
Project: ArcherSwap Protocol
Website: archerswap.finance
Platform: Core Chain
Language: Solidity
Date: February 20th, 2023

https://archerswap.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….10

Technical Quick Stats …..……………………………………………………………………… 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Severity Definitions ……………………………………………………………………………... 21

Audit Findings …………………………………………………………………………………… 22

Conclusion ………………………………………………………………………………………. 26

Our Methodology ………………………………………………………………………………... 27

Disclaimers ………………………………………………………………………………………. 29

Appendix

● Code Flow Diagram ……………………………………………………………………... 30

● Slither Results Log ………………………………………………………………………. 42

● Solidity Static Analysis…………………………………………………………………... 46

● Solhint Linter…….. ………………………………………………………………………. 56

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the ArcherSwap team to perform the Security audit of
the ArcherSwap Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on February 20th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● ArcherSwap is a crypto world for users to trade, earn, and game. It's the best choice

for projects on Core Chain with features including AMM, NFT, and GameFi.

● The ArcherSwap Contracts handle multiple contracts, and all contracts have

different functions.

○ BowStakingToken: This contract handles swapping to and from xBOW,

ArcherSwap's staking token. And the place where bow's live to create xbow.

○ SyrupBar: It is used for BOW staking.

○ LakeOfBow: LakeOfBow is MasterChef's left hand and kinda a wizard. He

can brew Bow from pretty much anything! This contract handles "serving up"

rewards for xBow holders by trading tokens collected from fees for Bow.

○ MasterChef: MasterChef is the master of BOW.

● The ArcherSwap Contracts have functions like adding a new pair and LPs,

depositNFT, withdrawNFT, deposit, withdraw, reward, mint, swap, burn, skim, etc.

Audit scope

Name Code Review and Security Analysis Report for
ArcherSwap Protocol Smart Contracts

Platform Core Chain / Solidity

File 1 MasterChef.sol

File 1 MD5 Hash 4E3505156A83EC77F419899CCBB51C9D

File 2 WETH9.sol

File 2 MD5 Hash 2FBAB491800E2F02C6D6B1970E6DE284

File 3 Oracle.sol

File 3 MD5 Hash A72B18A4181306207A24212E4DB13244

File 4 SwapMining.sol

File 4 MD5 Hash 8DC6A01318201E3DEE26E16A55E27844

File 5 SyrupBar.sol

File 5 MD5 Hash C7CBC8D1FF1B97D83A53F44280CC8622

File 6 ArcherswapFactory.sol

File 6 MD5 Hash A35017EA5C8EB9DAB1D47579FF10CDF8

File 7 BowToken.sol

File 7 MD5 Hash CF6CA2CF455597E89FAC72FFB3B4C63C

File 8 Router.sol

File 8 MD5 Hash 53940C5EBBAC717837DB747DAE355209

File 9 BowStakingToken.sol

File 9 MD5 Hash 0F1172ACC33458662B577156776C796D

File 10 Multicall.sol

File 10 MD5 Hash B22CA4A854478127BCB7BF23881EB4E6

File 11 LakeOfBow.sol

File 11 MD5 Hash 86294C6B2E61505AF76B8DDA8C92E7AA

https://scan.coredao.org/address/0xdbf74f167a4e0b97a072c7ed51df6c6e8ec0353b#code
https://scan.coredao.org/address/0x40375c92d9faf44d2f9db9bd9ba41a3317a2404f#code
https://scan.coredao.org/address/0x6f9c9edc5d53f4be7ea286830824775579a232c9#code
https://scan.coredao.org/address/0x7bf76646fbe70b13b72b0b46284f747eec5d0181#code
https://scan.coredao.org/address/0x8231f97ff38b4b14c27cbbb19c0d16784a59b401#code
https://scan.coredao.org/address/0xe0b8838e8d73ff1ca193e8cc2bc0ebf7cf86f620#code
https://scan.coredao.org/address/0x1a639e150d2210a4be4a5f0857a9151b241e7ae4#code
https://scan.coredao.org/address/0x74f56a7560ef0c72cf6d677e3f5f51c2d579ff15#code
https://scan.coredao.org/address/0x236994dabb4e7ffb85bf76889cec8ff9ca543ba4#code
https://scan.coredao.org/address/0x40fcd694c9ebbc46a2230ad498fbde11ae0111a8#code
https://scan.coredao.org/address/0x698b9c0af1f6ae920c753ff8886051a5bc78c722#code

File 12 NFTController.sol

File 12 MD5 Hash 6AAE550160948A4C6E4028309D9CC9DA

File 13 Pair.sol

File 13 MD5 Hash FC98D007A39E81DB71A49D0BEFDB725A

Audit Date February 20th,2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 MasterChef.sol
● NFT Boost Rate: 1%.

