply

| @ QotalSupply()
| ® Qexists()

< _mint¢)
< _mintBatch()

@ Counters

< Qeurrent()

< increment()

< decrement()
 reset()

@ ERC1155

© AccessControl

Gontext
IAccessControl
ERC165
O bytes32=>RoleData_roles O string _uri
© bytes32 DEFAULT_ADMIN ROLE

© Qsupportsinterface()
® QhasRole()

< Q_checkRole()

© QgetRoleAdmin()

® grantRole()

© revokeRole()

@ renounceRole()

© _setupRole()

© setRoleAdmin()

Context

ERC165

IERC1155
IERC1135MetadataUR!

mnAddress for address

O uint256=>mapping address=>uint256 _balances
O address=>mapping address=>bool _operator Approvals

® Quri()

B ZgraniRole()
B _revokeRole() g ,;T:':?l()
[< mintBatchi)

© _constructor__()
© Qsupportsinterface()

© Qalanceof()
© QbalanceOfBatch()

© setApprovalForAll)

® QsApprovedForAll()

© safeTransferFrom()

© safeBatchTransferFrom()
© _safeTransferFrom()

< safeBatchTransferFrom()

| \
\ B _doSafeTransferAcceptanceCheck()
/ doSafeBatchTransfer AcceptanceCheck()
B Q_asSingletonArray()

T

I‘fcr address

7
N\

@ Address

@ 1A

© QhasRole()

© grantRole()

@)
@ renounceRole()

© QunctionStaticCal()
© functionDelegateCall()
© QuerifyCalResult()

@ teretiss

IERC165

\o safeBatchTransferFrom()

) ; %
Control| z ~
(©) context (©) =retes & QisContract() (@ 1erc1 155VetadataURl
© sendValus()
@ QetRoleAdmin() o a 0 IERC165 < functionCall() IERC1155 |
© Q_msgData() © Qsupportsinterface() © functionCallnitnValue() © Quri() /

(@) rerct1asreceier

@ QbalanceOf()

IERC165

© QpalanceOfBatch()
© setApprovalFor AllQ)
© QsApprovedForAll)

© onERC1155Received()
© onERC1155BatchReceived()

© safeTransferFrom()

Pe

@ ereies

® Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> Azuki.sol

INFO:Detectors:
ERC1155YuzuInternal.constructor({address,string,string,string,bool).uri {Azuki.sol#826) shadows

- ERC1155.uri{uint256) (Azuki.sol#541-543) (function)

- IERC1155MetadataURI.uri{uint256) (Azuki.sol#417) {function)
ERC1155Marketplace.constructor(address,address,uint256,uint256,string,string,bool,string).name (Azuki.sol#955) shadows

- ERC1155YuzulInternal.name() (Azuki.sol#2834-2836) (function)
ERC1155Marketplace.constructor{address,address,uint256,uint256,string,string,.bool,string).symbol (Azuki.sol# dows

- ERC1155YuzuInternal.symbol{) (Azuki. sol#BSS 2840) (function)
ERC1155Marketplace.constructor(address,address,uint256,uint256,string,string,bool,string).uri {Azuki.sol#955) shadows

- ERC1155.uri{uint256) iAzuki.sol#E41—E43} (unction}

- TERC1155MetadataURT.uri{uint256) (Azuki.sol#417) {function)
ERC1155Azuki.constructor(address,address,uint256,uint256,string,string,bool,string).name (Azuki.sol#1178) shadows

- ERC1155YuzuInternal.name() quukl s0l#834-8 {function)
ERC1155Azuk i.constructor(address,address,uint256,uint256,string,string,bool,string).symbol (Azuki.sol#1178) shadows:

= ERCllESYuzuIﬁternal.sywboli) (Azuki.sol#232-248) (function)
ERC1155Azuki.constructor{address,address,uint256,uint256,string,string,bool,string).uri (Azuki.sol#1178) shadows

- ERC1155.uri{uint256) (Azuki.sol#541-543) (function)

