
Project: Waifu Protocol
Website: waifuverse.studio
Platform: FTM, AVAX and BSC
Language: Solidity
Date: August 23rd, 2022

https://www.waifuverse.studio/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 28

Audit Findings …………………………………………………………………………………… 29

Conclusion ………………………………………………………………………………………. 39

Our Methodology ………………………………………………………………………………... 40

Disclaimers ………………………………………………………………………………………. 42

Appendix

● Code Flow Diagram ……………………………………………………………………... 43

● Slither Results Log ………………………………………………………………………. 54

● Solhint Linter …………………………………………………………………….……….. 62

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Waifu to perform the Security audit of the Waifu Protocol
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on August 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Waifu Protocol is a metaverse protocol using ERC1155 NFT tokens which has functions

like initialize, mint, burn, grantRole, withdraw, hasRole, shares, release, payee, receive,

pause, unpause, revokeRole, grantRole, etc. The Waifu contract inherits the

SafeERC20Upgradeable, AccessControlEnumerableUpgradeable, IERC20Upgradeable,

PausableUpgradeable, Initializable, UUPSUpgradeable, ERC1155Upgradeable,

ERC20CappedUpgradeable, ERC721PausableUpgradeable, etc. standard smart contracts

from the OpenZeppelin library. These OpenZeppelin contracts are considered

community-audited and time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Waifu Protocol Smart Contracts

Platform FTM, AVAX and BSC / Solidity

File 1 PerkSaleHelper.sol

File 1 MD5 Hash 4ED409BABEBF156284DCD56D27635829

File 2 PresaleHelper.sol

File 2 MD5 Hash A5CD6DED26A197836B2B6AECF74F2538

File 3 LiquidityManager.sol

File 3 MD5 Hash 08068C9C20EC746A7168A519BEF12383

File 4 WaifuCashier.sol

File 4 MD5 Hash 6448CC7A991B29AA8BF0D725D09872B1

File 5 WaifuManager.sol

File 5 MD5 Hash 5F559A1204638714BF26AAA0CD3CDDED

File 6 WaifuNodes.sol

File 6 MD5 Hash 0340946926AA1277187DB503E8B1CE48

File 7 WaifuPerks.sol

File 7 MD5 Hash 3CA4B9D84E20DF5621CE701564BA5FE6

File 8 EarlyWaifuHolders.sol

File 8 MD5 Hash 0C21DAB9B02377C329CAEB357B9F8078

File 9 RevenuePaymentSplitter.sol

File 9 MD5 Hash E5A92EE503076F61F03611F038CD0144

File 10 PreLaunchToken.sol

File 10 MD5 Hash ADCDEBB3090AB862677F626F0ECDFC14

File 11 WaifuToken.sol

File 11 MD5 Hash 116228396301C05BC4EB67181DFF6B5B

Audit Date August 23rd,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 PerkSaleHelper.sol
● PerkSaleHelper has functions like: purchase,

finishPresale, etc.

YES, This is valid.

File 2 PresaleHelper.sol
● PresaleHelper has functions like:

setPurchaseAllowed, purchase, etc.

YES, This is valid.

File 3 LiquidityManager.sol
● Minimum Price: 0.9 Coin

● Maximum Price: 1.15 Coin

YES, This is valid.

File 4 WaifuCashier.sol
● Reclaim/Burn: 30%

● Treasury: 20%

● Liquidity: 30%

● Company wallet: 10%

● Escrow Account: 10%

● WaifuCashier has functions like: grantRewardsFor,

claimRewardsMax, etc.

YES, This is valid.

File 5 WaifuManager.sol
● WaifuManager has functions like: buyNodes,

buyNodesBatch, etc.

YES, This is valid.

File 6 WaifuNodes.sol
● Snapshot Frequency: 1 Days

YES, This is valid.

File 7 WaifuPerks.sol
● Tier Count: 4

● Maximum percentage: 2.5%

● Maximum Wallet limit increase: 20,000

YES, This is valid.

● Precision: 10000

File 8 EarlyWaifuHolders.sol
● Name: EarlyWaifuHolders

● Symbole: EWH

YES, This is valid.

File 9 RevenuePaymentSplitter.sol
● RevenuePaymentSplitter has functions like:

initialize, release, etc.

YES, This is valid.

File 10 PreLaunchToken.sol
● PreLaunchToken has functions like: mint,

withdrawTo, etc.

YES, This is valid.

File 11 WaifuToken.sol
● Name: UWU Token

● Symbole: UWU

● Decimals: 18

● Precision: 10000

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 2 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 11 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Waifu Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Waifu Protocol.