● MasterChef is the master of BOW.

● Maximum Cake per Sec: 10 Quintillion.

Ownership Control:
● Owner can add a new lp to the pool.

● Owner can update the given pool's BOW allocation

point.

● Owner can update the cake token reward per second,

with a cap of max cake per second.

● Owner can set the Nft boost rate range.

● Owner can update the trade mining contract address.

● Owner can update the reserve address by the previous

reserve address.

YES, This is valid.

File 2 Oracle.sol
● Oracle can update token addresses.

YES, This is valid.

File 3 SwapMining.sol
● Owner can add a new pair.

● Owner can update the allocPoint of the pool.

● Owner can set a halving period value.

● Owner can swap Mining.

YES, This is valid.

File 4 SyrupBar.sol
● Name: ArcherSwapBar Token

● Symbol: SYRUP

● SyrupBar used for BOW staking.

YES, This is valid.

Ownership Control:
● Owner can create a `_amount` token to `_to` by the

MasterChef owner.

● Owner can burn an amount from the address.

File 5 ArcherswapFactory.sol
● Owner can set a fee address.

YES, This is valid.

File 6 BowStakingToken.sol
● Name: Bow Staking Token

● Symbol: xBOW

● Decimals: 18

Other Specifications:
● xBOW is the place where bow's live to create xbows.

● xBOW contract handles swapping to and from xBOW,

ArcherSwap's staking token.

YES, This is valid.

File 7 BowToken.sol
● Name: ArcherSwap Token

● Symbol: BOW

● Decimals: 18

YES, This is valid.

File 8 LakeOfBow.sol
● LakeOfBow is MasterChef's left hand and kinda a

wizard. He can brew Bow from pretty much anything!

● This contract handles "serving up" rewards for xBow

holders by trading tokens collected from fees for Bow.

Ownership Control:
● Owner can set anyAuth to true and allows anyone to call

functions protected by onlyAuth.

● Owner can set the bridge address.

YES, This is valid.

File 9 Multicall.sol
● Multicall contract has aggregate results from multiple

read-only function calls.

YES, This is valid.

File 10 ArcherswapRouter.sol
● Owner can set a swap mining address.

YES, This is valid.

File 11 WETH9.sol
● Decimals: 18

● Weth9 has withdrawal amount, deposit amount.

YES, This is valid.

File 12 NFTController.sol
● Owner can set a whitelist address.

● Owner can set the default Boost Rate 1%.

YES, This is valid.

File 13 ArcherswapPair.sol
● Owner can be called once by the factory at time of

deployment.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 13 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the ArcherSwap Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the ArcherSwap Protocol.

The ArcherSwap Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an ArcherSwap Protocol smart contract code in the form of

https://scan.coredao.org weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://archerswap.finance which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://scan.coredao.org/
https://archerswap.finance

AS-IS overview

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 getBoost read Passed No Issue
7 getSlots read Passed No Issue
8 getTokenIds read Passed No Issue
9 updateMultiplier write access only Owner No Issue

10 poolLength external Passed No Issue
11 add write access only Owner No Issue
12 set write access only Owner No Issue
13 depositNFT write Passed No Issue
14 withdrawNFT write Passed No Issue
15 getMultiplier read Passed No Issue
16 pendingCake external Passed No Issue
17 massUpdatePools write Passed No Issue
18 updatePool write Passed No Issue
19 deposit write Passed No Issue
20 withdraw write Passed No Issue
21 emergencyWithdraw write Passed No Issue
22 safeCakeTransfer internal Passed No Issue
23 setCakePerSecond external access only Owner No Issue
24 setNftController write access only Owner No Issue
25 setNftBoostRate write access only Owner No Issue
26 setDevaddr write Passed No Issue
27 setReserveaddr write Passed No Issue
28 setMiningaddr external access only Owner No Issue