- IERC1155MetadataURI.uri{uint256) (Azuki.sol#417) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Variable 'ECDSA.tryRecover{bytes32,bytes).r (Azuki.sol# in ECDSA.tryRecover({bytes32,bytes) (Azuki.sol#27-49) potentially us
ed before declarati r = mload(uint256)(signature + 0x20) (Azuki.sol#42)
Variable 'ERC1155._doSafeTransferAcceptanceCheck{address,address,address,uint256,uint256,bytes).response (Azuki.sol#7@8)' 1in ER
€1155._doSafeTransferAcceptanceCheck(address,address, adjlnss u1ntA5C uint256,bytes) {Azuki.sol#699-718) potentially used before
declaration: response != IERC1155Recei _OnERC1155Rece “selector (Azuki.sol#
Variable 'ERC1155. doSafeTransferAcceptanceCheck(address,address,address,uint256 u1ut4._,bvtes]
155._doSafeTransferAcceptancecheck(address,address, ajj|ass Ulht;-.,ulhT;EE,vaQS‘ (Azuki.s0l#699-
eclaration: revert{string){reason) {Azuki. sol# 713)

reason (Azuki.sol#712)' in ERC1
718) potentially used before d
INFO:Detectors:
Reentrancy in ERC11555upply._mint{address,uint256,uint256,bytes) (Azuki.sol#762-778):
External calls:
- super._mint{account, id, amount,data) (Azuki.sol#768)
- IERC1155Receiver(to).onERC1155Received{operator,from,id,amount,data) (Azuki.sol#703-716)
State variables written after the call(s):
- _totalSupply[id] += amount (Azuki.sol#769)
Reentrancy in ERC1155Supply._mintBatch(address,uint256[],uint256[],bytes) (Azuki.sol#772-782):
External calls:
- super._mintBatch{to, ids,amounts,data) ({Azuki.sol#773)
- IERC1155Receiver(to).onERC1155BatchReceived(operator,from, ids,amounts,data) (Azuki.sol#729-729)
State variables written after the callis):
- _totalSupply[ids[i]] += amounts[i] (Azuki.sol#7
Reentrancy in ERC1155Marketplace. mintBatch{address,uint2 J,uint256[],bytes) (Azuki.sol#1125-1138):
External calls:
- super._mintBatch{to, ids,amounts,data) (Azuki.sol#1126)
- IERC1155Receiver(to).onERC1155BatchReceived{operator,from,ids,amounts,data) {Azuki.sol#729-739)
State variables written after the call(s):
- creators[ids[1]] = _msgSender{) (Azuki.sol#112
Reentrancy in ERC1155Marketplace.acceptBid(uint256,uint256) (Azuki.sol#1074-1092):
External calls:
- calloptionalReturn(this,abi.encodeWithSelector({this.safeTransferFrom.selector, msgSender(),open0ffers[tokenId][index]
.user,tokenId, DpnnDTTnls[tDkaan][ln ¢].¢ %)) (Azuki.sol#1684)
- (success,returndata) = address(token).call(data) (Azuki.sol#1136)
- distributeFunds(openoffers[tokenId][index].qty * openoffers[tokenId][index].price,openoffers[tokenId][index].user,_ms
gSender(),tokenId) {Azuki.sol#10886)
- {success) = to.call{value: amountdowner}{) (Azuki.sol#110
- {success2) = creators[tokenId].call{value: amountdcreato (Azuki.sol#1166)
- (success3) = admin.call{value: amountd4admin}{) (Azuki. sol#lllzﬁ
External calls sending eth:
- distributeFunds{open0ffers[tokenId][index].qty * openOffers[tokenId][index].price,opendffers[tokenId][index].user,_ms
gSender(),tokenId) (Azuki.sol#1086)
- (success) = to.call{value: amountdowner}{) (Azuki.sol#1181)