The Waifu team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Waifu Protocol smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://www.waifuverse.studio/ which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.waifuverse.studio/

AS-IS overview

PerkSaleHelper.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write access by initializer No Issue
3 getTotalPrice read Passed No Issue
4 purchase external Critical operation

lacks event log
Refer Audit

Findings
5 finishPresale external access only Role No Issue
6 setTypePrice external access only Role No Issue
7 setTypePresalePrice external access only Role No Issue
8 _authorizeUpgrade internal access only Role No Issue
9 initializer modifier Passed No Issue
10 reinitializer modifier Passed No Issue
11 onlyInitializing modifier Passed No Issue
12 _disableInitializers internal Passed No Issue
13 __AccessControl_init internal access only

Initializing
No Issue

14 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

15 onlyRole modifier Passed No Issue
16 supportsInterface read Passed No Issue
17 hasRole read Passed No Issue
18 _checkRole internal Passed No Issue
19 _checkRole internal Passed No Issue
20 getRoleAdmin read Passed No Issue
21 grantRole write access only Role No Issue
22 revokeRole write access only Role No Issue
23 renounceRole write Passed No Issue
24 _setupRole internal Passed No Issue
25 _setRoleAdmin internal Passed No Issue
26 _grantRole internal Passed No Issue
27 _revokeRole internal Passed No Issue
28 __UUPSUpgradeable_init internal access only

Initializing
No Issue

29 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

30 onlyProxy modifier Passed No Issue
31 notDelegated modifier Passed No Issue
32 proxiableUUID external Passed No Issue
33 upgradeTo external access only Proxy No Issue
34 upgradeToAndCall external access only Proxy No Issue
35 _authorizeUpgrade internal Passed No Issue

PresaleHelper.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __AccessControl_init internal access only

Initializing
No Issue

7 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

8 onlyRole modifier Passed No Issue
9 supportsInterface read Passed No Issue
10 hasRole read Passed No Issue
11 _checkRole internal Passed No Issue
12 _checkRole internal Passed No Issue
13 getRoleAdmin read Passed No Issue
14 grantRole write access only Role No Issue
15 revokeRole write access only Role No Issue
16 renounceRole write Passed No Issue
17 _setupRole internal Passed No Issue
18 _setRoleAdmin internal Passed No Issue
19 _grantRole internal Passed No Issue
20 _revokeRole internal Passed No Issue
21 __UUPSUpgradeable_init internal access only

Initializing
No Issue

22 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

23 onlyProxy modifier Passed No Issue
24 notDelegated modifier Passed No Issue
25 proxiableUUID external Passed No Issue
26 upgradeTo external access only Proxy No Issue
27 upgradeToAndCall external access only Proxy No Issue
28 _authorizeUpgrade internal Passed No Issue
29 initialize write access only

Initializing
No Issue

30 getTotalPrice read Passed No Issue
31 setPurchaseAllowed external access only Role No Issue
32 setPurchaseAllowedBatc

h
external access only Role No Issue

33 purchase external Passed No Issue
34 _authorizeUpgrade internal Passed No Issue

LiquidityManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write Passed No Issue
3 stabilize write Passed No Issue
4 getLpPair external Passed No Issue
5 _pullMainTokenFromLP internal Passed No Issue
6 _sendMainTokensToLP internal Passed No Issue
7 setPriceRange write access only Owner No Issue
8 setIsEnabled external access only Owner No Issue
9 adminWithdraw external access only Owner No Issue
10 adminWithdrawETH external access only Owner No Issue
11 __Ownable_init internal access only

Initializing
No Issue

12 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

13 onlyOwner modifier Passed No Issue
14 owner read Passed No Issue
15 _checkOwner internal Passed No Issue
16 renounceOwnership write access only Owner No Issue
17 transferOwnership write access only Owner No Issue
18 _transferOwnership internal Passed No Issue

WaifuCashier.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write DEFAULT_ADMIN_

ROLE is
Re-Assigned

Refer Audit
Findings

3 getMintLimit external Passed No Issue
4 getWaifuBalance read Passed No Issue
5 getUsdBalance read Passed No Issue
6 getClaimTaxOf read Passed No Issue
7 getPaymentFrom external access only Role No Issue
8 grantRewardsFor external access only Role No Issue
9 claimRewardsMax external Passed No Issue
10 claimRewards write Passed No Issue
11 liquidateWaifu external Passed No Issue
12 liquidateToken external access only Role No Issue
13 setAnnualMintLimit external access only Role No Issue
14 setDefaultClaimTax external Tax limit is not set Refer Audit

Findings

15 setTreasury external access only Role No Issue
16 setCompanyWallet external access only Role No Issue
17 setRevenueSplitter external access only Role No Issue
18 setRouter external access only Role No Issue
19 setUsdToken external access only Role No Issue
20 setFees external access only Role No Issue
21 pause write access only Role No Issue
22 unpause write access only Role No Issue
23 _checkAndUpdateMintLi

mit
write Passed No Issue

24 _updateAndGetMintLimit write Passed No Issue
25 _getMintLimit read Passed No Issue
26 _isMintLimitExpired read Passed No Issue
27 _setFees write Passed No Issue
28 _swap write Passed No Issue
29 _swapWaifuToUsd write Passed No Issue
30 _swapUsdToWaifu write Passed No Issue
31 _swapTokenToUsd write Passed No Issue
32 _addLiquidity internal Add Liquidity with

External account
Refer Audit

Findings
33 _liquidateWaifu internal Passed No Issue
34 _liquidateUsd internal Passed No Issue
35 initializer modifier Passed No Issue
36 reinitializer modifier Passed No Issue
37 onlyInitializing modifier Passed No Issue
38 _disableInitializers internal Passed No Issue
39 __AccessControl_init internal access only