NFTController.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write Passed No Issue
3 owner read Passed No Issue
4 onlyOwner modifier Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 getBoostRate read Passed No Issue

8 setWhitelist external access only Owner No Issue
9 setDefaultBoostRate external access only Owner No Issue

10 setBoostRate external access only Owner No Issue
11 mint write access only Owner No Issue

Pair.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 lock modifier Passed No Issue
3 getReserves read Passed No Issue
4 _safeTransfer write Passed No Issue
5 initialize external Passed No Issue
6 _update write Passed No Issue
7 _mintFee write Passed No Issue
8 mint external Passed No Issue
9 burn external Passed No Issue

10 swap external Passed No Issue
11 skim external Passed No Issue
12 sync external Passed No Issue

SwapMining.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 poolLength read Passed No Issue
7 addPair write Critical operation

lacks event log
Refer Audit

Findings
8 setPair write Critical operation

lacks event log
Refer Audit

Findings
9 setArcherswapPerSecond write access only Owner No Issue

10 addWhitelist write access only Owner No Issue
11 delWhitelist write access only Owner No Issue
12 getWhitelistLength read Passed No Issue
13 isWhitelist read Passed No Issue
14 getWhitelist read Passed No Issue
15 setHalvingPeriod write access only Owner No Issue
16 setRouter write access only Owner No Issue
17 setOracle write access only Owner No Issue
18 phase read Passed No Issue

19 phase read Passed No Issue
20 reward read Passed No Issue
21 reward read Passed No Issue
22 getBowReward read Passed No Issue
23 massMintPools write Passed No Issue
24 mint write Critical operation

lacks event log
Refer Audit

Findings
25 onlyRouter modifier Passed No Issue
26 swap write access only Router No Issue
27 getQuantity read Passed No Issue
28 takerWithdraw write Critical operation

lacks event log
Refer Audit

Findings
29 getUserReward read Passed No Issue
30 getTotalUserReward read Passed No Issue
31 getPoolInfo read Passed No Issue
32 ownerWithdraw write Critical operation

lacks event log
Refer Audit

Findings
33 addBlacklist external access only Owner No Issue
34 removeBlacklist external access only Owner No Issue
35 safeBowTransfer internal Passed No Issue

SyrupBar.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance write Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mint write access only Owner No Issue
21 burn write access only Owner No Issue
22 safeCakeTransfer write access only Owner No Issue

23 delegates external Passed No Issue
24 delegate external Passed No Issue
25 getCurrentVotes external Passed No Issue
26 delegateBySig external Passed No Issue
27 getPriorVotes external Passed No Issue
28 _delegate internal Passed No Issue
29 _moveDelegates internal Passed No Issue
30 _writeCheckpoint internal Passed No Issue
31 safe32 internal Passed No Issue
32 getChainId internal Passed No Issue

WETH9.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 WETH9 write Passed No Issue
3 deposit write Passed No Issue
4 withdraw write Passed No Issue
5 totalSupply read Passed No Issue
6 approve write Passed No Issue
7 transfer write Passed No Issue
8 transferFrom write Passed No Issue

Oracle.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 update external Passed No Issue
3 computeAmountOut write Passed No Issue
4 consult external Passed No Issue

ArcherswapFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue
3 expectPairFor read Passed No Issue
4 createPair external Passed No Issue
5 setFeeTo external Passed No Issue
6 setFeeToSetter external Passed No Issue

ArcherswapRouter.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 setSwapMining write ow No Issue
4 receive external Passed No Issue
5 _addLiquidity internal Passed No Issue
6 addLiquidity external Passed No Issue
7 addLiquidityETH external Passed No Issue
8 removeLiquidity write Passed No Issue
9 removeLiquidityETH write Passed No Issue

10 removeLiquidityWithPermit external Passed No Issue
11 removeLiquidityETHWithPermit external Passed No Issue
12 removeLiquidityETHSupportingF

eeOnTransferTokens
write Passed No Issue

13 removeLiquidityETHWithPermitS
upportingFeeOnTransferTokens

external Passed No Issue

14 _swap internal Passed No Issue
15 swapExactTokensForTokens external Passed No Issue
16 swapTokensForExactTokens external Passed No Issue
17 swapExactETHForTokens external Passed No Issue
18 swapTokensForExactETH external Passed No Issue
19 swapExactTokensForETH external Passed No Issue
20 swapETHForExactTokens external Passed No Issue
21 _swapSupportingFeeOnTransfer