Event emitted after the call(s):
- 'ransfer?ingleiDperato’,addressi0),account,id,anount} (Azuki.sol#674)
- mint(_msgSender(),vouchersNFTIds[1id],qtyToMint) (Azuki.sol#128
Reentrancy in ERC1155Azuki. IQjﬁﬂﬁlulht;EE,ulht;EE,ulhtAEE,UIHTAEE,ulht;EE,ulht;EE,ulht;._,vaQS uint256) (Azuki.sol#1188-1217):
External calls:
- returnTheChange(total) (Azuki.sol#1198)
- {success) = _msgSender().call{value: msg.value - totall}()
- vouchersNFTIds[id] = autoMint(_msgSender(),qtyToMint) (Azuki. sol#120
- IERC1155Receiver(to).onERC1155Receiv Ajloparator from,id, awount data) (Azuki.sol#708-716)
- mint{_msgSender(},+ DuchﬁlsNF Ijs[lj] qtv oMint, (Azuki. sol# £1205)
- IERC1155Rece . oparator from,id,amount,data) (Azuki.sol#708-716)
- (success) = contractOwn '.call{value: total va ue}{) {Azuki. 501«1411-
External calls sending eth:
- returnTheChange(total) (Azuki.sol#1198)
- {success) = _msgSender{).call{value: msg.value - total}{) (Azuki.sol#927)
- (success) = contractOwner.call{value: total_value}() (Azuki.sol#1218)
Event emitted after the call(s):
- LazyMint({vouchersNFTIds[id],_msgSender(),contractOwner,total_value) (Azuki.sol#1213)
Reentrancy in ERC1155Marketplace.returnT hﬂchaHQQIUIMtAEC; {Azuki.sol#985 :
External calls:
- (success) = _msgSender().call{value: msg.value - total}() (Azuki.sol#987
Event emitted after the call(s):
- Change({_msgSender().msg.value - total) (Azuki.sol#989)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
ECDSA.tryRecover(bytes32,bytes) (Azuki.sol#27-49) uses assembly
- INLINE ASM (Azuki.sol#32-36)
- INLINE ASM (Azuki.sol#41-44)
ECDSA. tryRecover({bytes32,bytes32 ,bytes32) (Azuki.sol#57-69) uses assembly
_ INLINE ASM tAzuki.sol#E-:l- 7)
Address.isContract(address) sol#421-428) uses assembly
- INLINE ASM (Azuk 531#444 426)
Address.verifyCallResult(bool ,bytes, st|1hgn (Azuk1i.sol#s 518) uses assembly
- INLINE ASM {Azuki. 501* '—"‘1'3‘I
Reference: https:f_github.cowﬁcr,tlcfsllthnlf\lklfDAtnctar Documentation#assembly-usage

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO: Detectors
1

urifuint2 z
i t256 'HLL"'L S0 1-7“-‘11 543)

balance0fBatch(= ,uin) should be

- ERC115 f
safeTransferFrom(a

- ERC115
safeBatchTransferFrom| -

- ERC1155. ScT Ec cl
name() should b cla

- ERC115
symbol{} should

- ERC115
autoMintBatch(a

- ERCll“(uLIlt»ll.:l..:Lt
mintBatch({address,uint2 i

- ERC1155YuzuIn
addMinter({address) shou

- ERC1155Yuzuln
sell{uint256,uint256,uint

- ERC1155Marketpla
buy{uint256,uint256, Lilt“

- ERC115
redeem(uint256,uint2 “f ,ui

= ERCll‘““ <1

https ithub rtic ith ki ector-Documentation#public-funct

INFD.Sllther:nzu sol analyzed (19 contracts with 75 detectors) 103 result(s) 'Found
INFO:Slither:Use https: c.io 255 to ors

INFO:Detectors:
ERC1155YuzulInternal.c C s .uri (Ikasumi.sol#
- ERC1155.ur 1 1 5

- IERC11 (_sols ()
ERCllEE"&I'k%‘tplé-.r.-.-.IS‘tl'L,C‘tCI":IERC:':_ 255 ,address,ul 6,ul ,string,string ,string).name (Ikasumi.sol#977) shadows

- ERC1155YuzuInternal.name())]
ERC1155Marketplace.constructor(IERC20, 255, 255, U1 6,uint256,string,string ol,string).symbol ({Ikasumi.sol#9
WS
- ERC1155YuzulInternal. sy ymbo)
ERC1155Marketplace. ructor(= s i ,string,string ,s5tring).uri {Ikasumi.sol#9
e .

ERC1155Tkasumi. C (2 s, 255, Ul A 256, g, in ,string).name (Ikasumi.sol#1195)
- ERC115 a) ion)
ERC1155Ikasumi.c C (_.'.. 255, ,uint2 s in s i ymbol {Ikasumi.sol#1195)
- ERC1155YuzuInternal. (f i
ERCllEEIkeSLri.-:-.lstlL tor(0 = i nt256,string,string,bool,string).uri (Ikasumi.sol#1195)
- ERC115 i i
- IERC1155Metadata L,R L !
https ith LI..w.-.r“_.-- ar/wiki/Detector-Documenta al-variable-shadowing

INFO:Detectors:
ECDSA. tryRec
- INLINE
- INLINE
ECDSA. tryRec o / (Ikasumi.sol#57-69) uses assembly

ess) IIkcsu“l #443-450) uses assembly
- IILIIE dcl' II|-<cSL,r"L. ol#446)
Address.verifyCallResult(boo (Ikasumi.sol#522-5408) uses assembly
- INLINE ASM (Ikasumi
://github.com/ /slither/wiki/Detector-Documentation#assembly

urif{uint256)
- ERC115
balance0fBatch({add
- ERC1155 | {
safeTransferFro ,uin ,uint2) shoul external:
- ERC115 (& s ,uint2 i y) (Tkasumi.sol#681-613)
safeBatchT f)