Initializing
No Issue

40 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

41 onlyRole modifier Passed No Issue
42 supportsInterface read Passed No Issue
43 hasRole read Passed No Issue
44 _checkRole internal Passed No Issue
45 _checkRole internal Passed No Issue
46 getRoleAdmin read Passed No Issue
47 grantRole write access only Role No Issue
48 revokeRole write access only Role No Issue
49 renounceRole write Passed No Issue
50 _setupRole internal Passed No Issue
51 _setRoleAdmin internal Passed No Issue
52 _grantRole internal Passed No Issue
53 _revokeRole internal Passed No Issue
54 __UUPSUpgradeable_init internal access only

Initializing
No Issue

55 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

56 onlyProxy modifier Passed No Issue

57 notDelegated modifier Passed No Issue
58 proxiableUUID external Passed No Issue
59 upgradeTo external access only Proxy No Issue
60 upgradeToAndCall external access only Proxy No Issue
61 _authorizeUpgrade internal Passed No Issue
62 __Pausable_init internal access only

Initializing
No Issue

63 __Pausable_init_unchain
ed

internal access only
Initializing

No Issue

64 whenNotPaused modifier Passed No Issue
65 whenPaused modifier Passed No Issue
66 paused read Passed No Issue
67 _requireNotPaused internal Passed No Issue
68 _requirePaused internal Passed No Issue
69 _pause internal Passed No Issue
70 _unpause internal Passed No Issue

WaifuManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write access by initializer No Issue
3 getEpochCount read Passed No Issue
4 getEpochStartSnapshots read Passed No Issue
5 calculateNodesPrice read Passed No Issue
6 getIncreasedPrice read Passed No Issue
7 getRewardsIncreaseOf read Passed No Issue
8 calculateUnclaimedRewa

rdsFor
read Passed No Issue

9 calculateRewardsFor read Passed No Issue
10 buyNodes external Passed No Issue
11 buyNodesBatch external Passed No Issue
12 upgradeNodes external Passed No Issue
13 upgradeNodesBatch external Passed No Issue
14 collectRewards external Passed No Issue
15 collectRewardsUpTo write Passed No Issue
16 setNodePrices external access only Role No Issue
17 addNewNodeTier external access only Role No Issue
18 addNewEpoch external access only Role No Issue
19 pause write access only Role No Issue
20 unpause write access only Role No Issue
21 _setNodePrices write Passed No Issue
22 _setNodeRewards write Passed No Issue
23 _sqrt write Passed No Issue
24 _roundPrice write Passed No Issue

25 _authorizeUpgrade internal access only Role No Issue
26 _authorizeUpgrade internal access only Role No Issue
27 initializer modifier Passed No Issue
28 reinitializer modifier Passed No Issue
29 onlyInitializing modifier Passed No Issue
30 _disableInitializers internal Passed No Issue
31 __AccessControl_init internal access only

Initializing
No Issue

32 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

33 onlyRole modifier Passed No Issue
34 supportsInterface read Passed No Issue
35 hasRole read Passed No Issue
36 _checkRole internal Passed No Issue
37 _checkRole internal Passed No Issue
38 getRoleAdmin read Passed No Issue
39 grantRole write access only Role No Issue
40 revokeRole write access only Role No Issue
41 renounceRole write Passed No Issue
42 _setupRole internal Passed No Issue
43 _setRoleAdmin internal Passed No Issue
44 _grantRole internal Passed No Issue
45 _revokeRole internal Passed No Issue
46 __UUPSUpgradeable_init internal access only

Initializing
No Issue

47 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

48 onlyProxy modifier Passed No Issue
49 notDelegated modifier Passed No Issue
50 proxiableUUID external Passed No Issue
51 upgradeTo external access only Proxy No Issue
52 upgradeToAndCall external access only Proxy No Issue
53 _authorizeUpgrade internal Passed No Issue
54 __Pausable_init internal access only

Initializing
No Issue

55 __Pausable_init_unchain
ed

internal access only
Initializing

No Issue

56 whenNotPaused modifier Passed No Issue
57 whenPaused modifier Passed No Issue
58 paused read Passed No Issue
59 _requireNotPaused internal Passed No Issue
60 _requirePaused internal Passed No Issue
61 _pause internal Passed No Issue
62 _unpause internal Passed No Issue

WaifuNodes.sol

Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write DEFAULT_ADMIN_

ROLE is
Re-Assigned

Refer Audit
Findings

3 getCurrentSnapshotId read Passed No Issue
4 mint external access only Role No Issue
5 mintBatch external access only Role No Issue
6 upgradeNodesFor external access only Role No Issue
7 upgradeNodesBatchFor external access only Role No Issue
8 clearHistoryFor external access only Role No Issue
9 setURI external access only Role No Issue
10 setNodeTierCount external access only Role No Issue
11 setTotalNodeLimit external access only Role No Issue
12 setWalletLimit external access only Role No Issue
13 setTransfersEnabled external access only Role No Issue
14 pause write access only Role No Issue
15 unpause write access only Role No Issue
16 _getLastTokenId internal Passed No Issue
17 _beforeTokenTransfer internal Passed No Issue
18 _afterTokenTransfer internal Passed No Issue
19 _authorizeUpgrade internal access only Role No Issue
20 supportsInterface read Passed No Issue
21 _authorizeUpgrade internal access only Role No Issue
22 initializer modifier Passed No Issue
23 reinitializer modifier Passed No Issue
24 onlyInitializing modifier Passed No Issue
25 _disableInitializers internal Passed No Issue
26 __AccessControl_init internal access only

