SMART

CONTRACT

Security Audit Report

Project:
Website:
Platform:
Language:

@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

ArcherSwap Protocol
archerswap.finance
Core Chain

Solidity

February 20th, 2023

https://archerswap.finance

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 7
AUAIt SUMMIAIY ot 10
Technical QUICK Stats ..o e 11
Code QUANIRY ... e 12
DOoCUMENTAtION ... 12
USE Of DEPENUENCIES ... e e nenaenes 12
ASIS OVEIVIEW ... 13
Severity DefinitioNS ... 21
AUt FINAINGS oo e 22
@70 o T3 1017 T o 26
(@ 0] 1Y/ =1 1 T To [o] 0T) 27
DISCIAIMEIS ... e 29
Appendix
o Code FIOW Diagram ..o 30
o Shther RESUIS LOGuiiiiii e 42
o Solidity StatiCc ANalySiS.......oiriii 46
o SOININt LINtEr. . o e 56

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the ArcherSwap team to perform the Security audit of
the ArcherSwap Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on February 20th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e ArcherSwap is a crypto world for users to trade, earn, and game. It's the best choice
for projects on Core Chain with features including AMM, NFT, and GameFi.

e The ArcherSwap Contracts handle multiple contracts, and all contracts have
different functions.

o BowStakingToken: This contract handles swapping to and from xBOW,
ArcherSwap's staking token. And the place where bow's live to create xbow.

o SyrupBar: It is used for BOW staking.

o LakeOfBow: LakeOfBow is MasterChef's left hand and kinda a wizard. He
can brew Bow from pretty much anything! This contract handles "serving up”
rewards for xBow holders by trading tokens collected from fees for Bow.

o MasterChef: MasterChef is the master of BOW.

e The ArcherSwap Contracts have functions like adding a new pair and LPs,

depositNFT, withdrawNFT, deposit, withdraw, reward, mint, swap, burn, skim, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
ArcherSwap Protocol Smart Contracts

Platform Core Chain / Solidity

File 1 MasterChef.sol

File 1 MD5 Hash

4E3505156A83EC77F419899CCBB51C9D

File 2

WETH9.sol

File 2 MD5 Hash

2FBAB491800E2F02C6D6B1970EGDE284

File 3

Oracle.sol

File 3 MD5 Hash

A72B18A4181306207A24212E4DB13244

File 4

SwapMining.sol

File 4 MD5 Hash

8DC6A01318201E3DEE26E16A55E27844

File 5

SyrupBar.sol

File 5 MD5 Hash

C7CBC8D1FF1B97D83A53F44280CC8622

File 6

ArcherswapFactory.sol

File 6 MD5 Hash

A35017EASCBEB9DAB1D47579FF10CDF8

File 7

BowToken.sol

File 7 MD5 Hash

CF6CA2CF455597E89FAC72FFB3B4C63C

File 8

Router.sol

File 8 MD5 Hash

53940C5EBBAC717837DB747DAE355209

File 9

BowStakingToken.sol

File 9 MD5 Hash

OF1172ACC33458662B577156776C796D

File 10

Multicall.sol

File 10 MD5 Hash

B22CA4A854478127BCB7BF23881EB4E6

File 11

LakeOfBow.sol

File 11 MD5 Hash

86294C6B2E61505AF76B8DDA8SCO2E7AA

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://scan.coredao.org/address/0xdbf74f167a4e0b97a072c7ed51df6c6e8ec0353b#code
https://scan.coredao.org/address/0x40375c92d9faf44d2f9db9bd9ba41a3317a2404f#code
https://scan.coredao.org/address/0x6f9c9edc5d53f4be7ea286830824775579a232c9#code
https://scan.coredao.org/address/0x7bf76646fbe70b13b72b0b46284f747eec5d0181#code
https://scan.coredao.org/address/0x8231f97ff38b4b14c27cbbb19c0d16784a59b401#code
https://scan.coredao.org/address/0xe0b8838e8d73ff1ca193e8cc2bc0ebf7cf86f620#code
https://scan.coredao.org/address/0x1a639e150d2210a4be4a5f0857a9151b241e7ae4#code
https://scan.coredao.org/address/0x74f56a7560ef0c72cf6d677e3f5f51c2d579ff15#code
https://scan.coredao.org/address/0x236994dabb4e7ffb85bf76889cec8ff9ca543ba4#code
https://scan.coredao.org/address/0x40fcd694c9ebbc46a2230ad498fbde11ae0111a8#code
https://scan.coredao.org/address/0x698b9c0af1f6ae920c753ff8886051a5bc78c722#code

File 12 NFTController.sol

File 12 MD5 Hash 6AAE550160948A4C6E4028309D9CCIDA
File 13 Pair.sol

File 13 MD5 Hash FC98D007A39E81DB71A49D0BEFDB725A
Audit Date February 20th,2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 MasterChef.sol

NFT Boost Rate: 1%.
MasterChef is the master of BOW.

Maximum Cake per Sec: 10 Quintillion.

Ownership Control:

Owner can add a new Ip to the pool.

Owner can update the given pool's BOW allocation
point.

Owner can update the cake token reward per second,
with a cap of max cake per second.

Owner can set the Nft boost rate range.

Owner can update the trade mining contract address.
Owner can update the reserve address by the previous

reserve address.

YES, This is valid.

File 2 Oracle.sol

Oracle can update token addresses.

YES, This is valid.

File 3 SwapMining.sol

Owner can add a new pair.
Owner can update the allocPoint of the pool.
Owner can set a halving period value.

Owner can swap Mining.

YES, This is valid.

File 4 SyrupBar.sol

Name: ArcherSwapBar Token
Symbol: SYRUP
SyrupBar used for BOW staking.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Ownership Control:

e Owner can create a'_amount’ token to *_to" by the
MasterChef owner.

e Owner can burn an amount from the address.

File 5 ArcherswapFactory.sol

e Owner can set a fee address.

YES, This is valid.

File 6 BowStakingToken.sol
e Name: Bow Staking Token
e Symbol: xBOW

e Decimals: 18

Other Specifications:
e xBOW is the place where bow's live to create xbows.

e xBOW contract handles swapping to and from xBOW,

ArcherSwap's staking token.

YES, This is valid.

File 7 BowToken.sol
e Name: ArcherSwap Token
e Symbol: BOW

e Decimals: 18

YES, This is valid.

File 8 LakeOfBow.sol
e LakeOfBow is MasterChef's left hand and kinda a
wizard. He can brew Bow from pretty much anything!
e This contract handles "serving up" rewards for xBow

holders by trading tokens collected from fees for Bow.

Ownership Control:

e Owner can set anyAuth to true and allows anyone to call

functions protected by onlyAuth.

e Owner can set the bridge address.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 9 Multicall.sol YES, This is valid.
e Multicall contract has aggregate results from multiple

read-only function calls.

File 10 ArcherswapRouter.sol YES, This is valid.

e Owner can set a swap mining address.

File 11 WETH9.sol YES, This is valid.
e Decimals: 18

e \Weth9 has withdrawal amount, deposit amount.

File 12 NFTController.sol YES, This is valid.
e Owner can set a whitelist address.

e Owner can set the default Boost Rate 1%.

File 13 ArcherswapPair.sol YES, This is valid.
e Owner can be called once by the factory at time of

deployment.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 13 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the ArcherSwap Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the ArcherSwap Protocol.

The ArcherSwap Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an ArcherSwap Protocol smart contract code in the form of

https://scan.coredao.org weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://archerswap.finance which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://scan.coredao.org/
https://archerswap.finance

AS-IS overview

MasterChef.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | getBoost read Passed No Issue
7 | getSlots read Passed No Issue
8 [getTokenlds read Passed No Issue
9 | updateMultiplier write access only Owner No Issue
10 | poolLength external Passed No Issue
11 [add write access only Owner No Issue
12 | set write access only Owner No Issue
13 | depositNFT write Passed No Issue
14 | withdrawNFT write Passed No Issue
15 | getMultiplier read Passed No Issue
16 | pendingCake external Passed No Issue
17 | massUpdatePools write Passed No Issue
18 | updatePool write Passed No Issue
19 [deposit write Passed No Issue
20 | withdraw write Passed No Issue
21 | emergencyWithdraw write Passed No Issue
22 | safeCakeTransfer internal Passed No Issue
23 | setCakePerSecond external access only Owner No Issue
24 | setNftController write access only Owner No Issue
25 | setNftBoostRate write access only Owner No Issue
26 | setDevaddr write Passed No Issue
27 | setReserveaddr write Passed No Issue
28 | setMiningaddr external access only Owner No Issue

