
Project: Amplify Protocol
Platform: Cronos Blockchain
Language: Solidity
Date: April 23rd, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 23

Our Methodology ………………………………………………………………………………... 24

Disclaimers ………………………………………………………………………………………. 26

Appendix

● Code Flow Diagram ……………………………………………………………………... 27

● Slither Results Log ………………………………………………………………………. 43

● Solidity static analysis ….……………………………………………………………….. 52

● Solhint Linter …………………………………………………………………….……….. 66

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Amplify to perform the Security audit of the Amplify
Protocol smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on April 23rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Amplify Contracts have functions like createVaultToken, addLiquidity, reinvest,

redeem, mint, sync, skim, borrow, createCollateral, canBorrow, deployCollateral, etc.

Audit scope

Name Code Review and Security Analysis Report for
Amplify Protocol Smart Contracts

Platform Cronos / Solidity

File 1 BAllowance.sol

File 1 MD5 Hash 3037CD07486AC11E486706363A61705E

File 2 BDeployer.sol

File 2 MD5 Hash F5E9E9E044066B702061ED2F70F70886

File 3 BInterestRateModel.sol

File 3 MD5 Hash 145CC218BC4156995B3C4340812BEFBA

File 4 Borrowable.sol

File 4 MD5 Hash D1C74897867CFC80CC68C50B7705EEF1

File 5 BSetter.sol

File 5 MD5 Hash C0A8E066647627566E97F1057538FF28

File 6 BStorage.sol

File 6 MD5 Hash 013D8BD79C889528C8C75000DC4FAD36

File 7 CDeployer.sol

File 7 MD5 Hash 1CF3DD65C627C335C3FB431418A9A1F3

File 8 Collateral.sol

File 8 MD5 Hash F76A7E47A6F43B08EACB228F6CA4758D

File 9 CSetter.sol

File 9 MD5 Hash 7A1C408CFD52CB44650026781726962C

File 10 CStorage.sol

File 10 MD5 Hash 930F31DC19A5E1B67C609E6E4626FD94

File 11 EleosERC20.sol

File 11 MD5 Hash 1E12219135BA114154FF3AEE3CE10707

File 12 EleosPriceOracle.sol

File 12 MD5 Hash 1A7CFC71811F512D1F737D8377B4CF1C

File 13 Factory.sol

File 13 MD5 Hash 4830BDCBD9ECC64D1E5649AAE3F10535

File 14 PoolToken.sol

File 14 MD5 Hash 839D027AC3B62D900369467CE554B62F

File 15 Router02.sol

File 15 MD5 Hash 3725CD2EEE7EE6900621D9BFA2F042D5

File 16 VaultToken.sol

File 16 MD5 Hash 5EB119311125FC93EFC8DD6B7BA81CB0

File 17 VaultTokenFactory.sol

File 17 MD5 Hash E54EF0F2523535DC387AEB197B4242B7

Audit Date April 23rd,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BAllowance.sol
● Decimals: 18

● Reserve Factor: 0.1

● Minimum Liquidity: 1000

● KinkUtilization:0.7

● Borrow Index: 1

YES, This is valid.

File 2 BDeployer.sol
● Borrow Fee: 0.1%

YES, This is valid.

File 3 BInterestRateModel.sol
● Kink Multiplier: 5

● Kink Borrow Rate Max: 100% Per Year

● Kink Borrow Rate min: 1% Per Year

YES, This is valid.

File 4 Borrowable.sol
● Borrow Fee: 0.1%

● Decimals: 18

● Kink UR Maximum: 1

● Kink UR Min: 0.5

● KinkUtilization: 0.7

● Minimum Liquidity: 10000

YES, This is valid.

File 5 BSetter.sol
● Reserve Factor Max: 20%

● Kink Ur Min: 50%

● Kink Ur Max: 99%

● Adjust Speed Min: 0.5% Per Day

● Adjust Speed Max: 50% Per Day

YES, This is valid.

File 6 BStorage.sol
● kink Borrow Rate: 10% per year

YES, This is valid.