Initializing
No Issue

27 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

28 onlyRole modifier Passed No Issue
29 supportsInterface read Passed No Issue
30 hasRole read Passed No Issue
31 _checkRole internal Passed No Issue
32 _checkRole internal Passed No Issue
33 getRoleAdmin read Passed No Issue
34 grantRole write access only Role No Issue
35 revokeRole write access only Role No Issue
36 renounceRole write Passed No Issue
37 _setupRole internal Passed No Issue
38 _setRoleAdmin internal Passed No Issue
39 _grantRole internal Passed No Issue
40 _revokeRole internal Passed No Issue

41 __UUPSUpgradeable_init internal access only
Initializing

No Issue

42 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

43 onlyProxy modifier Passed No Issue
44 notDelegated modifier Passed No Issue
45 proxiableUUID external Passed No Issue
46 upgradeTo external access only Proxy No Issue
47 upgradeToAndCall external access only Proxy No Issue
48 _authorizeUpgrade internal Passed No Issue
49 __ERC1155_init internal access only

Initializing
No Issue

50 __ERC1155_init_unchain
ed

internal access only
Initializing

No Issue

51 supportsInterface read Passed No Issue
52 uri read Passed No Issue
53 balanceOf read Passed No Issue
54 balanceOfBatch read Passed No Issue
55 setApprovalForAll write Passed No Issue
56 isApprovedForAll read Passed No Issue
57 safeTransferFrom write Passed No Issue
58 safeBatchTransferFrom write Passed No Issue
59 _safeTransferFrom internal Passed No Issue
60 _safeBatchTransferFrom internal Passed No Issue
61 _setURI internal Passed No Issue
62 _mint internal Passed No Issue
63 _mintBatch internal Passed No Issue
64 _burn internal Passed No Issue
65 _burnBatch internal Passed No Issue
66 _setApprovalForAll internal Passed No Issue
67 _beforeTokenTransfer internal Passed No Issue
68 _afterTokenTransfer internal Passed No Issue
69 _doSafeTransferAccepta

nceCheck
write Passed No Issue

70 _doSafeBatchTransferAc
ceptanceCheck

write Passed No Issue

71 _asSingletonArray write Passed No Issue
72 __ERC1155Pausable_init internal access only

Initializing
No Issue

73 __ERC1155Pausable_init
_unchained

internal access only
Initializing

No Issue

74 _beforeTokenTransfer internal Passed No Issue
75 __ERC1155AggregateSu

pply_init
internal access only

Initializing
No Issue

76 __ERC1155AggregateSu
pply_init_unchained

internal access only
Initializing

No Issue

77 aggregateSupply read Passed No Issue
78 _beforeTokenTransfer internal Passed No Issue

79 __ERC1155TempBalance
History_init

internal access only
Initializing

No Issue

80 __ERC1155TempBalance
History_init_unchained

internal access only
Initializing

No Issue

81 getCurrentSnapshotId read Passed No Issue
82 getBalanceHistoryOf read Passed No Issue
83 _snapshot internal Passed No Issue
84 _getCurrentSnapshotId internal Passed No Issue
85 _findSnapshotId read Passed No Issue
86 _clearHistoryFor internal Passed No Issue
87 _getLastTokenId internal Passed No Issue
88 _beforeTokenTransfer internal Passed No Issue
89 _updateAccountSnapshot

s
write Passed No Issue

90 _doubleUpdateAccountS
napshots

write Passed No Issue

91 _updateAccountSnapshot write Passed No Issue
92 _updateSnapshot write Passed No Issue
93 _lastSnapshotId read Passed No Issue

WaifuPerks.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write DEFAULT_ADMIN_

ROLE is
Re-Assigned

Refer Audit
Findings

3 getTierPercentages read Passed No Issue
4 getTierWalletLimitIncreas

e
read Passed No Issue

5 getTaxReliefOf read Passed No Issue
6 getTransferLimitIncrease

Of
read Passed No Issue

7 getRewardsIncreaseOf read Passed No Issue
8 getWalletLimitIncreaseOf read Passed No Issue
9 mint write access only Role No Issue
10 mintBatch write Infinite Loop Refer Audit

Findings
11 releasePerkType external access only Role No Issue
12 setURI write access only Role No Issue
13 _getEffectivePercentage

Of
read Passed No Issue

14 _isValidType write Passed No Issue
15 _getRngSeed write Passed No Issue
16 _randomTier write Passed No Issue
17 _authorizeUpgrade internal access only Role No Issue

18 supportsInterface read Passed No Issue
19 _authorizeUpgrade internal access only Role No Issue
20 initializer modifier Passed No Issue
21 reinitializer modifier Passed No Issue
22 onlyInitializing modifier Passed No Issue
23 _disableInitializers internal Passed No Issue
24 __AccessControl_init internal access only