NFTController.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | mint write Passed No Issue
3 | owner read Passed No Issue
4 | onlyOwner modifier Passed No Issue
5 | renounceOwnership write access only Owner No Issue
6 | transferOwnership write access only Owner No Issue
7 | getBoostRate read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 [setWhitelist external | access only Owner No Issue
9 | setDefaultBoostRate external | access only Owner No Issue
10 | setBoostRate external | access only Owner No Issue
11 | mint write access only Owner No Issue

Pair.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 |lock modifier Passed No Issue
3 [getReserves read Passed No Issue
4 safeTransfer write Passed No Issue
5 [initialize external Passed No Issue
6 update write Passed No Issue
7 mintFee write Passed No Issue
8 [mint external Passed No Issue
9 |[burn external Passed No Issue
10 | swap external Passed No Issue
11 | skim external Passed No Issue
12 | sync external Passed No Issue

SwapMining.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 | poolLength read Passed No Issue
7 | addPair write Critical operation Refer Audit

lacks event log Findings
8 [setPair write Critical operation Refer Audit
lacks event log Findings

9 | setArcherswapPerSecond write access only Owner No Issue
10 | addWhitelist write access only Owner No Issue
11 | delWhitelist write access only Owner No Issue
12 | getWhitelistLength read Passed No Issue
13 | isWhitelist read Passed No Issue
14 | getWhitelist read Passed No Issue
15 | setHalvingPeriod write access only Owner No Issue
16 | setRouter write access only Owner No Issue
17 | setOracle write access only Owner No Issue
18 | phase read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

19 | phase read Passed No Issue
20 | reward read Passed No Issue
21 | reward read Passed No Issue
22 | getBowReward read Passed No Issue
23 | massMintPools write Passed No Issue
24 | mint write Critical operation Refer Audit
lacks event log Findings
25 | onlyRouter modifier Passed No Issue
26 | swap write access only Router No Issue
27 | getQuantity read Passed No Issue
28 | takerWithdraw write Critical operation Refer Audit
lacks event log Findings
29 | getUserReward read Passed No Issue
30 [getTotalUserReward read Passed No Issue
31 | getPoollnfo read Passed No Issue
32 | ownerWithdraw write Critical operation Refer Audit
lacks event log Findings
33 | addBlacklist external | access only Owner No Issue
34 | removeBlacklist external | access only Owner No Issue
35 | safeBowTransfer internal Passed No Issue
SyrupBar.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [getOwner external Passed No Issue
3 | name read Passed No Issue
4 | decimals read Passed No Issue
5 [symbol read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 | allowance write Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write access only Owner No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | burnFrom internal Passed No Issue
20 [mint write access only Owner No Issue
21 | burn write access only Owner No Issue
22 | safeCakeTransfer write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

23 | delegates external Passed No Issue
24 | delegate external Passed No Issue
25 | getCurrentVotes external Passed No Issue
26 | delegateBySig external Passed No Issue
27 | getPriorVotes external Passed No Issue
28 | delegate internal Passed No Issue
29 | moveDelegates internal Passed No Issue
30 | writeCheckpoint internal Passed No Issue
31 | safe32 internal Passed No Issue
32 | getChainld internal Passed No Issue

WETH9.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | WETH9 write Passed No Issue
3 | deposit write Passed No Issue
4 | withdraw write Passed No Issue
5 | totalSupply read Passed No Issue
6 | approve write Passed No Issue
7 | transfer write Passed No Issue
8 [transferFrom write Passed No Issue

Oracle.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | update external Passed No Issue
3 | computeAmountOut write Passed No Issue
4 | consult external Passed No Issue

ArcherswapFactory.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | allPairsLength external Passed No Issue
3 [expectPairFor read Passed No Issue
4 | createPair external Passed No Issue
5 [setFeeTo external Passed No Issue
6 | setFeeToSetter external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ArcherswapRouter.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ensure modifier Passed No Issue
3 | setSwapMining write ow No Issue
4 |receive external Passed No Issue
5 addLiquidity internal Passed No Issue
6 | addLiquidity external Passed No Issue
7 | addLiquidityETH external Passed No Issue
8 [removeliquidity write Passed No Issue
9 | removeliquidityETH write Passed No Issue
10 | removeliquidityWithPermit external Passed No Issue
11 | removelLiquidityETHWithPermit | external Passed No Issue
12 | removeLiquidityETHSupportingF write Passed No Issue
eeOnTransferTokens
13 | removeLiquidityETHWithPermitS | external Passed No Issue
upportingFeeOnTransferTokens
14 | swap internal Passed No Issue
15 | swapExactTokensForTokens external Passed No Issue
16 | swapTokensForExactTokens external Passed No Issue
17 | swapExactETHForTokens external Passed No Issue
18 | swapTokensForExactETH external Passed No Issue
19 | swapExactTokensForETH external Passed No Issue
20 | swapETHForExactTokens external Passed No Issue
21 | _swapSupportingFeeOnTransfer | internal Passed No Issue
Tokens
22 | swapExactTokensForTokensSup | external Passed No Issue
portingFeeOnTransferTokens
23 | swapExactETHForTokensSuppo | external Passed No Issue
rtingFeeOnTransferTokens
24 | swapExactTokensForETHSuppo | external Passed No Issue
rtingFeeOnTransferTokens
25 | quote write Passed No Issue
26 | getAmountOut write Passed No Issue
27 | getAmountin write Passed No Issue
28 | getAmountsOut read Passed No Issue
29 | getAmountsin read Passed No Issue
BowToken.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [mintFor write access only Owner No Issue
3 [mint write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

4 | delegates external Passed No Issue
5 | delegate external Passed No Issue
6 | delegateBySig external Passed No Issue
7 | getCurrentVotes external Passed No Issue
8 | getPriorVotes external Passed No Issue
9 delegate internal Passed No Issue
10 | moveDelegates internal Passed No Issue
11 | writeCheckpoint internal Passed No Issue
12 | safe32 internal Passed No Issue
13 | getChainld internal Passed No Issue
BowStakingToken.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getOwner external Passed No Issue
3 | name read Passed No Issue
4 | decimals read Passed No Issue
5 | symbol read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 [allowance write Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write access only Owner No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | burnFrom internal Passed No Issue
20 | stakedTime read Passed No Issue
21 | canWithdraw read Passed No Issue
22 | setDelayToWithdraw external Passed No Issue
23 | enter write Critical operation Refer Audit
lacks event log Findings
24 | leave write Critical operation Refer Audit
lacks event log Findings
25 | BOWBalance external Passed No Issue
26 | xBOWForBOW external Passed No Issue
27 | BOWForxBOW external Passed No Issue
28 | burn write Passed No Issue
29 | mint write Passed No Issue
30 [transferFrom write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

31 [transfer write Passed No Issue
32 | initDelegates internal Passed No Issue
33 | delegates external Passed No Issue
34 | delegate external Passed No Issue
35 | delegateBySig external Passed No Issue
36 | getCurrentVotes external Passed No Issue
37 | getPriorVotes external Passed No Issue
38 | delegate internal Passed No Issue
39 [moveDelegates internal Passed No Issue
40 | writeCheckpoint internal Passed No Issue
41 | safe32 internal Passed No Issue
42 | getChainld internal Passed No Issue
43 | setAdmin write Passed No Issue

LakeOfBow.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | onlyAuth modifier Passed No Issue
7 | addAuth external access only Owner No Issue
8 [revokeAuth external access only Owner No Issue
9 | setAnyAuth external access only Owner No Issue
10 | setBridge external access only Owner No Issue
11 | setDevCut external access only Owner No Issue
12 | setDevAddr external access only Owner No Issue
13 | bridgeFor read Passed No Issue
14 | onlyEOA modifier Passed No Issue
15 | convert external access only Auth No Issue
16 | convertMultiple external access only Auth No Issue
17 | convert internal Passed No Issue
18 | convertStep internal Passed No Issue
19 | swap internal Passed No Issue
20 | toBOW internal Passed No Issue
21 | getAmountOut internal Passed No Issue

Multicall.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | aggregate write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

3 | getEthBalance read Passed No Issue
4 | getBlockHash read Passed No Issue
5 | getLastBlockHash read Passed No Issue
6 | getCurrentBlockTimestamp read Passed No Issue
7 | getCurrentBlockDifficulty read Passed No Issue
8 | getCurrentBlockGasLimit read Passed No Issue
9 [getCurrentBlockCoinbase read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:
Missing event log for:
MasterChef.sol

e add

e set

e updatePool

BowsStakingToken.sol
e enter.

e J|eave

SwapMining.sol
e addPair
e setPair
e mint
e ownerWithdraw
o takerWithdraw

Resolution: Write an event log for listed events.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Use the latest solidity version: - BowToken.sol, MockToken.sol, Syrupbar.sol,
BowStakingToken.sol, WETH9.sol

Using the latest solidity will prevent any compiler-level bugs.