● Reserve Factor: 10%

● Kink Utilization Rate: 70%

● Adjust Speed: 5% per day

File 7 CDeployer.sol
● The CDeployer contract is used by the Factory to

deploy Collateral(s).

YES, This is valid.

File 8 Collateral.sol
● Liquidation Incentive Min: 100%

● Liquidation Incentive Max: 105%

● Safety Margin Min: 100%

● Safety Margin Max: 250%

YES, This is valid.

File 9 CSetter.sol
● Liquidation Incentive Min: 100%

● Liquidation Incentive Max: 105%

● Safety Margin Min: 100%

● Safety Margin Max: 250%

YES, This is valid.

File 10 CStorage.sol
● Safety Margin Sqrt: 250%

● Liquidation Incentive: 4%

YES, This is valid.

File 11 EleosERC20.sol
● Decimals: 18

YES, This is valid.

File 12 EleosPriceOracle.sol
● Min T: 1200

YES, This is valid.

File 13 Factory.sol
● Factory has functions like: _createLendingPool,

createCollateral, createBorrowable0, etc.

YES, This is valid.

File 14 PoolToken.sol
● Decimals: 18

YES, This is valid.

● Minimum Liquidity: 1000

File 15 Router02.sol
● Router02 has functions like: mint, mintETH,

mintCollateral, Redeem, etc.

YES, This is valid.

File 16 VaultToken.sol
● Name: Eleos Vault Token

● Symbol: vELEOS

● Decimals: 18

● Reinvest Bounty: 0.1

YES, This is valid.

File 17 VaultTokenFactory.sol
● VaultTokenFactory has functions like:

allVaultTokensLength, createVaultToken, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do not contain owner control, which does make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Amplify Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Amplify Protocol.

The Amplify team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Amplify Protocol smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

BAllowance.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 safe112 internal Passed No Issue
3 _setFactory external Passed No Issue
4 _update internal Passed No Issue
5 exchangeRate write Passed No Issue
6 mint external Passed No Issue
7 redeem read Passed No Issue
8 skim external Passed No Issue
9 sync external Passed No Issue

10 _safeTransfer internal Passed No Issue
11 nonReentrant modifier Passed No Issue
12 update modifier Passed No Issue
13 _borrowApprove write Passed No Issue
14 borrowApprove external Passed No Issue
15 _checkBorrowAllowance internal Passed No Issue
16 borrowPermit external Passed No Issue

BDeployer.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 deployBorrowable external Passed No Issue

BInterestRateModel.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 safe112 internal Passed No Issue
3 _setFactory external Passed No Issue
4 _update internal Passed No Issue
5 exchangeRate write Passed No Issue
6 mint external Passed No Issue
7 redeem read Passed No Issue
8 skim external Passed No Issue
9 sync external Passed No Issue

10 _safeTransfer internal Passed No Issue

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 safe112 internal Passed No Issue
3 _setFactory external Passed No Issue
4 _update internal Passed No Issue
5 exchangeRate write Passed No Issue
6 mint external Passed No Issue
7 nonReentrant modifier Passed No Issue
8 update modifier Passed No Issue
9 _calculateBorrowRate internal Passed No Issue

10 accrueInterest write Passed No Issue
11 getBlockTimestamp read Passed No Issue

Borrowable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 safe112 internal Passed No Issue
3 _setFactory external Passed No Issue
4 _update internal Passed No Issue
5 exchangeRate write Passed No Issue
6 mint external Passed No Issue
7 redeem read Passed No Issue
8 skim external Passed No Issue
9 sync external Passed No Issue

10 _safeTransfer internal Passed No Issue
11 nonReentrant modifier Passed No Issue
12 update modifier Passed No Issue
13 _initialize external Passed No Issue
14 _setReserveFactor external Passed No Issue
15 _setKinkUtilizationRate external Passed No Issue
16 _setAdjustSpeed external Passed No Issue
17 _setBorrowTracker external Passed No Issue
18 _checkSetting internal Passed No Issue
19 _checkAdmin internal Passed No Issue
20 _borrowApprove write Passed No Issue
21 borrowApprove external Passed No Issue
22 _checkBorrowAllowance internal Passed No Issue
23 borrowPermit external Passed No Issue
24 _calculateBorrowRate internal Passed No Issue
25 accrueInterest write Passed No Issue
26 getBlockTimestamp read Passed No Issue
27 _update internal Passed No Issue
28 _mintReserves internal Passed No Issue
29 exchangeRate write Passed No Issue