Initializing
No Issue

25 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

26 onlyRole modifier Passed No Issue
27 supportsInterface read Passed No Issue
28 hasRole read Passed No Issue
29 _checkRole internal Passed No Issue
30 _checkRole internal Passed No Issue
31 getRoleAdmin read Passed No Issue
32 grantRole write access only Role No Issue
33 revokeRole write access only Role No Issue
34 renounceRole write Passed No Issue
35 _setupRole internal Passed No Issue
36 _setRoleAdmin internal Passed No Issue
37 _grantRole internal Passed No Issue
38 _revokeRole internal Passed No Issue
39 __UUPSUpgradeable_init internal access only

Initializing
No Issue

40 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

41 onlyProxy modifier Passed No Issue
42 notDelegated modifier Passed No Issue
43 proxiableUUID external Passed No Issue
44 upgradeTo external access only Proxy No Issue
45 upgradeToAndCall external access only Proxy No Issue
46 _authorizeUpgrade internal Passed No Issue

EarlyWaifuHolders.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write access only

Initializing
No Issue

3 totalSupply external Passed No Issue
4 safeMintNext write access only Role No Issue
5 safeMintNextBatch write Infinite Loop Refer Audit

Findings
6 setRevealedURI external access only Role No Issue

7 setUnrevealedURI external access only Role No Issue
8 setIsRevealed external access only Role No Issue
9 setTransfersEnabled external access only Role No Issue
10 setAccountTransfersEnab

led
external access only Role No Issue

11 setDefaultRoyalty external access only Role No Issue
12 pause write access only Role No Issue
13 unpause write access only Role No Issue
14 supportsInterface read Passed No Issue
15 _safeMintNext write Passed No Issue
16 _isApprovedOrOwner internal Passed No Issue
17 _baseURI internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 _authorizeUpgrade internal access only Role No Issue
20 initializer modifier Passed No Issue
21 reinitializer modifier Passed No Issue
22 onlyInitializing modifier Passed No Issue
23 _disableInitializers internal Passed No Issue
24 __ERC721_init internal access only

Initializing
No Issue

25 __ERC721_init_unchaine
d

internal access only
Initializing

No Issue

26 supportsInterface read Passed No Issue
27 balanceOf read Passed No Issue
28 ownerOf read Passed No Issue
29 name read Passed No Issue
30 symbol read Passed No Issue
31 tokenURI read Passed No Issue
32 _baseURI internal Passed No Issue
33 approve write Passed No Issue
34 getApproved read Passed No Issue
35 setApprovalForAll write Passed No Issue
36 isApprovedForAll read Passed No Issue
37 transferFrom write Passed No Issue
38 safeTransferFrom write Passed No Issue
39 safeTransferFrom write Passed No Issue
40 _safeTransfer internal Passed No Issue
41 _exists internal Passed No Issue
42 _isApprovedOrOwner internal Passed No Issue
43 _safeMint internal Passed No Issue
44 _safeMint write Passed No Issue
45 _mint internal Passed No Issue
46 _burn internal Passed No Issue
47 _transfer internal Passed No Issue
48 _approve internal Passed No Issue
49 _setApprovalForAll internal Passed No Issue
50 _requireMinted internal Passed No Issue

51 _checkOnERC721Receiv
ed

write Passed No Issue

52 _beforeTokenTransfer internal Passed No Issue
53 __ERC721Pausable_init internal access only

Initializing
No Issue

54 _afterTokenTransfer internal Passed No Issue
55 __ERC721Pausable_init_

unchained
internal access only

Initializing
No Issue

56 _beforeTokenTransfer internal Passed No Issue
57 __ERC2981_init internal access only

Initializing
No Issue

58 __ERC2981_init_unchain
ed

internal access only
Initializing

No Issue

59 supportsInterface read Passed No Issue
60 royaltyInfo read Passed No Issue
61 _feeDenominator internal Passed No Issue
62 _setDefaultRoyalty internal Passed No Issue
63 _deleteDefaultRoyalty internal Passed No Issue
64 _setTokenRoyalty internal Passed No Issue
65 _resetTokenRoyalty internal Passed No Issue
66 __AccessControl_init internal access only

Initializing
No Issue

67 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

68 onlyRole modifier Passed No Issue
69 supportsInterface read Passed No Issue
70 hasRole read Passed No Issue
71 _checkRole internal Passed No Issue
72 _checkRole internal Passed No Issue
73 getRoleAdmin read Passed No Issue
74 grantRole write access only Role No Issue
75 revokeRole write access only Role No Issue
76 renounceRole write Passed No Issue
77 _setupRole internal Passed No Issue
78 _setRoleAdmin internal Passed No Issue
79 _grantRole internal Passed No Issue
80 _revokeRole internal Passed No Issue
81 __UUPSUpgradeable_init internal access only

Initializing
No Issue

82 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

83 onlyProxy modifier Passed No Issue
84 notDelegated modifier Passed No Issue
85 proxiableUUID external Passed No Issue
86 upgradeTo external access only Proxy No Issue
87 upgradeToAndCall external access only Proxy No Issue
88 _authorizeUpgrade internal Passed No Issue

RevenuePaymentSplitter.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write access only