Resolution: We suggest using the latest solidity version.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

MasterChef.sol
e updateMultiplier: Owner can update multiplier number value.
e add: Owner can add a new Ip to the pool.
e set: Owner can update the given pool's BOW allocation point.
e setCakePerSecond: Owner can update cake token reward per second, with a cap
of max cake per second.
e setNftController: Owner can set Nft controller address.
o setNftBoostRate: Owner can set Nft boost rate range.
e setMiningaddr: Owner can update trade mining contract address.
e setDevaddr: Owner can update dev address by the previous dev address.
e setReserveaddr: Owner can update reserve address by the previous reserve

address.

NFTController.sol
e setWhitelist: Owner can set whitelist address.

e setDefaultBoostRate: Owner can set default Boost Rate 1%.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

setBoostRate: Owner can set default Boost Rate 1%.

SyrupBar.sol

mint: Owner can create ©_amount’ token to *_to’ by MasterChef owner.
burn: Owner can burn an amount from the address.
safeCakeTransfer: Owner can save cake transfer function, just in case if rounding

error causes pool to not have enough Bows.

SwapMining.sol

addPair: Owner can add new pair.

setPair: Owner can update the allocPoint of the pool.
setArcherswapPerSecond: Owner can set the number of bow produced by each
second.

addWhitelist: Owner can add new wallet address in whitelist.
delWhitelist: Owner can remove wallet address from the whitelist.
setHalvingPeriod: Owner can set halving period value.

setRouter: Owner can set new router address.

setOracle: Owner can set new oracle address.

ownerWithdraw: Owner can withdraw amount from wallet address.
addBlacklist: Owner can add wallet address in blacklist.
removeBlacklist: Owner can remove wallet address from the blacklist.

swap: Owner can swap Mining.

BowToken.sol

mintFor: Owner can create = _amount’ token to *_to" by masterchef owner.

mint: Owner can mint value from owner wallet.

LakeOfBow.sol

addAuth: Owner can add a new auth wallet address.

revokeAuth: Owner can remove auth wallet address.

setAnyAuth: Owner can set anyAuth to true and allows anyone to call functions
protected by onlyAuth.

setBridge: Owner can set bridge address.

setDevCut: Owner can set dev cut amount.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e setDevAddr: Owner can set dev address.
e convert: Auth can convert token value.

e convertMultiple: Auth can convert multiple token values.

ArcherswapFactory.sol
e setFeeTo: Owner can set fee address.

e setFeeToSetter: Owner can set fee setter address.

ArcherswapPair.sol

e initialize: Owner can be called once by the factory at time of deployment.

ArcherswapRouter.sol

e setSwapMining: Owner can set swap mining address.

BowsStakingToken.sol

e setAdmin: Owner can update admin address by the previous admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of https://scan.coredao.org weblink. And we

have used all possible tests based on given objects as files. We have not observed any

major issues in the smart contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://scan.coredao.org/

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ iercr2s

@ QbalanceOf()
@ Qownerof()
@ dsafeTransferFrom()

Code Flow Diagram - ArcherSwap Protocol

MasterChef Diagram

© SyrupBar

ERC20

O BowToken cake
address=>address _delegates
O address==mapping uirt32=>Checkpoint checkpoints
© address=>int32 numCheckpoints
© bytes32 DOMAIN_TYPEHASH
© bytes32 DELEGATION_TYPEHASH

© @transferFrom()
© dapprove()

@ rercres

O address=>uint256 nonces

® setApprovalForAll)

® mint()

© QgctApproved()
© QisApprovedForAll()

© Qsupportsinterface()

@ burn()

® QokenURI()

® QotalSupply()

© QtokenByindex()

@ QtokenOfOwnerByindex()
® burn(}

(@) mercontotier

@ QgetBoostRate()
@ QisWhitelistedMFT()

This is a private

@ __constructor_ ()
© safeCakeTransfer()
© Qgelegates()

© delegate()

© delegateBySia()

@ QgetCurrent'otes()
© QgetPriorVotes()
< _delegate()

“ _moveDelegates()
< _writeCheckpoint()
< Qsafe3z)

< QgetChainld()

© BowToken

ERC20
nSafeMath for uint256

< address==address _delegates

© address==mapping uint32==Checkpoint checkpoints
© address==uint32 numCheckpoints

© bytes32 DOMAIN_TYPEHASH

© bytes32 DELEGATION_TYPEHASH

© address==uint nonces

@ MasterChef

Qwnable

@nSafeMath for uint?56
@nSafeERC20 for IERC20

© BowToken cake

© SyrupBar syrup

© address devaddr

© address reserveaddr

© address miningacldr

© uint256 cakePerSecond

© uint256 maxCakePerSecond
© uint258 BONUS_MULTIPLIER
@ Poolinfo poolinfo

© uint256=>mapping address=>Userinfa userinfo
© uint256 tetalAllocPoint

© uint256 startTime

O uint256 bowMaxSupply

O address=>mapping LNt256==NFTSlot _t

© INFTCortrolier controller
© uint nftBoostRate
© [ERC20=rbool poolExistence

® delegateBySigl)

@ QuetCurrent\otes()
@ QuetPrior'otes()
& _delegate()

< _moveDelegates()
& _writeCheckpoint()
© Qsafe3z()

© QetChainld()

. (© erco

GContext
IERG20
Ownable

inSafeMath for wint256
nAddress for address

0O address=>uint256 _balances

O address=>mapping address=>Lint256 _: !

O Lint256 totalSupply
O string _name

O string _symbel

O uintd _decimals

@ _ constructor__()
@ QgetOwner()

® Qname()

® Qdecimals()

® Qsymbol()

© QotalSupply()

© Qbalance0f()

® transfer()

© Qallowance()

© approve()

@ transferFrom()

@ increaseAllowance()
@ decreaseAllowance()
@ mint()

< _transfer()
< _mint()

< _burn()

< _approve()
< _hurnFrom()

@ JER.CZO

> -~
~ \for address =~

~a I
@ Ownable & L/

© mintFor() © _constructor_()
© mint() © QgetBoost()

© Quclegates() © QgetSlats()

® delegate()

@ QgetTokenlds()

© updateMultiplier()

@ QpoolLength()

© add()

© set)

@ depositFT()

@ withdrawhFT()

@ Qgethiultiplier)

@ QpendingCake()

© massUpdatePools()
® updatePool()

® deposit()

© withdraw()

© emergencyWithdraw()
< safeCakeTransfer()
© selCakePerSecond()
© sethfiController()

© sethfiBoostRate()

© setDevaddr()

@ setReserveaddr()

© sethliningaddr()

_ foruint256 for address " .,

|
for IERC20 |

\

(®) sarecrco !

inSafeMath for uint236 !
nAddress for adkress !

< safeTransfer()
© safeTransferFrom()
© safeApprove()
© safelncreaseAllowance() 1
© safeDecreassAllowance() |
B _calOptionalReturn()

I
. | !

for uint256
. ’
’
‘

LAY p

| © QotalSupply()
| © Qdecimals()

| © Qsymbolf)

| @ Qname()

© Qgetowner()

Context

O address _owner

@ Address

.
(®) satamtath

© QisCortract()
© sendValue()

© QbalanceOf()
| ® transfer()
| © Qallowance()
@ approve()

< __constructor__()
® Qowner()

@ renounceOwnership()
@ transferOwnership()

< functionCall()
“ functionCallWith'/alue()
B _functionCallithValue()

< Qadd()
< Qsub()
< Qymull)
& Quiv()
< qmod()

@ transferFrom()

@ Context .

< Q_msgSender()
© @ _msgDatal)

Email: audit@EtherAuthority.io

< amin()
< Qsgrt()

and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

NFTController Diagram

(©) nFTControler
INFTController
Ownable
O address==bool igWhitelistedMFT
O address==Uint256 defaultBoostRate
o address==mapping uint256=>uint255 boostRate
@ _ constructor__ ()
© O,getBoostRate()
@ setWhitelist()
@ setDefaultBoostRate()
D zetBoostRate()

I @ Ownable

@ INETController

O adldr
® QgetBoostRate() address _owner

@ QigWhitelistedMFT() < __constructor__{)
@ Qowner()

@ renouncelwnershipl)
@ transferCwnership()

!