30 sync external Passed No Issue
31 borrowBalance read Passed No Issue
32 _trackBorrow internal Passed No Issue
33 _updateBorrow write Passed No Issue
34 borrow external Passed No Issue
35 liquidate external Passed No Issue
36 trackBorrow external Passed No Issue
37 accrue modifier Passed No Issue

BSetter.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 safe112 internal Passed No Issue
3 _setFactory external Passed No Issue
4 _update internal Passed No Issue
5 exchangeRate write Passed No Issue
6 mint external Passed No Issue
7 redeem read Passed No Issue
8 skim external Passed No Issue
9 sync external Passed No Issue

10 _safeTransfer internal Passed No Issue
11 nonReentrant modifier Passed No Issue
12 update modifier Passed No Issue
13 _initialize external Passed No Issue
14 _setReserveFactor external Passed No Issue
15 _setKinkUtilizationRate external Passed No Issue
16 _setAdjustSpeed external Passed No Issue
17 _setBorrowTracker external Passed No Issue
18 _checkSetting internal Passed No Issue
19 _checkAdmin internal Passed No Issue

BStorage.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 safe112 internal Passed No Issue

CDeployer.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Warning: Visibility
for constructor is

ignored

Refer Audit
Findings

2 deployCollateral external Passed No Issue

Collateral.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getPrices write Passed No Issue
3 _calculateLiquidityAndSh

ortfall
read Passed No Issue

4 _calculateLiquidity internal Passed No Issue
5 _transfer internal Passed No Issue
6 tokensUnlocked write Passed No Issue
7 accountLiquidityAmounts write Passed No Issue
8 accountLiquidity write Passed No Issue
9 exchangeRate read Passed No Issue

10 _computePrice read Passed No Issue
11 accountLiquidityStale read Passed No Issue
12 canBorrow write Passed No Issue
13 seize external Passed No Issue
14 flashRedeem external Passed No Issue

CSetter.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _initialize external Passed No Issue
3 _setSafetyMarginSqrt external Passed No Issue
4 _setLiquidationIncentive external Passed No Issue
5 _checkSetting internal Passed No Issue
6 _checkAdmin internal Passed No Issue
7 _setFactory external Passed No Issue
8 _update internal Passed No Issue
9 exchangeRate write Passed No Issue

10 mint external Passed No Issue
11 redeem external Passed No Issue
12 skim external Passed No Issue

13 sync external Passed No Issue
14 _safeTransfer internal Passed No Issue
15 nonReentrant modifier Passed No Issue
16 update modifier Passed No Issue

EleosERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _setName internal Passed No Issue
3 _mint internal Passed No Issue
4 _burn internal Passed No Issue
5 _approve write Passed No Issue
6 _transfer internal Passed No Issue
7 approve external Passed No Issue
8 transfer external Passed No Issue
9 transferFrom external Passed No Issue

10 _checkSignature internal Passed No Issue
11 permit external Passed No Issue

EleosPriceOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 toUint224 internal Passed No Issue
3 getPriceCumulativeCurre

nt
internal Passed No Issue

4 initialize external Passed No Issue
5 getResultStale external Passed No Issue
6 getResult external Passed No Issue
7 getBlockTimestamp read Passed No Issue

Factory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 allLendingPoolsLength external Passed No Issue
3 _getTokens read Passed No Issue
4 _createLendingPool write Passed No Issue
5 createCollateral external Passed No Issue
6 createBorrowable0 external Passed No Issue

7 createBorrowable1 external Passed No Issue
8 initializeLendingPool external Passed No Issue
9 _setPendingAdmin external Passed No Issue