Tokens
internal Passed No Issue

22 swapExactTokensForTokensSup
portingFeeOnTransferTokens

external Passed No Issue

23 swapExactETHForTokensSuppo
rtingFeeOnTransferTokens

external Passed No Issue

24 swapExactTokensForETHSuppo
rtingFeeOnTransferTokens

external Passed No Issue

25 quote write Passed No Issue
26 getAmountOut write Passed No Issue
27 getAmountIn write Passed No Issue
28 getAmountsOut read Passed No Issue
29 getAmountsIn read Passed No Issue

BowToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mintFor write access only Owner No Issue
3 mint write access only Owner No Issue

4 delegates external Passed No Issue
5 delegate external Passed No Issue
6 delegateBySig external Passed No Issue
7 getCurrentVotes external Passed No Issue
8 getPriorVotes external Passed No Issue
9 _delegate internal Passed No Issue

10 _moveDelegates internal Passed No Issue
11 _writeCheckpoint internal Passed No Issue
12 safe32 internal Passed No Issue
13 getChainId internal Passed No Issue

BowStakingToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance write Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 stakedTime read Passed No Issue
21 canWithdraw read Passed No Issue
22 setDelayToWithdraw external Passed No Issue
23 enter write Critical operation

lacks event log
Refer Audit

Findings
24 leave write Critical operation

lacks event log
Refer Audit

Findings
25 BOWBalance external Passed No Issue
26 xBOWForBOW external Passed No Issue
27 BOWForxBOW external Passed No Issue
28 burn write Passed No Issue
29 mint write Passed No Issue
30 transferFrom write Passed No Issue

31 transfer write Passed No Issue
32 _initDelegates internal Passed No Issue
33 delegates external Passed No Issue
34 delegate external Passed No Issue
35 delegateBySig external Passed No Issue
36 getCurrentVotes external Passed No Issue
37 getPriorVotes external Passed No Issue
38 _delegate internal Passed No Issue
39 _moveDelegates internal Passed No Issue
40 _writeCheckpoint internal Passed No Issue
41 safe32 internal Passed No Issue
42 getChainId internal Passed No Issue
43 setAdmin write Passed No Issue

LakeOfBow.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 onlyAuth modifier Passed No Issue
7 addAuth external access only Owner No Issue
8 revokeAuth external access only Owner No Issue
9 setAnyAuth external access only Owner No Issue

10 setBridge external access only Owner No Issue
11 setDevCut external access only Owner No Issue
12 setDevAddr external access only Owner No Issue
13 bridgeFor read Passed No Issue
14 onlyEOA modifier Passed No Issue
15 convert external access only Auth No Issue
16 convertMultiple external access only Auth No Issue
17 _convert internal Passed No Issue
18 _convertStep internal Passed No Issue
19 _swap internal Passed No Issue
20 _toBOW internal Passed No Issue
21 getAmountOut internal Passed No Issue

Multicall.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 aggregate write Passed No Issue

3 getEthBalance read Passed No Issue
4 getBlockHash read Passed No Issue
5 getLastBlockHash read Passed No Issue
6 getCurrentBlockTimestamp read Passed No Issue
7 getCurrentBlockDifficulty read Passed No Issue
8 getCurrentBlockGasLimit read Passed No Issue
9 getCurrentBlockCoinbase read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for:

MasterChef.sol
● add

● set

● updatePool

BowStakingToken.sol
● enter.

● leave

SwapMining.sol
● addPair

● setPair

● mint

● ownerWithdraw

● takerWithdraw

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Use the latest solidity version: - BowToken.sol, MockToken.sol, Syrupbar.sol,
BowStakingToken.sol, WETH9.sol
Using the latest solidity will prevent any compiler-level bugs.

.

Resolution: We suggest using the latest solidity version.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

MasterChef.sol
● updateMultiplier: Owner can update multiplier number value.

● add: Owner can add a new lp to the pool.

● set: Owner can update the given pool's BOW allocation point.

● setCakePerSecond: Owner can update cake token reward per second, with a cap

of max cake per second.

● setNftController: Owner can set Nft controller address.