@ l:;untext

& O,_msgSender()
& 0,_msgDhatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Oracle Diagram

@ IArcherswapPair

@ IArcherswapFactory

@ O feeTol)

@ O feeToSetter()
@ O getPair()

@ QexpectPairFor()
@ QalPairs()

@ QalPairsLength()
@ createPair()

@ zetFeeTol)

@ setFeeToSetter()

@ Tname)

@ Qeymbal()

@ Qdecimals()

@ QtotalSupply()

@ Qbalancef()

@ Qallowance()

@ approvel)

@ transfer()

@ transferFromi)

@ C,DOMAIN_SEPARATOR()
@ CLPERMIT_TYPEHASH()
@ Qnonces()

@ permit()

@ O MIMIMUR_LIGUIDIT™ ()
@ O factory()

@ Qtokend()

@ Qtokeni()

@ O getReserves()

@ Qprice0CumulativeLast()
@ Qpricel CumulativeLast()
CLkLast()

minti)

burni)

swap()

skim()

syncl)

intialize()

2200000

(@) Fixedroint

®Arcnerswaput:rarj

mSafeMath for wint

< Qencode()

< Qencodel 44()
< Qdiv()

2 Gmul()

< Qfraction()

< Qelecode()

& Qelecodet 44()

@Archerswap@rac.feubrarf

< QeurrertBlock Timestamp()
< QeurrertCumulativePrices()

© Oracle

o address factory
O yint CYCLE

O address==0bservation pairObservations

@ _ constructor__()

@ updatel)

B O computemountOut()
@ Qconsult()

© QzorntTokens()

< QpairFar()

o O getReserves()
< Quote()

< QgetAmountout()
< QgetAmounting)

< QgetAmountsout()
< QgetAmountsing)

:for uint
Wi
Y

@) saremath

< Qadd()
< Qsubl)
< gumul)
< Qdiv()

< Qumod()
< Guminf)
o Quzgrt()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ 1ArcherswapPair

SwapMining Diagram

@ Qname()

@ BowToken

© Qsymbol()

@ Qecimals()
© QotalSupply()
© Qpalance0f()
°q)

@ ArcherswapFactory|

@ QfeeTo()

© QfeeToSetter()
© QgetPair()

@ QexpectParFor()
© QalPairs)

© QallPairsLength()
© createPair()

@ seffeeTo()

© setFeeToSetier()

@) consoee

® approve)

© transfer()

© transferFrom(y

@ QDOMAIN_SEPARATOR()
© QPERMIT_TYPEHASH()
® Qnonces()

@ permit(y

© QUINIMUM_LIQUIDIT ()
© Qfactory()

© Qtoken0()

@ Qtokent()

© QgetReserves()

@ QpriceCumulativel ast()
@ Qpricet CumulativeLast()
© QiLast()

mint()

burn()

swap()

skim()
sync

o
o
L
L]
o
© inftalize()

< address CONSOLE_ADDRESS

B Q_sendLogPayload()
© Qlog()

© Qogint()

© QogUint()

© QogString()
© QogBool()

© QogAddress()
© QogBytes()
© QogBytes1()
© QogBytes2()
© QogBytesa()
© QogBytesd()
© QogBytess()
© QogBytese()
© QogBytes7()
© QogBytesa()
© QogBytess()
© QogBytes10()
© QogBytes110)
© QogBytes12()
© QogBytes13()
© QogByles140)
© QogBytes1s()
© QogBytes16()
© QogBytes17()
© QogBytes16()
© QogBytes19()
© QogBytes20()
© QogBytes210)
© QogBytes22()
© QogBytes23()
© QogBytes24()
© QogBytes25()
© QogBytes26()
© QogBytes27()
© QogBytes26()
© QogBytes29()
© QogBytes3n()
© QogBytes31()
© QogBytes32()

ERC20

inSafeMath for uint256

mapping uint32=>Checkpaint checkpoirts
Lint32 numCheckpoints

© bytes32 DOMAIN_TYPEHASH

© bytes32 DELEGATION_TYPEHASH

O addre int nonces

© mirtFor()

© mirt()

© Qdslegates()

© delegate()

© delegateBySio()

© QgetCurrent\otes()
© QgetPriorVotes()
© _delegate()

< “moveDelegates()
© _writeCheckpoirt()
© Qsafedn()

< QgetChainld()

@Amnerswapt.ﬂbrar/

for aint

© QsortTokens()
< QpairFor()

© QgetReserves()
< Qquote()

3 10

< QgetAmountin()
© QgetAmountsOutt)
< QgetAmountsing)

@ IOracle

© update()
© Qconsut()

© SwapMining

Ownable

nSareMath for uint256
for, et

@ erco

O EnumerableSet AddressSet _whitelist
© uint258 howPerSecond

! Context
1 IERC20
! Ownable

1 nSafeltath for wint256
1 inAddress for address

O string _name
O string _symbol

O g _decimals

O address=>uint256 _balances

1
I O address=>mapping address=>unt?56 _allowances
| 0 Lin256_fotalSupply

I

© uint256 startTime

© uint256 halvingPeriod

O UINt256 totalAllocRoint

O |Oracle oracle

© address router

© [ArcherswapFactory factary
© BowToken howToken

© address targetToken

© address=>bool isBlacklst
© Poolinfo poolinfo

© uint256=>mapping address=>Userinfo userinfo
© _constructor_{)

for uint256 | © QgetOwner()
® Qnamei)
© Qecimals()

@ Qsymbol()

© Qpalance0ft)
© transfer()
© Qallowancef)
© approve()

© mintf)
& transfer()

& mint()

@ _burn()

< _approve()
< _burnFrom()
T T

® QotalSupply()

© transferFrom()
© increaseAllowance()
® decreaseAlowance()

© _constructor _()

© QpoolLength()

© addPair()

© setPair()

© setArcherswapPerSecond()
@ addWhitelist()

@ delwhitelist()

© Qgetihitelistlength{)
© Qsihitelist)

© Qgetiihitelist()

© setHalvingPeriad()

® setRouter()

© setOracle()

@ Qphase()

© Qreward()

© QgetBowReward()
© masshintPools()

© mint()

© swap()

© QgetQuartty()

.)

| ’

1 .
ifor address _ -~ 7 for uint256

® QgetUserReward()

® QgetTotalUserReward[)
® QgetPoolnfo()

® ownerithcraw(y

7| @ addBlackist(y

© removeBlackiistt)

© safeBowTransfer()

T
\

| v
[for EnumerableSet. AddressSet

e

@ Context

© Q_msgSender()
© & _msgData)

| -
e J . i M
| \ \/
- iv] @ rerczo ®
@) satevsan| -~ / i (©) ownane
by | @ Address @ QotalSupply() Context B _add()
© Qadd(y | © Qdecimals() Tremove()
© Qsymbol() B Q_contains()
© Qsub() | |2 asconmaco O Gy S
< Qmuy @ sendvalue() O e O address _owner DT
< Qdiv() | © functionCall() o i
i QbalanceOf() @ __constructor_() < add()
g‘:\mod() | < functionCallithaluz() o trtnsterl) O et S
Qmin() | B _functionCallWith\/alue() Py) @ rene hi < Qontains()
— | @ approve() @ transferOwnership() < Qlength()
© wransferFrom() |- © aatn

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SyrupBar Diagram

@ BowToken

ERC20
mSafelMath for wint256

< address=>address _del tes

= address==mapping uint32=>Checkpoirt checkpoints
@ address==uint32 numCheckpoints

© bytes32 DOMAIN_TYPEHASH

2 bytes32 DELEGATION_TYPEHASH

O address=>=uint nonces

@ mirtFor()

@ mint()

@ Odelegates()

@ delegate()

(-]

delegateBySig()

@ QgetCurrent/otes()
@ QgetPriorvotes()
< _delegatel)

<» _moveDelegates()
@ _writeCheckpoint()
< Qsafe32()

< QugetChainld()

for wint256

[for wint256

@ SyrupBar

ERCZ20

© BowToken cake
< address=>address _delegates

address==uiMt32 numCheckpoirts
bytes32 DOMAIN_TYPEHASH
bytes32 DELEGATION TYWPEHASH
address=>=uiM256 nonces

address=>mapping uirt32==Checkpoint checkpoints

mirt()

Burn)

_ _constructor__ ()
safeCakeTransfer()
Cclelegates()
delegate()
delegateBySig)
QgetCurrentotes()
QgetPriory otes()
“ _delegate()

“ _moveDelegates()
& _writeCheckpoint()
< Qeafe32()

< QgetChainld()

2000000@@|(0000C0

© Eéczn

Context
IERC20
Ownable

nSafelath for wint256
mnAddress for address

address=>=uINM255 _balances

address==mapping address=>0uiNt256 _allowances
uint256 _totalSupply

string _name

string _symbol

uints _decimals

oeoododOoO@®@Oe@®@@®O|0O0DODODO

P s

/ <

<

5=

__constructor__ ()
QgetOwner()
Qnamel)
Qdecimals()
Qeymbaol()
QtotalSupply()
QbalanceOf)
transfer()
Qallowance()
approve)
transferFrom)
increaseAllowance()
decreasedllowance()