- ERC1155Yuzuln (i 5[]) (Ikasumi.sol#874-879)
mintBatch{address,uint2 C
{Ikasumi.sol#390-397)
addMinter(address) sho
- ERC1155Yuzuln

buy({uint2s6,
= ERCll“lcrI-c tpla
eem({uint256,uint256,uint
- ERCllESIkcsu’l r
= ithub.c i -Do Func
INFO:Slither: Ikasuml sol analyzed (29 contracts wtth ?5 detectors), 94 result(s) found
INFO:Slither:Use https://c (o

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> YuzuFlattened.sol

INFO:Detectors:
ERC1155Yuzu.constructo s ing, i) Lll I(L4L lattened.sol#826) shadows:
- ERC1155. L\llbllt_.f; Z ;
- IERC1155MetadataURI.urifuint25s
Refere : https://github.com/crytic/sli
INFD.Detectors:
Variable 'ECDSA.tryRecov ytes32,bytes).r (¥ F #29) 1 SA.tr (z ytes) {YuzuFlattened.sol#27-49
tentially us = [(
able 'ERC1155 afeTransferAc an (3 255 ,uint256,uin A 25) .response (YuzuFlattened.sol#708
J' in ERC1155 afeTransferAccep 2Check 255, 255, ess5,Uint256,uint256 e (YuzuF e #6 718) potenti
ally used bef laration: resp .0NERC1155R iy = (c
Variable 'ERC1155. afeT ra|sT 3 eck(s ,address,uint256, ytes).reason YuzuF 1 ttened.sol#712)
in ERC1155 afeTransfer anceChe k" d s 255, 3 ,uint256,uint256 ,bytes) (3 uFlattened.sol#699-7 18) potential
y e declaration:)
doSafeBat
in ERCll‘:‘: d f < C
otentially d before decla ion: res p:ls- 1= IERCllEER-u-l;-F.LIERCllEEBc c

dress,address,uint256[],uint256[],by).reason (YuzuFlattened.
I [1 Lllt E[] bytes) (YuzuFlattened.sol#

INFD Detectors
Reentr y in ERC1155Supply._mint{address,uint256,uint256,bytes) (YuzuFlattened.sol#762
cternal calls
- super._mint{account,i mount,data) (YuzuFlatter . 58)
- IERC1155Receiver(ERC1155Receiv r ,from,id,amount,data) (YuzuFlattened.sol#788-716)
State variables written after the call(s):
- _totalSupply[id] += amount (YuzuFlattened. #769)
y in ERC1155Supply._mintBatch{address,uint2 ,uint256[],bytes) {YuzuFlattened.sol#772-782):
External calls:
- super._mintBatch(to, ids,a ()
- IERC1155Re RC1 chReceiv .data) (YuzuFlattened
State variables written after (s):

ence: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFD Detectors
ECDSA. tryRec rte ytes) (YuzuFlatte ol 49) uses assembly
- INLINE ASM (YuzuFlatt 3
- INLINE ASM (YuzuFlatt . 41-44)
ECDSA. try rte = {YuzuFlattened.sol#57-69) uses assembly
- INLINE HSI c
Address.isContract((YuzuFla 21-428) uses assembly
- INLINE ASM (Yuz k)
s.verifyCallResult(bool,b s (Y 2 . #500-518) uses assembly
- IILIIE ASM (YuzuF 1 ‘t‘t ?]
: https://github.com/cry ; ar kl Detector-Documentation#assembly-usage
INFO: Detectors
pccessControl._setRoles
ess . functionCall(ac
ress.functionCall{addre , 3 = e re
ress.functionCallWithva 255, 25 ,uint2 (¥ ened. I--.) i a1 =d an 0 remo
‘ss.fchtichellwith'

INFD Detectors
_CACHED_DOMAIN_SEPARATOR Flatte W E) is not in mixedCase

_CACHED_CHAIN_ID {YuzuFlatte) i in mixedCase
_HASHED_NAME {YuzuFlattened) 1s not in mixedCase