Initializing
No Issue

3 receive external Passed No Issue
4 totalShares read Passed No Issue
5 totalReleased read Passed No Issue
6 totalReleased read Passed No Issue
7 shares read Passed No Issue
8 released read Passed No Issue
9 released read Passed No Issue
10 payee read Passed No Issue
11 release write Passed No Issue
12 release write Passed No Issue
13 _pendingPayment read Passed No Issue
14 _addPayee write Passed No Issue
15 _authorizeUpgrade internal access only Role No Issue
16 initializer modifier Passed No Issue
17 reinitializer modifier Passed No Issue
18 onlyInitializing modifier Passed No Issue
19 _disableInitializers internal Passed No Issue
20 __Context_init internal access only

Initializing
No Issue

21 __Context_init_unchaine
d

internal access only
Initializing

No Issue

22 _msgSender internal Passed No Issue
23 _msgData internal Passed No Issue
24 __AccessControl_init internal access only

Initializing
No Issue

25 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

26 onlyRole modifier Passed No Issue
27 supportsInterface read Passed No Issue
28 hasRole read Passed No Issue
29 _checkRole internal Passed No Issue
30 _checkRole internal Passed No Issue
31 getRoleAdmin read Passed No Issue
32 grantRole write access only Role No Issue
33 revokeRole write access only Role No Issue
34 renounceRole write Passed No Issue
35 __UUPSUpgradeable_init internal access only

Initializing
No Issue

36 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

37 onlyProxy modifier Passed No Issue

38 notDelegated modifier Passed No Issue
39 proxiableUUID external Passed No Issue
40 upgradeTo external access only Proxy No Issue
41 upgradeToAndCall external access only Proxy No Issue

PreLaunchToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write access only

Initializing
No Issue

3 mint write Passed No Issue
4 withdrawTo write Passed No Issue
5 withdrawFrom write access only Role No Issue
6 setMainToken external access only Role No Issue
7 _withdraw write Passed No Issue
8 _beforeTokenTransfer internal Passed No Issue
9 _authorizeUpgrade internal access only Role No Issue
10 _mint internal Passed No Issue
11 initializer modifier DEFAULT_ADMIN_

ROLE is
Re-Assigned

Refer Audit
Findings

12 reinitializer modifier Passed No Issue
13 onlyInitializing modifier Passed No Issue
14 _disableInitializers internal Passed No Issue
15 __AccessControl_init internal access only

Initializing
No Issue

16 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

17 onlyRole modifier Passed No Issue
18 supportsInterface read Passed No Issue
19 hasRole read Passed No Issue
20 _checkRole internal Passed No Issue
21 _checkRole internal Passed No Issue
22 getRoleAdmin read Passed No Issue
23 grantRole write access only Role No Issue
24 revokeRole write access only Role No Issue
25 renounceRole write Passed No Issue
26 _setupRole internal Passed No Issue
27 _setRoleAdmin internal Passed No Issue
28 _grantRole internal Passed No Issue
29 _revokeRole internal Passed No Issue
30 __UUPSUpgradeable_init internal access only

Initializing
No Issue

31 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

32 onlyProxy modifier Passed No Issue
33 notDelegated modifier Passed No Issue
34 proxiableUUID external Passed No Issue
35 upgradeTo external access only Proxy No Issue
36 upgradeToAndCall external access only Proxy No Issue
37 _authorizeUpgrade internal Passed No Issue
38 __ERC20_init internal access only

Initializing
No Issue

39 __ERC20_init_unchained internal access only
Initializing

No Issue

40 name read Passed No Issue
41 symbol read Passed No Issue
42 decimals read Passed No Issue
43 totalSupply read Passed No Issue
44 balanceOf write Passed No Issue
45 transfer write Passed No Issue
46 allowance read Passed No Issue
47 approve write Passed No Issue
48 transferFrom write Passed No Issue
49 increaseAllowance write Passed No Issue
50 decreaseAllowance write Passed No Issue
51 _transfer internal Passed No Issue
52 _mint internal Passed No Issue
53 _burn internal Passed No Issue
54 _approve internal Passed No Issue
55 _spendAllowance internal Passed No Issue
56 _beforeTokenTransfer internal Passed No Issue
57 _afterTokenTransfer internal Passed No Issue

WaifuToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write DEFAULT_ADMIN_

ROLE is
Re-Assigned

Refer Audit
Findings

3 getTransferLimitPercenta
geOf

read Passed No Issue

4 getTransferTaxOf read Passed No Issue
5 getWalletLimitOf read Passed No Issue
6 mint write Unlimited Minting Refer Audit

Findings
7 burn write access only Role No Issue

8 setWaifuCashier external access only Role No Issue
9 setLiquidityManager external access only Role No Issue
10 setDefaultWalletLimit external access only Role No Issue
11 setTransferLimitDuration external access only Role No Issue
12 setDefaultTransferLimitP

ercentage
external access only Role No Issue

13 setDefaultTransferTax external Tax limit is not set Refer Audit
Findings

14 setAccountLimitsDisabled external access only Role No Issue
15 setAccountTaxDisabled external access only Role No Issue
16 approveForLiquidityMang

er
external Passed No Issue

17 _checkAndUpdateTransf
erLimitOf

write Passed No Issue

18 _applyTransferTax write Passed No Issue
19 _checkWalletLimit read Passed No Issue
20 _beforeTokenTransfer internal Passed No Issue
21 _afterTokenTransfer internal Passed No Issue
22 _authorizeUpgrade internal access only Role No Issue
23 __ERC20_init internal access only