_mint{)
_burni)
_approvel)
_hurnFromi)

l/‘,

¥ T 3
/ |

'for address

I

|

|
\Vi

<
I (@) rerczo X
(B) sarenatn
@ QtotalSupply() @ Address
> Qadd)) @ Qudecimals()
< Qsub() @ Qsymbol() < QisContract()
< Cumul() © Qname() < sendValue()
< Quliv() @ QgetOwner() © functionCall()
< Qmod() ® QbalanceOf() < functionCallith'alue()
< aming 2 W) B _functionCallVith'alus()
& Qsartn) @ Qallowance()
@ approve()
@ transferFrom()

<

\.'.
@ Ownable

Context

O address _owner

< _ constructor__()
@ Qowner()

@ renounceXwnership()
@ transferOwnership()

(-3
-

@ Context

< O,_msgSender()
<> Q_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IArcherswapPair

© Qname()
© Qsymbol()

© Qecimals()
© QtotalSupply()
© Qalance()
eqQ 4]

@ IArcherswapFactory

© QfeeTol)

© QfeeToSetter()
© QgetPair()

© QexpectPairFor()
© QalPairs()

© QallParsLength()
© createPair()

© setFeeTo()

© setFeeToSetter()

@ rercz0

© Qname()
© Qsymbol()
© Qdecimals()
°Q

@ approve()

© transfer()

® transferFrom()

© QDOMAIN_SEPARATOR()
© QUPERMIT_TYPEHASH()
® Qronees()

© permitt)

@ CUMINIMUM_LIGUIDITY()
© Qfactory()

@ Qokend()

@ Qokent()

© QgetReserves()

© Qprice0Cumulativel ast()
© Qpriced CumulativeLast()
© QiLast()

© mint()

@ burni)

© swap()

® skim()

® sync()y

® initalize(y

ArcherswapFactory Diagram

@) wath

© Qmin()
< Qsgrt()

@ ArcherswapFactory

ibraiy|

=

532 INMT_CODE_PAIR_HASH
ss feeTo
55 feeToSetter

@ IArt e

ocooo

pping
address alPairs

getPair

WnSaieMath for wint

< QsontTokens()
© QpairFor()
© OgetReserves()

© Qhalance0f()
© Qalowance()
© approve()
© transfer()
© transferFrom(y

© archerswapCall()

© _constructor_()
© QalPairsLengthi)
© QexpectPairFor()
© createPair()

© setfeeTo()

© setfFesToSetter()

© Quote()

© QgetAmountOut()
© QgetAmountin()
© QgetAmountsOut()
© QgetAmourtsing)

®

| for uint

" for uint |

\ '

Qg

4 © mint()

@ ArcherswapPair

ArcherswapER G20

w\SafeMath for int
UQT12x112 for wint224

© it MINIMUM_LIQUIDITY.
0 bytesd SELECTOR

© address factory

© address tokend

© address tokent

0 Uint112 reserved

O Uint12 reservel

0 uint32 blockTimestampLast
© wint price0Cumulativel ast
© it price! CumulativeLast
© uint kLast

O Uirt unlocked!

© QgetReserves()

m _safeTransfer()

& __constructor_()

/| ® infialize)
/| W _update()

7| @ wintFeeq)

@ burn()
© swap()
@ skimi) N
© sync() .

© ArcherswapERC20

IArcherswapERC20
WNSafeath for wint

O string name
O string symbol
O Uintd decimals
O Lirt totalSupply
O address==uint balanceOf
O address=>mapping address=>uirt allowance
© bytes32 DOMAIN_SEPARATOR

O bytes32 PERMIT_TYPEHASH

© address==Ur nonces

@ Ownable

© __constructor__()

Context

O address _owner

© Qowner()
© renounceOwnership()
© transferOwnership()

@®varizare

© uint224 @112

“ Qencode()
© Qugdive)

© __constructor_()
< _mirt()

© Zbum()

B _approve()

B _transfer()

© approve()

© transfer()

© transferFrom()

© permit(y

v

’
Aor uint

@ IArcherswapERC20

@ SafeMath|

< Qadd()
< Qsub()
< amu

< advl)

< Qmod()
< amin()
< Qsgr()

© Qname()

@ Qsymbol()

© Qecimals()

© QotalSupply()

© Qbalancedi()

© Qallowance()

© approve()

@ transfer()

© transferFrom()

© QDOMAIN_SEPARATORY()
@ QPERMIT_TYPEHASH()
© Qnonces()

© permit()

@ Context

© Q_msgSender()
© Q_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Math

< Qumin()
& Qs

@ IArcherswapFactory

@ QfeeTo()

© QfeeToSetter()
@ QgetPair()

@ QexpectPairFor()
@ QallPairs()

@ QallPairsLength()
@ createPair()

@ setFeeTol)

@ zetFeeToSetter()

@ IERC20

@ Qname()

@ Qeymbol()

@ Qeecimals()
@ QtotalSupply()
@ QhbalanceOf()
@ Qallowance()
@ approve()

@ transfer()

@ transferFrom()

@ TArcherswapCallee

@ archerswapCall)

ArcherswapPair Diagram

© ArcherswapPair

ArcherswapERC20

mSafeMath for uint
MUQTI2x 112 for wint224

© wirt MINIMUM_LIGUIDITY
O bytesd4 SELECTOR

O address factory

O address tokend

© address tokenl

O uint112 reserved

O uint112 reservel

O uint32 blockTimestamplLast
© wint price0Cumulativel ast
© wint price] CumulativeLast
< uint kLast

O wint unlocked

@ QgetReserves()
| _safeTransfer()
@ _ constructor__()
/| @ initializel)
s B _update()
g B _mintFee()
@ mint()
@ burn{)
@ swap()
@ skimi)
@ sync() \

@ ArcherswapERC20

for uint

lArcherswapERC20

mnSafeMath for wint

© string name

© string symbol

© uintS decimals

© uint totalSupply

© address==uint balanceOf

O address=>mapping address=>uint allowance
O bytes32 DOMAIN_SEPARATOR

O bytes32 PERMIT_TYPEHASH

O address==uirt nonces

.I. !
NP
(®) satentatn

© Qadd()
@ Qsub()
< amull)

& Qdiv()

< Qumod()
< amin()
< Asqr()

@ __constructor__()
& _mint()

< _burn()

B _approve()

B _transfer()

@ approvel)

@ transfer(})

@ transferFrom()

@ permit()

L
/!

sfor uint
I
!
!

@ lArcherswapERC20

@ Qname()

@ Qeymbol()

@ Qdecimals()

@ QtotalSupply()

@ QbalanceOf()

@ Qallowance()

@ approvel)

@ transfer()

@ transferFrom{)

© QDOMAIN_SEPARATOR()
© QPERMIT_TYPEHASH()
@ Qnonces()

@ permit()

@ Ownable

Contenxt

O address _owner

< __constructor__()
@ Qowner()

@ renouncelwnership()
@ transferOwnershipl)

@UOH2X'J‘J2

O uint224 @112

< Qencode()
< Qugdivi)

© (;ontext

< Q,_msgSender()
& O_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IArcherswapFactory|

© QfeeTo()

© QfeeToSetter()
© QuetPair()

@ QuexpectPairFor()
© QallPairs()

© QallPairsLength()
© createPair()

® setFeeTo()

© setFesToSetter()

@) rercao

@ Qname()

© Qsymbol()
© Qecimals()
e Q

@ lArcherswapPair

® Qname()

@ Qsymbol()

@ Qulecimals()
@ QtotalSupply()
® Qhalancef()
® Qallowance()
@ approve()

@ transfer()

ArcherswapRouter Diagram

© ArcherswapRouter

IArcherswapRouter0?
Ownable

nSafeMath for wint
© address factory

© address WETH
© address swaphiining

@ ArcherswapLibrary|

© transferFrom()
@ QDOMAIN_SEPARATOR()
© QPERMIT_TYPEHASH()

® TransferHelper

nSafeMath for wint

@ Qronces()

@ permit()

© CMINIMUM_LIQUIDITY ()
© Qfactory()

@ Qtokenl()

© safetpprove()

© safeTransfer()

© safeTransferFrom()
© safeTransferETH()

< QsortTokens()
< QpairFor()

< OgetReserves()
< Quote()

< QgetAmourtOut()
o Q tting)

@ Qtokent()

® QgetReserves()

@ QpricelCumulativel ast()
@ Qpricel CumulativeL ast()
© QkLast()

© mint()

® burn()

© swap()

@ skim()

@ sync()

@ intialize()

(@ wern
@

)
@ Qhalancef()
@ Qallowance()
@ approve()
@ transfer()
@ transferFrom()

© @dsposit()

© swap() ® transfer()

@ withdraw()

< QgetAmourtsOut()
< QgetAmountsing)

® setSwaphfining()

® &_ constructor_ ()