10 _acceptAdmin external Passed No Issue
11 _setReservesPendingAd

min
external Passed No Issue

12 _acceptReservesAdmin external Passed No Issue
13 _setReservesManager external Passed No Issue

PoolToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _setName internal Passed No Issue
3 _mint internal Passed No Issue
4 _burn internal Passed No Issue
5 _approve write Passed No Issue
6 _transfer write Passed No Issue
7 approve external Passed No Issue
8 transfer external Passed No Issue
9 transferFrom external Passed No Issue

10 _checkSignature internal Passed No Issue
11 permit external Passed No Issue
12 _setFactory external Anyone can call

setFactory() external
function

Refer Audit
Findings

13 _update internal Passed No Issue
14 exchangeRate write Passed No Issue
15 mint external Passed No Issue
16 redeem external Passed No Issue
17 skim external Passed No Issue
18 sync external Passed No Issue
19 _safeTransfer internal Passed No Issue
20 nonReentrant modifier Passed No Issue
21 update modifier Passed No Issue

Router02.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Warning: Visibility
for constructor is

ignored

Refer Audit
Findings

2 ensure modifier Passed No Issue
3 checkETH modifier Passed No Issue

4 receive external Passed No Issue
5 _mint internal Passed No Issue
6 mint external Passed No Issue
7 mintETH external Passed No Issue
8 mintCollateral external Passed No Issue
9 redeem write Passed No Issue

10 redeemETH write Passed No Issue
11 borrow write Passed No Issue
12 borrowETH write Passed No Issue
13 _repayAmount internal Passed No Issue
14 repay external Passed No Issue
15 repayETH external Passed No Issue
16 liquidate external Passed No Issue
17 liquidateETH external Passed No Issue
18 _leverage internal Passed No Issue
19 leverage external Passed No Issue
20 _addLiquidityAndMint internal Passed No Issue
21 deleverage external Passed No Issue
22 _removeLiqAndRepay internal Passed No Issue
23 _repayAndRefund internal Passed No Issue
24 eleosBorrow external Passed No Issue
25 eleosRedeem external Passed No Issue
26 _permit internal Passed No Issue
27 _borrowPermit internal Passed No Issue
28 _optimalLiquidity read Passed No Issue
29 _quote internal Passed No Issue
30 isVaultToken read Passed No Issue
31 getUniswapV2Pair read Passed No Issue
32 getBorrowable read Passed No Issue
33 getCollateral read Passed No Issue
34 getLendingPool read Passed No Issue

VaultToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _setFactory external Passed No Issue
3 _update internal Passed No Issue
4 exchangeRate write Passed No Issue
5 mint external Passed No Issue
6 redeem external Passed No Issue
7 skim external Passed No Issue
8 sync external Passed No Issue
9 _safeTransfer internal Passed No Issue

10 nonReentrant modifier Passed No Issue
11 update modifier Passed No Issue

12 _initialize external Passed No Issue
13 _update internal Passed No Issue
14 mint external Passed No Issue
15 redeem external Passed No Issue
16 _optimalDepositA internal Passed No Issue
17 approveRouter internal Passed No Issue
18 swapExactTokensForTok

ens
internal Passed No Issue

19 addLiquidity internal Passed No Issue
20 reinvest external Passed No Issue
21 getReserves external Passed No Issue
22 price0CumulativeLast external Passed No Issue
23 price1CumulativeLast external Passed No Issue
24 safe112 internal Passed No Issue

VaultTokenFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Warning: Visibility
for constructor is

ignored

Refer Audit
Findings

2 allVaultTokensLength external Passed No Issue
3 createVaultToken external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Anyone can call setFactory() external function: PoolToken.sol

There is an external function _setFactory(), Anyone can call that function and update the

factory address owner itself.

Resolution: Deployer has to confirm before deploying the contract to production.

Very Low / Informational / Best practices:

(1) Warning: Visibility for constructor is ignored:

CDeployer.sol

Router02.sol

VaultTokenFactory.sol

Resolution: Warning: Visibility for constructor is ignored. If you want the contract to be

non-deployable, making it "abstract" is sufficient.