Initializing
No Issue

24 __ERC20_init_unchained internal access only
Initializing

No Issue

25 name read Passed No Issue
26 symbol read Passed No Issue
27 decimals read Passed No Issue
28 totalSupply read Passed No Issue
29 balanceOf write Passed No Issue
30 transfer write Passed No Issue
31 allowance read Passed No Issue
32 approve write Passed No Issue
33 transferFrom write Passed No Issue
34 increaseAllowance write Passed No Issue
35 decreaseAllowance write Passed No Issue
36 _transfer internal Passed No Issue
37 _mint internal Passed No Issue
38 _burn internal Passed No Issue
39 _approve internal Passed No Issue
40 _spendAllowance internal Passed No Issue
41 _beforeTokenTransfer internal Passed No Issue
42 _afterTokenTransfer internal Passed No Issue
43 __AccessControl_init internal access only

Initializing
No Issue

44 __AccessControl_init_un
chained

internal access only
Initializing

No Issue

45 onlyRole modifier Passed No Issue
46 supportsInterface read Passed No Issue
47 hasRole read Passed No Issue

48 _checkRole internal Passed No Issue
49 _checkRole internal Passed No Issue
50 getRoleAdmin read Passed No Issue
51 grantRole write access only Role No Issue
52 revokeRole write access only Role No Issue
53 renounceRole write Passed No Issue
54 _setupRole internal Passed No Issue
55 _setRoleAdmin internal Passed No Issue
56 _grantRole internal Passed No Issue
57 _revokeRole internal Passed No Issue
58 __UUPSUpgradeable_init internal access only

Initializing
No Issue

59 __UUPSUpgradeable_init
_unchained

internal access only
Initializing

No Issue

60 onlyProxy modifier Passed No Issue
61 notDelegated modifier Passed No Issue
62 proxiableUUID external Passed No Issue
63 upgradeTo external access only Proxy No Issue
64 upgradeToAndCall external access only Proxy No Issue
65 _authorizeUpgrade internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Add Liquidity with External account:- WaifuCashier.sol

addLiquidity function of pancakeswapRouter with the address specified as treasury for

acquiring the generated LP tokens from the WaifuToken-WBNB pool. As a result, over time

the treasury address will accumulate a significant portion of LP tokens. If the treasury is an

EOA (Externally Owned Account), mishandling of its private key can have devastating

consequences to the project as a whole.

Resolution: We advise the address of the addLiquidity function call to be replaced by the

contract itself, i.e. address(this), and to restrict the management of the LP tokens within

the scope of the contract’s business logic. This will also protect the LP tokens from being

stolen if the treasury account is compromised.

Medium

(1) Tax limit is not set:

WaifuToken.sol

WaifuCashier.sol

Operators can set the tax to any variable. This might deter investors as they could be wary

that these taxes might one day be set to 100% to force transfers to go to the contract

admin role.

Resolution: Consider adding an explicit limit while setting the defaultTransferTax value.

(2) DEFAULT_ADMIN_ROLE is Re-Assigned:-

PreLaunchToken.sol

WaifuNodes.sol

WaifuToken.sol

WaifuCashier.sol

WaifuPerks.sol

The DEFAULT_ADMIN_ROLE will be re-assigned to the caller of function initialize().

Resolution: We suggest to re-check the logic.If this is a desired feature, then please

ignore this point.

Low

(1) Infinite Loop:

WaifuPerks.sol

In below functions, for loops do not have an upper length limit, which costs more gas:

mintBatch.

EarlyWaifuHolders.sol

In below functions, for loops do not have upper length limit, which costs more gas:

safeMintNextBatch.

Resolution: upper bound should have a certain limit for loops.

(2) Critical operation lacks event log:- PerkSaleHelper.sol

Missing event log for: purchase.

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Unlimited Minting:- WaifuToken.sol

Operators can mint unlimited tokens.

Resolution: We suggest putting a minting limit.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● finishPresale: PerkSaleHelper owner can set the finish presale.

● setTypePrice: PerkSaleHelper owner can set type price.

● setTypePresalePrice: PerkSaleHelper owner can set type presale price.

● _authorizeUpgrade: PerkSaleHelper owner can set authorize upgrade address.

● setPurchaseAllowed: PresaleHelper owner can set purchase allowed address.

● setPurchaseAllowedBatch: PresaleHelper owner can set purchase allowed

addresses batch vise.

● _authorizeUpgrade: PresaleHelper owner can set authorize upgrade address.

● setPriceRange: LiquidityManager owner can set price range.

● setIsEnabled: LiquidityManager owner can set its enabled status.

● adminWithdraw: LiquidityManager owner can set admin withdraw address.

● adminWithdrawETH: LiquidityManager owner can set admin payable withdraw ETH

address.

● getPaymentFrom: WaifuCashier owner can get the payment address and amount.

● grantRewardsFor: WaifuCashier owner can grant rewards address.

● liquidateToken: WaifuCashier owner can liquidate tokens.

● setAnnualMintLimit: WaifuCashier owner can set annual mint limit

● setDefaultClaimTax: WaifuCashier owner can set default claim tax.

● setTreasury: WaifuCashier owner can set a new treasury address.

● setCompanyWallet: WaifuCashier owner can set a new company wallet address.