© _addLiguidity()

addLiguidity()

acdLiquidityETH()

removeLiguidity()

removeLiguidityETH()

removeLiguidityWithPermit()

removeLiguidityETHWithPermit()
removeLiquidityETHSupportingFeeOnTransfer Tokens()
removel iquidityETHWithPermitSupportingFesOnTransferTokens()
< _swap()

@ swapExactTokensForTokens()

@ swapTokensForExactTokens()

© @swapExactETHFor Tokens()

® swapTokensForExactETH()

© swapExactTokensForETH()

@ @swapETHForExact Tokens()

o _swapSupportingFeeOnTransferTokens()

@ swapExactTokensFor TokensSupportingFesOnTransfer Tokens()
@ @&swapExactETHF or TokensSupportingFeeOnTransferTokens()
@ swapExactTokensForETHSupportingFeeOnTransferTokens()

eeooo00e

@ Qquotef)

© QgetAmountout()

© QgetAmounting)

© QgetAmountsOut()

© QgetAmountsin)
T

for uint
'
’
I

Y |
(B) satevian

< Qadd()
< Qsub()
< Qmulf)
< Aeiv()
< Qmod()
< amin()
< Qsgrt()

’

s for wint (

@ Ownable

)

Context

O address _owner

@ Qowneri
@ renounceOwnership(}
@ transferOwnership()

@ IArcherswapRouter02

lArcherswapRouterd1

< __constructor__()

© removeliquidtyETHSupportingF seOnTransfer Tokens()

@ removeLiguidityETHWithPermitSupportingFeeOnTransfer Tokens()
@ swapExactTokensForTokensSupportingF eeOnTransferTokens()
® &swapExactETHForTokensSupportingFeeOnTransfer Tokens()
@ swapExactTokensForETHSupportingFeeOnTransfer Tokens()

@ Context
© Q_msgSender()
© Q_msgData()

@ IArcherswapRouter01

© Qfactory()

® QWETH()

@ addLiquidity()

© @addLiquidityETH()

© removeLiguidity(}

© removeLiguicityETH()

@ removeLiguidityWWithPermit()

® removeLiguicityETHARhPermit()
® swapExactTokensForTokens()
® swapTokensForExactTokens()
® @swapExactETHForTokens()

@ swapTokensForExactETH()

@ swapExactTokensForETH()

© @swapETHForExactTokens()

@ Quuote()

@ QetAmountOut()

@ QuetAmounting)

© QgetAmountsOLt()

® GgetAmountsing)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BowToken Diagram

@ BowToken

ERCZ20
mSafeMath for wint256

“* address==address _delegates

@ delegateBySigl)

@ QgetCurrent'otes()
@ QgetPriorvotes()
< _delegate()

<» _moveDelegates()
< _writeCheckpoint()
< Qsafe32)

< QgetChainid()

2 address==mapping uint32==Checkpoint checkpoints
< address=>uint32 numCheckpoints

O bytes32 DOMAIN_TYPEHASH

2 bytes32 DELEGATION_TYPEHASH

= address==uint nonces

@ mirtFor()

@ mirt()

@ Qdelegates()

@ delegate)

(© erczo

Context
IERCZ20
Cwnable

wSafeMath for wint256
mAddress for address

address==uint256 _balances

address=>mapping address==uint256 _allowances
uint256 _totalSupply

string _name

string _symbol

uintd _decimals

for wint256

codo0o000f@00e 000000

<
&
<@
<
<&

_ _constructor__()
A getOwner()
Qnamer)
Qcecimals()
Qsymbol()
QtotalSupply)
CbalanceOf()
transfer()
Qallowance()
approvel)
transferFrom()
increasefllowance()
decreaselllowance()
mint()

_transfer()

_mirt(}

_hurn)

_approvel)
_bhurnFrom()

1
]
1 lr"for uint256
I
|)

ird

@ Safeldath

Quadd()
Qsub()
Cmul()
Aeliv()
Qmod()
Cming)
QAsqrt()

LO00000

L

| i .,

.
~ for address
hY

w
g

Y

- §
@ IERC20 2\

1
| @ Ownable

Context

O address _owner

r _ constructor__ ()

| @ Qowner()

I @ renounceCwnership)
@ transferOwnership()

@ QtotalSupply() @ Address

@ Qeecimals()

g &::::Zgo < QisCantract()

® Qugetowner() sendvalue()

- Qg | o < functionCall()

: tranﬁ's?:r‘z}e 8] < functionCallith/alus()
© Quallowance() H _functionCallAith alue()

@ approve)
@ transferFrom()

pd

© Context

< Q_msgSender()
< O,_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BowStakingToken Diagram

@ BowStakingToken

ERCZ20
mSafeMath for gint256

D ERCZ20 bow

2 address admin

o address==uirt256 _stakedTime

O int256 delay ToWithdraw

“ address==address _delegates

2 address==mapping uiNt32==Checkpoirt checkpoints
2 address==uiNMt32 numCheckpoints

2 bytes32 DOMAIN_TYPEHASH

O bytes32 DELEGATION_TYPEHASH

O address==uint nonces

@ _ constructor__ ()
@ AstakedTime()

@ Qoarmdithdraw()
@ setDelayToWithdraww ()
@ enter()

@ leavel)

@ qBECWEBalance()

@ O xBOWVWF orBOWWE)
@ O BEOWForxBOV)
B burng)

B mirt()

@ transferFromig)

@ transfer()

r _initDelegates()

@ Qudelegates()

D delegate()

@ delegateBySigl)

@ QgetCurrent™otes()
@ getPrioryvotes()
< _delegate()

“r _mowveDelegates()
O _writeCheckpoint()
O sate32()

< QugetChainld()

@ setldming)

(e) erczo - '

Contexi
IERCZ0

v SafeMath for wint258
Address for address 1

O address==uint255

_balances 1
O address==mapping address=>uim256 _allowances 1

O =tring _name
O string _symbol
O uint2 _decimals

O uit256 _totalSupply L

@ Qname()

@ Qsymbol()

@ Quaecimals()
@ QtotalSupply()
@ QbalanceOf()
@ transfer()

@ Qallowance()
@ approve(]

@ transferFrom()

< _transfer()

< _mirt()

< _burngd)

< _approvel)

< _setupDecimals()

@ increaseflllowance()
@ decreaselllowance()

<» _peforeTokenTransfer()

!
@ _ constructor__ ()

1 for wint256

. T

_.'for address

~ for wint256 |
, 1

™ -
- i,

@ Conte:;ct

@ erczo = (®) sarematn

O O,_msgSender()
< O _msgDatal)

< QuisContract()

2 sendvaluel)

< functionCall()

< functionCallvithvalus()
B _functionCallith"alue()

@ QtotalSupply()

@ QbalanceOf() g &:323
@ transfer() O oumull)
@ Qallowance() < Sdivi)

@ approvel) < Cumod()
@ transferFrom)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

WETH9 Diagram

(©) weTHg
O string name

2 string symkbol

2 uintd decimals

2 address==uint balanceOf

O address==mapping address==uirt allowance

@ @deposit()

@ withdraw()

@ CtotalSupply()
@ approvel()

@ transfer()

@ fransferFrom()

Multicall Diagram

@ Multicall

@ aggregatel)

@ O getBthBalancel)

@ O getBlockHash()

@ O getlastBlockHash()

@ QgetCurrentBlack Timestamp()
@ O getCurrentBlockDifficulty)
@ QgetCurrentBlockGasLimit()
@ QgetCurrentBlockCoinbase()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IERC20

@ GtotalSupply()
@ QbalanceDf()
@ transfer()
© Qallowance()
@ approve()
@ transferFrom()

LakeOfBow Diagram

@ IUniswapV2ERC20

@ Gname()

@ Qsymbol()

@ Qdecimals()

@ QtotalSupplyi)

@ Qhalancef()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

@ QDOMAIN_SEPARATOR()
@ QPERMIT_TYPEHASH()
@ Qnonces()

@ IUniswapV 2Pair

@ Qname()

@ Qsymbol()

@ Qecimals()

@ QtotalSupply()

@ QbalanceOf()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

@ QDOMAIN_SEPARATOR()
© QPERMIT_TYPEHASH)
@ G nonces()

@ permit()

@ QMIMIMUM _LIQUIDITY ()
@ O factory()

@ Qtoken0()

@ Qtokent()

o QgetReserves()

@ QpricedCumulativel ast()
@ Qpricel CumulativeLast()
© QkLast()

@ mint()

@ hurni)

@ swap()

@ skim()

@ sync()

@ initialize()

© LakeOfBow

Cwnable

inSafeMath for uint256
nSafeERC20 for [ERC20

O |Uniswap'' 2Factory factory

O address xhow

O address bow

O address wcore

O uint devCut

O address devAder

O address==bool isfAuth

O address authorized

O hool anyAuth

< address=raddress _bridges

@ _ _constructor__()
@ addauth()

@ revokeduth()

@ sethnyAuth)