(2) SafeMath Library: EleosERC20.sol, PoolToken.sol
SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will not be required to use, solidity automatically handles overflow /

underflow.

Resolution: We suggest removing the SafeMath library and use normal math operators, It

will improve code size, and less gas consumption.

(3) Warning: Unused local variable: EleosPriceOracle.sol

Warning: Unused local variable.

Pair storage pairStorage = getPair[uniswapV2Pair];

Resolution: We suggest removing unused variables from code.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, but

they were resolved in the revised smart contract code. So, the smart contracts are
ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Amplify Protocol

BAllowance Diagram

BDeployer Diagram

BInterestRateModel Diagram

Borrowable Diagram

BSetter Diagram

BStorage Diagram

CStorage Diagram

CDeployer Diagram

Collateral Diagram

CSetter Diagram

EleosERC20 Diagram

EleosPriceOracle Diagram

Factory Diagram

PoolToken Diagram

Router02 Diagram

VaultToken Diagram

VaultTokenFactory Diagram

Slither Results Log

Slither log >> BAllowance.sol

Slither log >> BDeployer.sol

Slither log >> BInterestRateModel.sol

Slither log >> Borrowable.sol

Slither log >> BSetter.sol

Slither log >> BStorage.sol

Slither log >> CDeployer.sol

Slither log >> Collateral.sol

Slither log >> CSetter.sol

Slither log >> CStorage.sol

Slither log >> EleosERC20.sol

Slither log >> EleosPriceOracle.sol

Slither log >> Factory.sol

Slither log >> PoolToken.sol

Slither log >> Router02.sol

Slither log >> VaultToken.sol

Slither log >> VaultTokenFactory.sol

Solidity Static Analysis

BAllowance.sol

BDeployer.sol

BInterestRateModel.sol

Borrowable.sol

BSetter.sol

BStorage.sol

CDeployer.sol

Collateral.sol

CSetter.sol

CStorage.sol

EleosERC20.sol

EleosPriceOracle.sol

Factory.sol

PoolToken.sol

Router02.sol

VaultToken.sol

VaultTokenFactory.sol

Solhint Linter

BAllowance.sol

BAllowance.sol:3:1: Error: Compiler version =0.8.4 does not satisfy
the r semver requirement
BAllowance.sol:19:45: Error: Avoid to make time-based decisions in
your business logic
BAllowance.sol:290:5: Error: Function name must be in mixedCase
BAllowance.sol:315:20: Error: Variable name must be in mixedCase
BAllowance.sol:325:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
BAllowance.sol:325:19: Error: Code contains empty blocks
BAllowance.sol:331:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
BAllowance.sol:416:29: Error: Avoid to make time-based decisions in
your business logic
BAllowance.sol:473:31: Error: Constant name must be in capitalized
SNAKE_CASE
BAllowance.sol:550:58: Error: Code contains empty blocks
BAllowance.sol:559:45: Error: Avoid using low level calls.

BDeployer.sol

BDeployer.sol:2602:12: Error: Parse error: missing ';' at '{'
BDeployer.sol:2658:12: Error: Parse error: missing ';' at '{'

BInterestRateModel.sol

BInterestRateModel.sol:611:12: Error: Parse error: missing ';' at '{'
BInterestRateModel.sol:667:12: Error: Parse error: missing ';' at '{'

Borrowable.sol

Borrowable.sol:1072:12: Error: Parse error: missing ';' at '{'
Borrowable.sol:1128:12: Error: Parse error: missing ';' at '{'

BSetter.sol

BSetter.sol:2:1: Error: Compiler version =0.8.4 does not satisfy the
r semver requirement
BSetter.sol:12:5: Error: Function name must be in mixedCase
BSetter.sol:96:45: Error: Avoid to make time-based decisions in your
business logic
BSetter.sol:367:5: Error: Function name must be in mixedCase
BSetter.sol:402:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
BSetter.sol:402:19: Error: Code contains empty blocks
BSetter.sol:408:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
BSetter.sol:493:29: Error: Avoid to make time-based decisions in your
business logic
BSetter.sol:550:31: Error: Constant name must be in capitalized
SNAKE_CASE
BSetter.sol:627:58: Error: Code contains empty blocks
BSetter.sol:636:45: Error: Avoid using low level calls.