● setRevenueSplitter: WaifuCashier owner can set a new revenue splitter address.

● setRouter: WaifuCashier owner can set a new router address.

● setUsdToken: WaifuCashier owner can set new USD tokens.

● setFees: WaifuCashier owner can set fees like: ReclaimFee, TreasuryFee,

LiquidityFee, CompanyFee, RevenueSplitterFee.

● pause: WaifuCashier owner can trigger a stopped state.

● unpause: WaifuCashier owner can return to normal state.

● _authorizeUpgrade: WaifuCashier owner can set authorize upgrade address.

● setNodePrices: WaifuManager owner can set node prices.

● addNewNodeTier: WaifuManager owner can add a new node tier.

● addNewEpoch: WaifuManager owner can add a new epoch.

● pause: WaifuManager owner can trigger a stopped state.

● unpause: WaifuManager owner can return to normal state.

● _authorizeUpgrade: WaifuManager owner can set authorize upgrade address.

● mint: WaifuNodes owner can mint a token.

● mintBatch: WaifuNodes owner can mint a token batch vise.

● upgradeNodesFor: WaifuNodes owner can upgrade nodes.

● upgradeNodesBatchFor: WaifuNodes owner can upgrade nodes batch vise.

● clearHistoryFor: WaifuNodes owner can clear history address.

● setURI: WaifuNodes owner can set the URI.

● setNodeTierCount: WaifuNodes owner can set node tier count.

● setTotalNodeLimit: WaifuNodes owner can set the total node limit.

● setWalletLimit: WaifuNodes owner can set wallet limit.

● setTransfersEnabled: WaifuNodes owner can set transfers enabled status.

● pause: WaifuNodes owner can trigger a stopped state.

● unpause: WaifuNodes owner can return to normal state.

● _authorizeUpgrade: WaifuNodes owner can set authorize upgrade address.

● mint: WaifuPerks owner can mint tokens.

● mintBatch: WaifuPerks owner can mint tokens batch.

● releasePerkType: WaifuPerks owner can release perk type.

● setURI: WaifuPerks owner can set the URI.

● _authorizeUpgrade: WaifuPerks owner can set authorize upgrade address.

● safeMintNext: EarlyWaifuHolders owner can safe mint next token address.

● safeMintNextBatch: EarlyWaifuHolders owner can safe mint next token batch vise.

● setRevealedURI: EarlyWaifuHolders owner can set revealed URI.

● setUnrevealedURI: EarlyWaifuHolders owner can set unrevealed URI.

● setIsRevealed: EarlyWaifuHolders owner can set IS revealed status.

● setTransfersEnabled: EarlyWaifuHolders owner can set transfers enabled status.

● setAccountTransfersEnabled: EarlyWaifuHolders owner can set account transfers

enabled status.

● setDefaultRoyalty: EarlyWaifuHolders owner can set default royalty address.

● pause: EarlyWaifuHolders owner can trigger a stopped state.

● unpause: EarlyWaifuHolders owner can return to normal state.

● _authorizeUpgrade: EarlyWaifuHolders owner can set authorize upgrade address.

● _authorizeUpgrade: RevenuePaymentSplitter owner can set authorize upgrade

address.

● withdrawFrom: PreLaunchToken owner can withdraw amount from address.

● setMainToken: PreLaunchToken owner can set main token address.

● _authorizeUpgrade: PreLaunchToken owner can set authorize upgrade address.

● mint: WaifuToken owner can mint a token.

● burn: WaifuToken owner can burn a token.

● setWaifuCashier: WaifuToken owner can set the waifu cashier address.

● setLiquidityManager: WaifuToken owner can set the liquidity manager address.

● setDefaultWalletLimit: WaifuToken owner can set default wallet limit.

● setTransferLimitDuration: WaifuToken owner can set transfer limit duration.

● setDefaultTransferLimitPercentage: WaifuToken owner can set default transfer

limit percentage.

● setDefaultTransferTax: WaifuToken owner can set default transfer tax.

● setAccountLimitsDisabled: WaifuToken owner can set account disabled limits.

● setAccountTaxDisabled: WaifuToken owner can set account tax disabled.

● approveForLiquidityManger: WaifuToken owner can approve the liquidity manager

address.

● _authorizeUpgrade: WaifuToken owner can set authorize upgrade address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have observed 1 High Severity issue, 2 Medium

Severity issue, 3 low Severity issue and some Informational issues in the smart contracts.

So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Waifu Protocol

PerkSaleHelper Diagram

PresaleHelper Diagram

LiquidityManager Diagram

WaifuCashier Diagram

WaifuManager Diagram

WaifuNodes Diagram

WaifuPerks Diagram

EarlyWaifuHolders Diagram

RevenuePaymentSplitter Diagram

PreLaunchToken Diagram

WaifuToken Diagram

Slither Results Log

Slither log >> PerkSaleHelper.sol

Slither log >> PresaleHelper.sol

Slither log >> LiquidityManager.sol

Slither log >> WaifuCashier.sol

Slither log >> WaifuManager.sol

Slither log >> WaifuPerks.sol

Slither log >> EarlyWaifuHolders.sol

Slither log >> RevenuePaymentSplitter.sol

Slither log >> PreLaunchToken.sol

Slither log >> WaifuToken.sol

