
Project: Backters
Website: https://backters.com
Platform: Polygon Network
Language: Solidity
Date: May 14th, 2022

https://backters.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 27

● Solidity static analysis ….……………………………………………………………….. 30

● Solhint Linter …………………………………………………………………….……….. 36

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Backters team to perform the Security audit of the
BKD and USDBK smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 14th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The BKD777 is the standard ERC777 token whose mint and burn are controlled by

redemptionController.

● USDBK777 Contract is a smart contract, having functions like destroy, send, burn,

batchTransfer, globalOperators, authorizeGlobalOperator, etc.

● The USDBK777 contract inherits the IERC20, ERC777, SafeMath standard smart

contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Backters Protocol Smart Contracts

Platform Polygon / Solidity

File 1 BKD777Token.sol

File 1 MD5 Hash 998502EC75BC90E5A83C43C47AB3CF0B

Updated File 1 MD5 Hash 3E6AA51B2E25EE4189DD2F38555433EC

File 2 RedemptionController.sol

File 2 MD5 Hash 998502EC75BC90E5A83C43C47AB3CF0B

Updated File 2 MD5 Hash 4F09AE3D3EAD8D82EBEDBB678281D073

File 3 USDBK777Token.sol

File 3 MD5 Hash C5F6130245CA46E9B24FA14F3A3176D5

Updated File 3 MD5 Hash 6819C3C9652FBDDC47F08A15DED5B138

Audit Date May 14th, 2022

Revise Audit Date December 13th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BKD777Token.sol
● Authorized operator can mint and burn tokens for

wallets.

● Authorized operator can destroy the smart

contract.

YES, This is valid.

File 2 RedemptionController.sol
● Manager can add tokens for wallets.

● Redeemer can redeem their tokens

● Manager can set an interval, period, reward token,

reward from account, and redeem token.

● Default Admin can destroy the smart contract.

YES, This is valid.

File 3 USDBK777Token.sol
● Owner can destroy the smart contract.

● Owner can burn someone else’s tokens.

● Open Zeppelin standard code is used.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 2 low and some very low level issues.
All the issues have been fixed/acknowledged in revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderate
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderate
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Backters Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Backters Protocol.

The Backters team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Backters Protocol smart contract code in the form of a Files. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://backters.com which provided

rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://backters.com

AS-IS overview

BKD777Token.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals write Passed No Issue
5 granularity read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 send write Passed No Issue
9 transfer write Passed No Issue

10 burn write Passed No Issue
11 isOperatorFor read Passed No Issue
12 authorizeOperator write Passed No Issue
13 revokeOperator write Passed No Issue
14 defaultOperators read Passed No Issue
15 operatorSend write Passed No Issue
16 operatorBurn write Passed No Issue
17 allowance read Passed No Issue
18 approve write Passed No Issue
19 transferFrom write Passed No Issue
20 _mint internal Passed No Issue
21 _mint internal Passed No Issue
22 _send internal Passed No Issue
23 _burn internal Passed No Issue
24 _move write Passed No Issue
25 _approve internal Passed No Issue
26 _callTokensToSend write Passed No Issue
27 _callTokensReceived write Passed No Issue
28 _spendAllowance internal Passed No Issue
29 _beforeTokenTransfer internal Passed No Issue
30 destroy write Passed No Issue
31 getBurnReturnAccount read Passed No Issue
32 getBurnReturnPercentage read Passed No Issue
33 setBurnReturnAccount write Passed No Issue
34 setBurnReturnPercentage write Burn Return

Percentage limit is
not set

Refer Audit
Findings

35 getBurnReturnForwardAccount read Passed No Issue
36 getBurnReturnForwardPercentage read Passed No Issue
37 setBurnReturnForwardAccount write Passed No Issue
38 setBurnReturnForwardPercentage write Passed No Issue

39 operatorBurnReturn write Function input
parameters lack of

check

Refer Audit
Findings

40 _burnReturn internal Passed No Issue
41 operatorMint write Function input

parameters lack of
check

Refer Audit
Findings

42 circulatingSupply write Passed No Issue
43 operatorTransferAnyERC20Token write Function input

parameters lack of
check

Refer Audit
Findings

44 batchBalanceOf write Passed No Issue
45 operatorBatchTransfer write Infinite loop

possibility,Function
input parameters

lack of check

Refer Audit
Findings

46 operatorBatchMint write Infinite loop
possibility

Refer Audit
Findings

47 operatorBatchBurn write Infinite loop
possibility

Refer Audit
Findings

RedemptionController.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 supportsInterface read Passed No Issue
3 getRoleMember read Passed No Issue
4 getRoleMemberCount read Passed No Issue
5 _grantRole internal Passed No Issue
6 _revokeRole internal Passed No Issue
7 destroy write Passed No Issue
8 count read Passed No Issue
9 startsAt read Passed No Issue

10 startsAt write Passed No Issue
11 interval read Passed No Issue
12 periods read Passed No Issue
13 redeemToken read Passed No Issue
14 periods write Passed No Issue
15 redeemToken write Passed No Issue
16 rewardAccount read Passed No Issue
17 rewardAccount write Passed No Issue
18 rewardToken write Passed No Issue
19 rewardToken read Passed No Issue
20 redeemTokenTotalSupply read Passed No Issue
21 rewardTokenBalance read Passed No Issue
22 add write Passed No Issue

