
Project: Athame Finance Protocol
Website: athame.finance
Platform: Avalanche Network
Language: Solidity
Date: April 24th, 2022

https://athame.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 34

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Athame Finance team to perform the Security audit
of the Depository, Treasury and ATHF Token smart contracts codes. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on April 20th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

● Project Background
● Athame Finance is a DAAS or DeFi As A Service protocol running on the Avalanche

Network. DAAS is defined as paying someone else to invest your capital. Through

governance we invest your capital in various DeFi protocols, tokens, coins and

NFT's across multiple blockchains.

● Athame Finance Governance is the heart and brain of the Athame Protocol.

● Anyone can be part of the Athame Governance Process, and anyone with ATHF

voting power can vote on proposals. Governance makes decisions about new

features and directions of where the Athame Protocol should go. Governance is the

ultimate decision body for the Athame Protocol; no one can override vote results.

● The Athame Finance contract inherits the ERC20, Ownable, SafeMath,

SafeERC20, Pausable, ERC20Burnable, AccessControl standard smart contracts

from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Athame Finance Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 AthameDepository.sol

File 1 Git Commit 28ca49dc785c9b511ee1515dd2a1c1bdbd74c56f

https://github.com/athamefinance/contracts/blob/master/contracts/AthameDepository.sol

File 2 AthameTreasury.sol

File 2 Git Commit b5fdd955a742d2f9fe8a82d02bdb9c51c00f72be

File 3 AthameToken.sol

File 3 Git Commit cf94f0ba1a985858b6a103d4648879305e75ffdf

Audit Date April 20th, 2022

Revision Date April 24th, 2022

https://github.com/athamefinance/contracts/blob/master/contracts/AthameTreasury.sol
https://github.com/athamefinance/contracts/blob/master/contracts/AthameToken.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 AthameDepository.sol
● Default vesting periods: 7 days

● Default fee: 10%

● The owner can pause/unpause buying shares.

● The owner can set the share price and also can

change the deposit token.

YES, This is valid.

File 2 AthameTreasury.sol
● The owner can deposit / withdraw the tokens.

YES, This is valid.

File 3 AthameToken.sol
● Name: Athame Finance Token

● Symbol: ATHF

● Decimals: 18

● Token supply: unlimited (but controlled by

AthameDepository contract after ownership of

ATHF contract renounced)

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 2 critical, 1 high, 0 medium and 1 low and some very low level issues.
These issues are fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

SathMath unnecessary usage Passed
Business Risk The maximum limit for mintage not set Acknowledged

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Athame Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Athame Finance Protocol.

The Athame Finance team has provided unit test scripts, which have helped to determine

the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Athame Finance Protocol smart contract code in the form of the github

links. The git commits of that code are mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://athame.finance which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://athame.finance

AS-IS overview

AthameDepository.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 paused read Passed No Issue
8 whenNotPaused modifier Passed No Issue
9 whenPaused modifier Passed No Issue

10 _pause internal Passed No Issue
11 _unpause internal Passed No Issue
12 pause external access only Owner No Issue
13 unpause external access only Owner No Issue
14 setDepositToken external access only Owner No Issue
15 setSharePrice external access only Owner No Issue
16 deposit external access only Owner No Issue
17 withdraw external access only Owner No Issue
18 buyShares external Passed No Issue
19 claim external Passed No Issue
20 getBalance read Passed No Issue
21 updateInvestors write Passed No Issue
22 getDaysPassed read Passed No Issue

AthameToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 name read Passed No Issue
8 symbol read Passed No Issue
9 decimals read Passed No Issue

10 totalSupply read Passed No Issue
11 balanceOf read Passed No Issue
12 transfer write Passed No Issue
13 allowance read Passed No Issue

14 approve write Passed No Issue
15 transferFrom write Passed No Issue
16 increaseAllowance write Passed No Issue
17 decreaseAllowance write Passed No Issue
18 _transfer internal Passed No Issue
19 _mint internal Passed No Issue
20 _burn internal Passed No Issue
21 _approve internal Passed No Issue
22 _spendAllowance internal Passed No Issue
23 _beforeTokenTransfer internal Passed No Issue
24 _afterTokenTransfer internal Passed No Issue
25 onlyRole modifier Passed No Issue
26 supportsInterface read Passed No Issue
27 hasRole read Passed No Issue
28 _checkRole internal Passed No Issue
29 getRoleAdmin read Passed No Issue
30 grantRole write access only Role No Issue
31 revokeRole write access only Role No Issue
32 renounceRole write Passed No Issue
33 _setupRole internal Passed No Issue
34 _setRoleAdmin internal Passed No Issue
35 _grantRole internal Passed No Issue
36 _revokeRole internal Passed No Issue
37 burn write Passed No Issue
38 burnFrom write Passed No Issue
39 mint write Unlimited minting Ownership will be

renounced to
control minting by

Depository contract
40 grantMinterRole external access only Role No Issue
41 revokeMinterRole external access only Role No Issue