● setNftBoostRate: Owner can set Nft boost rate range.

● setMiningaddr: Owner can update trade mining contract address.

● setDevaddr: Owner can update dev address by the previous dev address.

● setReserveaddr: Owner can update reserve address by the previous reserve

address.

NFTController.sol
● setWhitelist: Owner can set whitelist address.

● setDefaultBoostRate: Owner can set default Boost Rate 1%.

● setBoostRate: Owner can set default Boost Rate 1%.

SyrupBar.sol
● mint: Owner can create `_amount` token to `_to` by MasterChef owner.

● burn: Owner can burn an amount from the address.

● safeCakeTransfer: Owner can save cake transfer function, just in case if rounding

error causes pool to not have enough Bows.

SwapMining.sol
● addPair: Owner can add new pair.

● setPair: Owner can update the allocPoint of the pool.

● setArcherswapPerSecond: Owner can set the number of bow produced by each

second.

● addWhitelist: Owner can add new wallet address in whitelist.

● delWhitelist: Owner can remove wallet address from the whitelist.

● setHalvingPeriod: Owner can set halving period value.

● setRouter: Owner can set new router address.

● setOracle: Owner can set new oracle address.

● ownerWithdraw: Owner can withdraw amount from wallet address.

● addBlacklist: Owner can add wallet address in blacklist.

● removeBlacklist: Owner can remove wallet address from the blacklist.

● swap: Owner can swap Mining.

BowToken.sol
● mintFor: Owner can create `_amount` token to `_to` by masterchef owner.

● mint: Owner can mint value from owner wallet.

LakeOfBow.sol
● addAuth: Owner can add a new auth wallet address.

● revokeAuth: Owner can remove auth wallet address.

● setAnyAuth: Owner can set anyAuth to true and allows anyone to call functions

protected by onlyAuth.

● setBridge: Owner can set bridge address.

● setDevCut: Owner can set dev cut amount.

● setDevAddr: Owner can set dev address.

● convert: Auth can convert token value.

● convertMultiple: Auth can convert multiple token values.

ArcherswapFactory.sol
● setFeeTo: Owner can set fee address.

● setFeeToSetter: Owner can set fee setter address.

ArcherswapPair.sol
● initialize: Owner can be called once by the factory at time of deployment.

ArcherswapRouter.sol
● setSwapMining: Owner can set swap mining address.

BowStakingToken.sol
● setAdmin: Owner can update admin address by the previous admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of https://scan.coredao.org weblink. And we

have used all possible tests based on given objects as files. We have not observed any

major issues in the smart contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

https://scan.coredao.org/

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - ArcherSwap Protocol

MasterChef Diagram

NFTController Diagram

Oracle Diagram

SwapMining Diagram

SyrupBar Diagram

ArcherswapFactory Diagram

ArcherswapPair Diagram

ArcherswapRouter Diagram

BowToken Diagram

BowStakingToken Diagram

WETH9 Diagram

Multicall Diagram

LakeOfBow Diagram

Slither Results Log

Slither log >> MasterChef.sol

Slither log >> NFTController.sol

Slither log >> Oracle.sol

Slither log >> SwapMining.sol

Slither log >> SyrupBar.sol

Slither log >> ArcherswapFactory.sol

Slither log >> ArcherswapPair.sol

Slither log >> ArcherswapRouter.sol

Slither log >> BowToken.sol

Slither log >> BowStakingToken.sol

Slither log >> LakeOfBow.sol

Slither log >> Multicall.sol

Slither log >> WETH9.sol

Solidity Static Analysis
MasterChef.sol

NFTController.sol

Oracle.sol

SwapMining.sol

SyrupBar.sol

ArcherswapFactory.sol

ArcherswapPair.sol

ArcherswapRouter.sol

BowToken.sol

BowStakingToken.sol

LakeOfBow.sol

Multicall.sol

WETH9.sol

Solhint Linter

MasterChef.sol

MasterChef.sol:3:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirementMasterChef.sol:1367:20: Error: Variable name
must be in mixedCase
MasterChef.sol:1379:29: Error: Constant name must be in capitalized
SNAKE_CASE
MasterChef.sol:1620:31: Error: Avoid to make time-based decisions in
your business logic

NFTController.sol

NFTController.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
NFTController.sol:79:26: Error: Code contains empty blocks