BStorage.sol

BStorage.sol:3:1: Error: Compiler version =0.8.4 does not satisfy the
r semver requirement
BStorage.sol:19:45: Error: Avoid to make time-based decisions in your
business logic

CDeployer.sol

CDeployer.sol:2:1: Error: Compiler version =0.8.4 does not satisfy
the r semver requirement
CDeployer.sol:25:5: Error: Explicitly mark visibility of state
CDeployer.sol:72:5: Error: Function name must be in mixedCase
CDeployer.sol:660:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
CDeployer.sol:660:19: Error: Code contains empty blocks
CDeployer.sol:666:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
CDeployer.sol:751:29: Error: Avoid to make time-based decisions in
your business logic
CDeployer.sol:808:31: Error: Constant name must be in capitalized
SNAKE_CASE
CDeployer.sol:885:58: Error: Code contains empty blocks
CDeployer.sol:894:45: Error: Avoid using low level calls.
CDeployer.sol:947:5: Error: Function name must be in mixedCase
CDeployer.sol:1085:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
CDeployer.sol:1085:19: Error: Code contains empty blocks
CDeployer.sol:1361:3: Error: Avoid to use inline assembly. It is
acceptable only in rare cases

Collateral.sol

Collateral.sol:650:20: Error: Variable name must be in mixedCase
Collateral.sol:660:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
Collateral.sol:660:19: Error: Code contains empty blocks
Collateral.sol:666:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Collateral.sol:751:29: Error: Avoid to make time-based decisions in
your business logic
Collateral.sol:808:31: Error: Constant name must be in capitalized
SNAKE_CASE
Collateral.sol:885:58: Error: Code contains empty blocks
Collateral.sol:894:45: Error: Avoid using low level calls.
Collateral.sol:947:5: Error: Function name must be in mixedCase
Collateral.sol:1085:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
Collateral.sol:1085:19: Error: Code contains empty blocks

CSetter.sol

CSetter.sol:2:1: Error: Compiler version =0.8.4 does not satisfy the
r semver requirement
CSetter.sol:11:5: Error: Function name must be in mixedCase
CSetter.sol:365:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
CSetter.sol:365:19: Error: Code contains empty blocks
CSetter.sol:371:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
CSetter.sol:456:29: Error: Avoid to make time-based decisions in your
business logic
CSetter.sol:513:31: Error: Constant name must be in capitalized
SNAKE_CASE
CSetter.sol:590:58: Error: Code contains empty blocks
CSetter.sol:599:45: Error: Avoid using low level calls.

CStorage.sol

CStorage.sol:2:1: Error: Compiler version =0.8.4 does not satisfy the
r semver requirement

EleosERC20.sol

EleosERC20.sol:3:1: Error: Compiler version =0.8.4 does not satisfy

the r semver requirement
EleosERC20.sol:184:20: Error: Variable name must be in mixedCase
EleosERC20.sol:194:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
EleosERC20.sol:194:19: Error: Code contains empty blocks
EleosERC20.sol:200:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
EleosERC20.sol:285:29: Error: Avoid to make time-based decisions in
your business logic

EleosPriceOracle.sol

EleosPriceOracle.sol:2:1: Error: Compiler version =0.8.4 does not
satisfy the r semver requirement
EleosPriceOracle.sol:5:5: Error: Explicitly mark visibility of state
EleosPriceOracle.sol:51:5: Error: Function name must be in mixedCase
EleosPriceOracle.sol:174:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
EleosPriceOracle.sol:174:19: Error: Code contains empty blocks
EleosPriceOracle.sol:229:33: Error: Variable name must be in
mixedCase
EleosPriceOracle.sol:233:9: Error: Variable "pairStorage" is unused
EleosPriceOracle.sol:260:33: Error: Variable name must be in
mixedCase
EleosPriceOracle.sol:313:23: Error: Avoid to make time-based
decisions in your business logic