_HASHED_VERSION (YuzuFlatten) i1s not in mixedCase
_TYPE_HASH (YuzuFlattened.s i t in mixedCase

th-r {YuzuFlatte is not in mixedCase
/slither/wiki/ etector-Documentation#conformance-to-solidity y-naming-conventions

l(L4L lattened.so

(YuzuFlattened.s

(externa
- ERC1155. 1 celfBa ,ui Z uzuF 1 ttened.sol#
valForAll(ac
- ERC1155.setAppr
safeTransferFrom(a
- ERCllE‘E ScT T
safeBatchTransfe

name()

name() should aC

= ERCll_EYLZL.”
symbol{} should

- ERC1155Yuzu.
autoMintBatch(address,

- ERC1155Yuzu.
mint({address,uint256,uint256,

- ERC1155Yuzu.mint(ad
mintBatch{address,uint25 ,

- ERC1155Yuzu.mintBatch(
addMinter(address) should be a external:

ss) (YuzuF 1ctt

rent i I etector-Documentatio n#public-function-that-could-
INFO: Sltther YuzuFlattened sol analyzed (1? contracts wlth 75 detectors), ?2 result(s) Found
INFO:Slither:Use https: . it 0 ge dd 0 d (n i

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Azuki.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
ERC1155Azuki.redeem(uint256,uint256,uint256,uint256,uint256,uint256,uint256,bytes,uint256):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 2162:15:

Low level calls:

Use of "call"; should be avoided whenever possible. It can lead to unexpected behavior if return value
is not handled properly. Please use Direct Calls via specifying the called contract's interface.

more

Pos: 2192:38:

Gas & Economy

Gas costs:

Gas requirement of function ERC1155Azuki.domainSeparator is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions

or actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 2203:15:

This on local calls:

Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.
more

Pos: 2015:67:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

Pos: 2075:19:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

ERC1155Azukiverify{uint256,uint256,uint256,uint256,uint256,uint256,uint256,address,bytes,address)
: Is constant but potentially should not be. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 2207:15:

Similar variable names:

ERC1155Marketplace distributeFunds(uint256,address,address,uint256) : Variables have very similar
names "success" and "success3". Note: Modifiers are currently not considered by this static analysis.
Pos: 2060:31:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 2228:19:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 2042:44:

lkasumi.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
ERC11556lkasumi.redeem(uint256,uint256,uint256,uint256,uiNnt256,uiNt256,uint256,bytes,uint256):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 2235:15:

Low level calls:

Use of "call™: should be avoided whenever possible. It can lead to unexpected behavior if return value is
not handled properly. Please use Direct Calls via specifying the called contract's interface.
more

Pos: 2164:61:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function ERC1155lkasumi.domainSeparator is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions

or actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 2266:15:

This on local calls:

Use of "this" for local functions: Never use "this" to call functions in the same contract, it only consumes
more gas than normal local calls.

maore

Pos: 2070:67:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values,
have to be used carefully. Due to the block gas limit, transactions can only consume a certain amount
of gas. The number of iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded loops incurs in a lot of
avoidable gas costs. Carefully test how many items at maximum you can pass to such functions to
make it successful.

maore

Pos: 2141:19:

Miscellaneous

Constant/View/Pure functions:

ERC1155lkasumiverify(uint256,uint256,uint256,uint256,uint256,uint256,uint256,address,bytes,address)
: Is constant but potentially should not be. Note: Modifiers are currently not considered by this static
analysis.

maore

Pos: 2270:15:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance {apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 2291:19:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 2099:44:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

YuzuFlattened.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address.functionCallWithValue(address,bytes,uint256,string): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 1088:7:

Gas costs:

Gas requirement of function ERC1155Yuzu.addMinter is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1743:7:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit which
can cause the complete contract to be stalled at a certain point. Additionally, using unbounded
loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can
pass to such functions to make it successful.

more

Pos: 1695:11:

Miscellaneous

Constant/View/Pure functions:

Counters.reset(struct Counters.Counter) : Potentially should be constant/view/pure but is not. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 1616:7:

Similar variable names:

ERC1155Yuzu.mint{address,uint256,uint256,bytes) : Variables have very similar names "to" and
"id". Note: Modifiers are currently not considered by this static analysis.
Pos: 1715:17:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 1760:11:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Azuki.sol

w
o)
Q
(D
)

Error:
Error:
Error:
Error:

error: missing
error: missing
error: missing
error: missing

>

yv)
Q
=
)

o]

=
B!

o W

7
5
2
1

J
Q
[}
n n n »n
0}

@

4
3
0
1

T

N N N N

)}
e
Q
]

=
g

lkasumi.sol

Error: S rror: missing
Error: se or: missing
Error: rse : missing
Error: ars r: missing

Tkasumi.
Tkasumi.
Tkasumi.s
Ikasumi.s

0 n 0
O O O

N
o N

o= N
e}

@)

YuzuFlattened.sol

Error: se error: missing
Error: error: missing
Error: error: missing

YuzuFlattened.s
YuzuFlattened. so
YuzuFlattened. so
YuzuFlattened.

=R

o W W
= O 0
= W 01 J

o)

Error: error: missing

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