Oracle.sol

Oracle.sol:3:1: Error: Compiler version >=0.6.6 does not satisfy the
r semver requirementOracle.sol:56:5: Error: Function name must be in
mixedCaseliteralsOracle.sol:335:5: Error: Contract name must be in
CamelCase
Oracle.sol:353:25: Error: Use double quotes for string literals
Oracle.sol:441:28: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:442:39: Error: Use double quotes for string
literalsOracle.sol:465:28: Error: Avoid to make time-based decisions
in your business logic

SwapMining.sol

SwapMining.sol:3:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
SwapMining.sol:5:1: Error: Contract name must be in CamelCase
SwapMining.sol:6:2: Error: Explicitly mark visibility of state
SwapMining.sol:11:3: Error: Avoid using inline assembly. It is
acceptable only in rare cases
SwapMining.sol:13:8: Error: Variable "r" is unused
SwapMining.sol:1584:50: Error: Use double quotes for string literals
SwapMining.sol:2175:48: Error: Use double quotes for string literals
SwapMining.sol:2290:17: Error: Avoid to make time-based decisions in
your business logic

SwapMining.sol:2412:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
SwapMining.sol:2737:5: Error: Function name must be in mixedCase
SwapMining.sol:3130:39: Error: Avoid to make time-based decisions in
your business logic

SyrupBar.sol

SyrupBar.sol:3:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirement
SyrupBar.sol:648:48: Error: Use double quotes for string literals
SyrupBar.sol:1022:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:1164:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

ArcherswapFactory.sol

ArcherswapFactory.sol:3:1: Error: Compiler version >=0.6.6 does not
satisfy the r semver requirement
ArcherswapFactory.sol:655:5: Error: Function name must be in
mixedCase
ArcherswapFactory.sol:778:56: Error: Use double quotes for string
literals
ArcherswapFactory.sol:781:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases
ArcherswapFactory.sol:797:44: Error: Use double quotes for string
literals

ArcherswapPair.sol

ArcherswapPair.sol:3:1: Error: Compiler version >=0.6.6 does not
satisfy the r semver requirement
ArcherswapPair.sol:379:29: Error: Avoid to make time-based decisions
in your business logic
ArcherswapPair.sol:494:40: Error: Avoid to make time-based decisions
in your business logic
ArcherswapPair.sol:601:104: Error: Use double quotes for string
literals

ArcherswapRouter.sol

ArcherswapRouter.sol:3:1: Error: Compiler version >=0.6.6 does not
satisfy the r semver requirement
ArcherswapRouter.sol:583:29: Error: Avoid to make time-based

decisions in your business logic
ArcherswapRouter.sol:583:46: Error: Use double quotes for string
literals
ArcherswapRouter.sol:591:35: Error: Variable name must be in
mixedCase
ArcherswapRouter.sol:971:44: Error: Use double quotes for string
literals

BowToken.sol

BowToken.sol:4:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
BowToken.sol:644:48: Error: Use double quotes for string literals
BowToken.sol:759:17: Error: Avoid to make time-based decisions in
your business logic
BowToken.sol:881:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

BowStakingToken.sol

BowStakingToken.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
BowStakingToken.sol:536:94: Error: Code contains empty blocks
BowStakingToken.sol:722:57: Error: Avoid to make time-based decisions
in your business logic
BowStakingToken.sol:796:5: Error: Function name must be in mixedCase
BowStakingToken.sol:945:17: Error: Avoid to make time-based decisions
in your business logic
BowStakingToken.sol:1067:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

LakeOfBow.sol

LakeOfBow.sol:4:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
LakeOfBow.sol:585:5: Error: Function name must be in mixedCase
LakeOfBow.sol:726:31: Error: Avoid to use tx.origin
LakeOfBow.sol:911:31: Error: Use double quotes for string literals
LakeOfBow.sol:912:50: Error: Use double quotes for string literals

Multicall.sol

Multicall.sol:3:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
Multicall.sol:17:48: Error: Avoid using low level calls.

Multicall.sol:33:21: Error: Avoid to make time-based decisions in
your business logic

WETH9.sol

WETH9.sol:3:1: Error: Compiler version ^0.6.12 does not satisfy the r
semver requirement
WETH9.sol:27:55: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