AthameTreasury.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 onlyRole modifier Passed No Issue
8 supportsInterface read Passed No Issue
9 hasRole read Passed No Issue

10 _checkRole internal Passed No Issue
11 getRoleAdmin read Passed No Issue

12 grantRole write access only Role No Issue
13 revokeRole write access only Role No Issue
14 renounceRole write Passed No Issue
15 _setupRole internal Passed No Issue
16 _setRoleAdmin internal Passed No Issue
17 _grantRole internal Passed No Issue
18 _revokeRole internal Passed No Issue
19 withdraw external Passed No Issue
20 deposit external Passed No Issue
21 getBalance read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

(1) Use of unbounded loops - AthameDepository.sol

In deposit function (line number #125), unbounded loops are used for calculating and

transferring reward. "accounts" array's length can reach a very big number. This will break

the function and contract as the loop will hit the "block gas limit".

Resolution: We suggest optimizing the loop. Execute loop logic in batches. e.g- process

the first 20 elements of the “accounts” array at a time, then next 20 elements.. until the

whole array is processed.

Status: Refactored and Fixed the issue

(2) Rugpull situation - AthameDepository.sol

In withdraw function (line number #154), there is a situation of the owner transfering all

unclaimed funds of all users to his wallet. This is a possible rugpull situation.

Resolution: We suggest removing this function if not needed.

Status: Removed this function and Fixed the issue

High Severity

(1) Max minting limit is not set - ATHF token contract

The owner (via minter role wallet) can mint unlimited ATHF tokens. Unlimited token minting

is not good for healthy tokenomics.

Resolution: We suggest renouncing the ownership of the ATHF token contract after

setting the minting role to the AthameDepository contract. This will remove the “human

influence” and make token minting fully decentralized by the AthameDepository contract.

Status: Acknowledged

Medium

No medium severity vulnerabilities found.

Low

(1) Use of SafeMath is unnecessary - All three contracts

Solidity version over 0.8.0 comes with in-built integer overflow / underflow protection.

Therefore the use of SafeMath is not necessary. On the other hand, this does not raise

any security issues, but It saves some gas if that is removed.

Resolution: We advise removing it.

Status: Removed SafeMath and thus this issue is Fixed

Very Low / Informational / Best practices:

(1) Redundant condition - AthameDepository.sol

The "fee" variable (line number #45) does not have a "constant" keyword as it is meant to

be a constant.

Resolution: We suggest using "constant" in the variable definition.

Status: Fixed

(2) Redundant condition - AthameDepository.sol

Because the “fee” is a constant (line number #112), the fee's value is going to be more

than 0. So here the checking condition is of no use. It's redundant.

Resolution: We suggest removing this condition.

Status: Condition removed and fixed the issue

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● withdraw: Depository and Treasury owners can withdraw the amount.

● deposit: Depository and Treasury owners can deposit an amount.

● setSharePrice: AthameDepository owner can set share price.

● setDepositToken: AthameDepository owner can set deposit tokens.

● unpause: AthameDepository owner can return to normal state.

● pause: AthameDepository owner can trigger stopped state.

● mint: Minter role wallet can mint tokens.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of github links. And we have used all possible

tests based on given objects as files. We have observed some issues in the smart

contracts and they are resolved / acknowledged. So, the smart contracts are ready for
the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Athame Finance Protocol

AthameDepository Diagram

AthameToken Diagram

AthameTreasury Diagram

Slither Results Log

Slither log >> AthameDepository.sol

Slither log >> AthameToken.sol

Slither log >> AthameTreasury.sol

Solidity Static Analysis

AthameDepository.sol

AthameToken.sol

AthameTreasury.sol

Solhint Linter

AthameDepository.sol

AthameDepository.sol:571:18: Error: Parse error: missing ';' at '{'
AthameDepository.sol:928:18: Error: Parse error: missing ';' at '{'
AthameDepository.sol:961:18: Error: Parse error: missing ';' at '{'
AthameDepository.sol:1010:18: Error: Parse error: missing ';' at '{'
AthameDepository.sol:1061:22: Error: Parse error: missing ';' at '{'

AthameToken.sol

AthameToken.sol:493:18: Error: Parse error: missing ';' at '{'
AthameToken.sol:526:18: Error: Parse error: missing ';' at '{'
AthameToken.sol:575:18: Error: Parse error: missing ';' at '{'
AthameToken.sol:626:22: Error: Parse error: missing ';' at '{'

AthameTreasury.sol

AthameTreasury.sol:600:18: Error: Parse error: missing ';' at '{'
AthameTreasury.sol:696:18: Error: Parse error: missing ';' at '{'
AthameTreasury.sol:719:18: Error: Parse error: missing ';' at '{'
AthameTreasury.sol:745:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