@ =setBridge()

@ setDeviut])

O address _owner

< __constructor__()
@ Qowner()

D renouncewnership()
@ transferCwnership()

© permt() ® setDevAddr()
© QhridgeFor()
@ convert()
@ converthultiple()
< _convert()
© _convertStep()
< _swapl()
< _toBOW()
< QgetAmourtOut()
T
ifor IERC20 |
, |
| |
; |
f |
f |
e |
II .rfr |
|
@IUm’swapLQFachrf @ SafeERC20 |
inSafeMath for wint256 |
5 &::gg(s)ener() MAddress for address !
@ QgetPair() © safeTransfer() * for uint256
@ QallPairs() < safeTransferFrom() !
@ QalPairsLength() < safelpprove() !
@ createPair() © safelncreaseAllowance() I
@ setFeeTol) < safeDecreaseAlowance() I
D setFeeToSetter]) B _callOptionalReturn() |.
III '|I |
| \ [
f \ l
I | I
I 1 |
| \ |
i i I
[\ |
| \ |
| \ |
]) |
for address for uint256 I'
|
V7 \ 7
Y & Y
.,
(@) Address (B) safematn
o QisCortract() & Qade)
< sendValue() < Qsubl)
< functionCall() < aumul()
© functionCallitht alue() < Qv
B _functionCallvith'alue() < Qumod()

@ C;OI"ITEX[

<+ 0,_msgSender()
© Q_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> MasterChef.sol

Address.1isContract(ad
- INLINE ASM
Address._functionCallwith)
- INLINE ASM II'eS
ken.getChainId()
- INLINE ASM ll’és‘t |C|
SyrupBar.getChainId{) (Maste |CI':
- INLINE ASM (Maste C| f
: https://github.c

fasterChe T non I:L|.11- ct‘:LPIIERC #1446-1449) compares to a olean constant: i
Es C 1 false,nonDuplicat Duplicated LPToken) (MasterChef.sol#1447)

ant expression "this (Ma st-lCI"‘r sols nContext (M erChef #401-410)
ce: https i .C ¥ ci/Detector-Documentatio dundant-statements
MasterChef.cake {MasterChef #1349) should be immutable
|c‘5t rChef.startTime {Maste :) should be immutable
st rChef.syrup (MasterChef. 4 should be 1r’mt'|:1»:
-.cake (MasterChe
: https

ce y C declared- immutable
MasterChef.sol analyzed (13 contrects with 84 detectors), 123 result(s) found

msgData() (NFTCo |t|-11 er 5-:1¢1E—19"-
https yti i

ress-validation
0) uses timestamp for comparisons

ckTimestamp (0]
cle.sol#434-447) use imestamp for comparisons

wapPair .DOMAIN_SEPARATOR() cle. #38) is not in mixedCase
;c|‘Pci|' PERII' '{PEI—HCF—I' (Oracle. #39) 1is not in mixedCase
(0) is not in mixedCase
vik i/Detector-Documentation#conformance-to-solidity-naming nventions
pOracleLib |c|,.-L|\'»‘|tCLr’L1 tivePric »sfc-:-:|-ss' I BCumulative (Oracle.sol#394) is too similar to Archerswa
= t(Lr’Llctl,»Pn-»SIc. .thLr’Llct'L (Oracle.sol#394
v (-CLr’Llctl ".I'E'.lr.S':l.‘"r-'l-'l:_.' is too similar to Oracle.update(address,address).pric
elCumulat iy 1»:‘5-1--‘1-‘1«-
Variable 2 sult{a ess5,Uint256, a ess).pricefCumulative {Oracle.sol#466) is too similar to Oracle.consult{address,uin
-1CL,I”L,1 tiv
(Oracle.sol#443) 1is too similar to Oracle.consult(address,uint256,

1-.- (2 ess,uin 6,address).pricedCumulative (Oracle.sol#466) is too similar to Oracle.update(address,adt

-1CLI”L,1 tive (
: http ic/slith ik i/Detector-Documentation#variable-names-too-similar

oracle.sol analyzed (7 contracts with 84 detectors), 38 result(s) found

d emit an ewvent for:

dPair{uint256,
ta IAH, Point

71) should emit an ewvent for:
Detector-Documentation#miss ing-events-arithmetic

y,I0racle,address,address,uint256,uint256)._ targetToken {(SwapMining.sol#2872)

ntation#miss ing-zero-address-val idation

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written perm of EtherAuthority.

Email: audit@EtherAuthority.io

R»PLlPert expression "this

ate-variables-that-could-be-declared-immutable

in mixedCase
not in mixedCase

|Lchr r1|tl 255, (.sol#8 is not in mixedCase

rupBar .mint(0 c c is not in mixedCase

rupBar .burn{ 855, U1N b (S ar . #8297 s not in mixedCase

rupBar.burn(a 255, nt = i in mixedCase

rupBar .safeCak fe 255, uint2 0 T is not in mixedCase

|Lchr safeCakeTransfer(ess,uint25 (SyrupBar.sol#910) is not in mixedCase

es | ar.sol#919) i i i Case
tic/slither/wiki/Detector-Documentat ion#conformance-to-solidity-naming-conventions

expression "this {SyrupBar.sols inContext (|Lchr S0
https://github.com/crytic/slither/wiki/Detector-Documentati dant-statements

rupBar .sol#) uld be immuta
github ic slltkﬁrf\lkl Detector-Documentation#state-variables-that-could-be-declared-immutable
01 analyzed (8 contracts with 84 detectors), 42 result(s) found

ndant-statements
(Factory.sol#599) 1is too similar to Ar rswapPair
similar to ArcherswapPair.pricelCumulativeLast {Factory.s
/wiki/Detector-Documentation#variable-names -too-similar

Archerswa

C Detector-Documentation#state-variables-that-could-be-declared- immutable
Factory .sol analyzed {14 contracts with 84 detectors) 53 result(s) found

not in mixedCase
is not in
s not in mix
y-naming-c

nContext (Pair.sol#241-25
+iki/Detector-Documentation#redundant-statements

(Pair.sol#599) is too similar to ArcherswapPair.sw
gcumulativeLast 'Fclr sol#445) similar to ArcherswapPair.pricelCumulativeLast (Pair.sol#446
tic/slither/wiki/Detector-Documentation#variable-names-too-similar
immutable

tor-Documentation#state-variables-that-could-be-declared- immutable

ormance-to-solidity-naming-ce

r.sol#11)" inContext outer _sol#5-14
c/slither/wik i/Detector-Documentation#redundant-statements

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

L|t’E esired (Ro
ess,uint256)

untADesired (Rout
ess,uint256).am

(Router.s
FCLrtAEes

cr'L|tdE 51|‘: fR-Lt»r sol#
.amountBDes 1

mountADes ired
) .amountBDes 1

erswapRouter._addLiquidi ress,address ,uint256,uint256,uint256,uint2 cr-thaE»51r“ (Router.sol#6084)
L erswapRouter8l. addL idity(855, ess,uint256,uint256,uint256,uint256, ress ,uint256) . amountBDes ired

wapRouter.addLig

cr'L|tB“Ltlrcl IR-Lt_
similar

Address._functionCallwithvalue(a 0 ,uint2s6, i (BowToken.sol#131-157) uses assembly
- INLINE ASM (?
BowToken.getChainId() (en . =) uses assembly
- INLINE
riki/Detector-Documentation#assembly-usage

Low level ca in Address.se e 255, uint25
- | ar:LrtH
Low level

Reference: http t//gi .com/crytic/ ith er/wiki/Detec cumentat ion: evel-calls

Parameter cen.mi 255 ,Uint2 ._to (Bo .50 }) is not in mixedCase
Pclcr-t»| cen.min (= i (= #647) is not in mixed
is not in mi
«i/Detector-Doc r»lt tion#conformance-to-solidity-naming-conventions

inContext (
ndant-statements

is |-t in
i ri/
mixedCase
in mixedCase
ase
is not in mixedCase
is not in rl/:rtcs»
is not in mi =
)} 1s not 1n mixedCase
is not in mixedCase
] Case
) is not in mixedCase
ik i/Detector-Documentatio onformance-to-solidity-naming-c ntions

edundant-statements
- XBOW orBOW{uint256) . _xBOWAmount (xBow.sol#790) 1is too similar to BowStakingToken.BOWForxBOW(uint256).x
I ic/slither/wiki/Detector-Documentation#variable-names-too-similar
immutable

- p ik i/Detector-Documentat ion#state-variables-that-could-be-declared- immutable
XBow.sol analyzed (6 contracts with 84 detectors), 50 result(s) found

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

atements

me

found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

MasterChef.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
MasterChef.safeCakeTransfer(address,uint256,uint256): Could potentially lead to
re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 1684:4:

Gas & Economy

Gas costs:

Gas requirement of function MasterChef.withdraw is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays In storage)

Pos: 1651:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 1722:8:

NFTController.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function NFTControllertransferOwnership is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 66:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 67:8:

Oracle.ol
Security

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.

more
Pos: 465h:27:

Gas & Economy

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas Limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 308:8:

Miscellaneous

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 442:8:

SwapMining.sol

Security

Low level calls:

Use of "call™: should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 1671:50:

Gas & Economy

Gas costs:

Gas requirement of function SwapMining.getTotalUserReward is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 3157:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas Limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas Limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a Lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 2816:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the
same. If you want to remove the empty position you need to shift items manually
and update the "length” property.

more

Pos: 2486:12:

SyrupBar.sol

Security

Check-effects-interaction: 4

Potential violation of Checks-Effects-Interaction pattern in
SyrupBar.safeCakeTransfer(address,uint256): Could potentially lead to
re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

maore

Pos: 1039:4:

Gas & Economy

Gas costs: ¥

Gas requirement of function SyrupBar.getPriorVotes is infinite: If the gas

requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1180:4:

Miscellaneous

Guard conditions: X

Use "assert(x)" If you never ever want x to be false, not in any
circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.

more
Pos: 1294:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ArcherswapFactory.sol

Security

Low level calls:

Use of "call™: should be avoided whenever possible. It can lead to
unexpected behavior if return value is not handled properly. Please use
Direct Calls via specifying the called contract's interface.

more

Pos: 514:44:

Gas & Economy

Gas costs:) 4

Gas requirement of function YumiswapFactory.createPair is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot
be executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)
Pos: 774:4:

Miscellaneous

Similar variable names: ¥

YumiswapFactory.createPair(address,address) : Variables have very similar
names "token0" and "tokenA". Note: Modifiers are currently not considered
by this static analysis.

Pos: 785:16:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any
circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.

more

Pos: 778:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ArcherswapPair.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
YumiswapPair._mintFee(uint112,uint112): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 558:4:

Gas & Economy

Gas costs:) 4

Gas requirement of function YumiswapERC20.name is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 356:4:

Miscellaneous

Guard conditions:) 4

Use "assert(x)" if you never ever want x to be false, not in any
circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.

more
Pos: 638:8:

ArcherswapRouter.sol
Security

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 409:26:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
In a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
Incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 909:25:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 925:8:

BowToken.sol
Security

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 759:16:

Gas & Economy

Gas costs:

Gas requirement of function BowToken.getPriorVotes is infinite: If the gas
requirement of a function is higher than the block gas Limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 784:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more
Pos: 759:8:

BowsStaking
Security

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally
static analysis modules do not parse inline Assembly, this can lead to wrong
analysis results.

more

Pos: 1067:8:

Gas & Economy

Gas costs:

Gas requirement of function BowStakingToken.getPriorVotes is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays In storage)

Pos: 9/0:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 729:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

LakeOfBow.sol

Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 726:30:

Gas & Economy

Gas costs:

Gas requirement of function LakeOfBow.bridgeFor is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 716:4:

Miscellaneous

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more
Pos: 912:8:

Multicall.sol
Security

Block hash:

Use of "blockhash": "blockhash(uint blockiNumber)” is used to access the last
256 block hashes. A miner computes the block hash by "summing up” the
information in the current block mined. By "summing up” the information
cleverly. a miner can try to influence the outcome of a transaction in the current
block. This is especially easy if there are only a small number of equally likely
outcomes.

Pos: 30:20:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function MulticallL.aggregate is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 13:4:

Miscellaneous

Guard conditions:

Use "assert(x)" Iif you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 18:12:

WETH9.sol
Gas & Economy

Gas costs:

Gas requirement of function WETH9.withdraw is infinite: If the gas requirement of

a function 1s higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes

clearing or copying arrays In storage)
Pos: 21:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

MasterChef.sol

MasterChef.sol:3:1: Error: Compiler version .6.12 does not satisfy
the r semver requirementMasterChef.so0l:1367 Error: Variable name
must be in mixedCase

MasterChef.so0l:1379:29: Error: Constant name must be in capitalized

SNAKE CASE
MasterChef.sol:1620:31: Error: Avoid to make time-based decisions in
your business logic

NFTController.sol

NFTController.sol:3:1: Error: Compiler - ion 0.6.12 does not
satisfy the r semver requirement
NFTController.sol:79:26: Error: Code contains empty blocks

Oracle.sol

3:1: Error: Compiler version >=0.6.6 does not satisfy the
mver qunllomentOLacle so0l:56:5: Error: Function name must be in
:335:5: Error: Contract name must be in

CamelCase
Oracle.so0l:353:25: Error: Use double quotes for string literals
Oracle.so0l:441:28: Error: Avoid to make time-based decisions in your
businesa logic
Oracle.sol:442:39: Error: Us
literalsOracle.so0l:465:28: E
in your business logic

e double quotes for string
rror: Avoid to make time-based decisions

SwapMining.sol

SwapMining.sol:3:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement

SwapMining.sol:5:1: Error: Contract name must be in CamelCase
SwapMining.sol:6:2: Error: Explicitly mark visibility of state
SwapMining.sol:ll:?: Error: Avoid using inline assembly. It is

acceptable y i are cases

SwapMining. : :8: Error: Variable "r" is unused

SwapMining. :1584:50: Error: Use double quotes for string literals
SwapMining.sol:: :48: Error: Use double quotes for string literals

S wapMining.sol:22 :17: Error: Avoid to make time-based decisions in

your business

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

wapMining.sol:24 Error: Avoid using inline assembly. It is
acceptable only in re cases
SwapMining.sol:2737:5: Error: Function name must be in mixedCase

SwapMining. : :39: Error: Avoid to make time-based decisions in
your busines

SyrupBar.sol

2

SyrupBar.sol:3:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirement

SyrupBar.sol:648:48: Error: Use double quotes for string literals
SyrupBar.so0l:1022:17: Error: Avoid to make time-based decisions in
your business logic

SyrupBar.so0l:1164:9: Error: Avoid using inline assembly. It 1is
acceptable only in rare cases

ArcherswapFactory.sol

\rcherswapFactory.sol:3:1: Error: Compiler version >=0.6.¢
satisfy the r semver requirement
ArcherswapFactory.sol:655:5: Error: Function name must be in
mixedCase

:778:56: Error: Use double quotes for string

ArcherswapFactory.sol:781:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases

ArcherswapFactory.so0l:797:44: Error: Use double quotes for string
literals

ArcherswapPair.sol

r.s0l:3:1: Error: Compiler version > .6.6 does not
semver requirement
.8s01:379:29: Error: Avoid to make time-based decisions
business logic
rcherswapPair.so0l:494:40: Error: Avoid to make time-based decisions
in your business logic
ArcherswapPair.so0l:601:104: Error: Use double quotes for string
literals

ArcherswapRouter.sol

3:1: Error: Compiler version >=0.6

requirement
583:29: Error: Avoid to make time-based

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

decisions in your bus
ArcherswapRouter.sol:583:46: or: Use double quotes for
literals

ArcherswapRouter. :591:35: or: Variable name must be 1in

mixedCase
ArcherswapRouter.: : 144 : Use double quotes for string
literals

BowToken.sol

BowToken.sol:4:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement

BowToken.sol:644:48: Error: Use double quotes for string literals
BowToken.sol:759:17: Error: Avoid to make time-based decisions 1in
your business logic

BowToken.so0l:881:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

BowsStakingToken.sol

BowStakingToken.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
BowStakingToken.so0l:536:94: Error: Code contains empty blocks

BowStakingToken.sol:722:57: Error: Avoid to make time-based decisions

in your business logic

BowStakingToken.so0l:796:5: Error: Function name must be in mixedCase
BowStakingToken.so0l:945:17: Error: Avoid to make time-based decisions

in your business logic

BowStakingToken.so0l:1067:9: Error: Avoid using inline assembly. It is

acceptable only in rare cases

LakeOfBow.sol

LakeOfBow.sol:4:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement

LakeOfBow.so0l:585:5: Error: Function name must be in mixedCase
LakeOfBow.sol:726:31: Error: Avoild to use tx.origin
LakeOfBow.so0l:911:31: Error: Use double quotes for string literals
LakeOfBow.s0l1:912:50: Error: Use double quotes for string literals

Multicall.sol

Multicall.sol:3:1: Error: Compiler version >=0.5.0 does not satisfy

the r semver requirement
Multicall.sol:17:48: Error: Avoid using low level calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Multicall.sol:33:21: Error: Avoid to make time-based decisions in

your business logic

WETH9.sol

WETHO.so0l:3:1: Error: Compiler version "0.6.12 does not satisfy the r

semver requirement
WETHS.so0l:27:55: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