Factory.sol

Factory.sol:3:1: Error: Compiler version =0.8.4 does not satisfy the
r semver requirement
Factory.sol:38:5: Error: Function name must be in mixedCase
Factory.sol:432:33: Error: Variable name must be in mixedCase
Factory.sol:520:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)

PoolToken.sol

PoolToken.sol:3:1: Error: Compiler version =0.8.4 does not satisfy
the r semver requirement
PoolToken.sol:258:5: Error: Function name must be in mixedCase
PoolToken.sol:283:20: Error: Variable name must be in mixedCase
PoolToken.sol:293:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PoolToken.sol:293:19: Error: Code contains empty blocks
PoolToken.sol:299:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PoolToken.sol:384:29: Error: Avoid to make time-based decisions in
your business logic

PoolToken.sol:442:31: Error: Constant name must be in capitalized
SNAKE_CASE
PoolToken.sol:519:58: Error: Code contains empty blocks
PoolToken.sol:528:45: Error: Avoid using low level calls.

Router02.sol

Router02.sol:3:1: Error: Compiler version =0.8.4 does not satisfy the
r semver requirement
Router02.sol:10:5: Error: Function name must be in mixedCase
Router02.sol:173:45: Error: Avoid using low level calls.
Router02.sol:433:5: Error: Function name must be in mixedCase
Router02.sol:543:62: Error: Code contains empty blocks
Router02.sol:584:5: Error: Function name must be in mixedCase
Router02.sol:1133:39: Error: Variable name must be in mixedCase
Router02.sol:1136:29: Error: Avoid to make time-based decisions in
your business logic
Router02.sol:1152:9: Error: Variable name must be in mixedCase

VaultToken.sol

VaultToken.sol:672:5: Error: Function name must be in mixedCase
VaultToken.sol:730:45: Error: Avoid using low level calls.
VaultToken.sol:779:5: Error: Function name must be in mixedCase
VaultToken.sol:1066:26: Error: Constant name must be in capitalized
SNAKE_CASE
VaultToken.sol:1071:20: Error: Variable name must be in mixedCase
VaultToken.sol:1197:73: Error: Avoid to make time-based decisions in
your business logic
VaultToken.sol:1221:31: Error: Avoid to use tx.origin

VaultTokenFactory.sol

VaultTokenFactory.sol:2:1: Error: Compiler version =0.8.4 does not
satisfy the r semver requirement
VaultTokenFactory.sol:276:5: Error: Function name must be in
mixedCase
VaultTokenFactory.sol:301:20: Error: Variable name must be in
mixedCase
VaultTokenFactory.sol:311:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
VaultTokenFactory.sol:311:19: Error: Code contains empty blocks
VaultTokenFactory.sol:317:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases
VaultTokenFactory.sol:402:29: Error: Avoid to make time-based
decisions in your business logic
VaultTokenFactory.sol:459:31: Error: Constant name must be in
capitalized SNAKE_CASE
VaultTokenFactory.sol:536:58: Error: Code contains empty blocks
VaultTokenFactory.sol:545:45: Error: Avoid using low level calls.
VaultTokenFactory.sol:590:62: Error: Code contains empty blocks

VaultTokenFactory.sol:631:5: Error: Function name must be in mixedCas
VaultTokenFactory.sol:703:5: Error: Function name must be in
mixedCase
VaultTokenFactory.sol:751:45: Error: Avoid using low level calls.
VaultTokenFactory.sol:800:5: Error: Function name must be in
mixedCase
VaultTokenFactory.sol:1019:5: Error: Function name must be in
mixedCase
VaultTokenFactory.sol:1087:26: Error: Constant name must be in
capitalized SNAKE_CASE
VaultTokenFactory.sol:1092:20: Error: Variable name must be in
mixedCase
VaultTokenFactory.sol:1218:73: Error: Avoid to make time-based
decisions in your business logic
VaultTokenFactory.sol:1237:13: Error: Avoid to make time-based
decisions in your business logic
VaultTokenFactory.sol:1242:31: Error: Avoid to use tx.origin
VaultTokenFactory.sol:1377:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