23 batchAdd write Infinite loop
possibility

Refer Audit
Findings

24 _addRedemption internal Passed No Issue
25 _add internal Passed No Issue
26 get read Passed No Issue
27 getAll read Passed No Issue
28 operatorMigrateFrom write Passed No Issue
29 getAccountAtOffset read Passed No Issue
30 redeemableAt read Passed No Issue
31 redeemableAt read Passed No Issue
32 redeemable read Passed No Issue
33 redeemable read Passed No Issue
34 _redeemPlansAt internal Passed No Issue
35 _redeemAt internal Passed No Issue
36 _redemptionSchedule internal Passed No Issue
37 redeem write Passed No Issue
38 operatorTransferAnyERC20Token write Passed No Issue
39 supportsInterface read Passed No Issue
40 update write Passed No Issue

USDBK777Token.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 destroy write Passed No Issue
3 authorizeGlobalOperator write Passed No Issue
4 revokeGlobalOperator write Passed No Issue
5 isOperatorFor read Passed No Issue
6 globalOperators read Passed No Issue
7 getTransferEnabled read Passed No Issue
8 setTransferEnabled write Passed No Issue
9 getBurningEnabled read Passed No Issue

10 setBurningEnabled write Passed No Issue
11 send write Passed No Issue
12 transfer write Passed No Issue
13 burn write Passed No Issue
14 transferFrom write Passed No Issue
15 operatorSend write Passed No Issue
16 batchBalanceOf read Passed No Issue
17 batchTransfer write Infinite loop

possibility
Refer Audit

Findings
18 operatorBatchTransfer write Infinite loop

possibility,
Function input

parameters lack
of check

Refer Audit
Findings

19 operatorBatchMint write Infinite loop
possibility

Refer Audit
Findings

20 operatorBatchBurn write Infinite loop
possibility

Refer Audit
Findings

21 operatorMint write Function input
parameters lack

of check

Refer Audit
Findings

22 operatorBurn write Passed No Issue
23 operatorTransferAnyERC20Token write Function input

parameters lack
of check

Refer Audit
Findings

24 name read Passed No Issue
25 symbol read Passed No Issue
26 decimals write Passed No Issue
27 granularity read Passed No Issue
28 totalSupply read Passed No Issue
29 balanceOf read Passed No Issue
30 send write Passed No Issue
31 transfer write Passed No Issue
32 burn write Passed No Issue
33 isOperatorFor read Passed No Issue
34 authorizeOperator write Passed No Issue
35 revokeOperator write Passed No Issue
36 defaultOperators read Passed No Issue
37 operatorSend write Passed No Issue
38 operatorBurn write Passed No Issue
39 allowance read Passed No Issue
40 approve write Passed No Issue
41 transferFrom write Passed No Issue
42 _mint internal Passed No Issue
43 _send internal Passed No Issue
44 _burn internal Passed No Issue
45 _move write Passed No Issue
46 _approve internal Passed No Issue
47 _callTokensToSend write Passed No Issue
48 _callTokensReceived write Passed No Issue
49 _spendAllowance internal Passed No Issue
50 _beforeTokenTransfer internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Burn Return Percentage limit is not set: BKD777Token.sol

Operators can set the individual Burn Return Percentage to any variable. This might deter

investors as they could be wary that these percentages might one day be set to 100%

which might affect the Return amount calculations.

Resolution: Consider adding an explicit limit while setting the setBurnReturnPercentage

value.

Status: This issue is fixed in the revised contract code.

Low

(1) Infinite loop possibility:

Below functions allow the operator to input unlimited wallets. So, the operator must input

limited wallets, as inputting excessive wallets might hit the block's gas limit. The operator

can accept this risk and can execute this function using limited wallets only.

BKD777Token.sol
operatorBatchTransfer

operatorBatchMint

operatorBatchBurn

RedemptionController.sol
batchAdd

BKD777Token.sol
● operatorBatchTransfer

● operatorBatchMint

● operatorBatchBurn

● batchTransfer

Resolution: We suggest specifying some limit on the number of wallets can be used. This

will prevent any potential human error.

Status: This issue is fixed in the revised contract code.

(2) Function input parameters lack of check:

Variable validation is not performed in below functions:

BKD777Token.sol
● operatorBurnReturn = account

● operatorMint = account

● operatorTransferAnyERC20Token = token , recipient

● operatorBatchTransfer = sender

USDBK777Token.sol
● operatorMint = account

● operatorTransferAnyERC20Token = token , recipient

● operatorBatchTransfer = sender

Resolution: We advise to put validation: integer type variables should be greater than 0

and address type variables should not be address(0).

Status: This issue is fixed in the revised contract code.

Very Low / Informational / Best practices:

(1) “external” visibility over “public”: BKD777Token.sol

We suggest using “external” visibility instead of “public” if those functions are not being

called internally. Although this does not raise any security issue, it is considered a best

practice, and it saves some gas as well.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Status: Acknowledged.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● destroy: RedemptionController owner can destroy smart contract.

● operatorMigrateFrom: RedemptionController operator can withdraw any ERC20

token received by the contract.

● destroy: BKD777Token owner can destroy smart contract.

● setBurnReturnAccount: BKD777Token owner can set burn return account address.

● setBurnReturnPercentage: BKD777Token owner can set burn return percentage

value.

● setBurnReturnForwardAccount: BKD777Token owner can set burn return forward

account address.

● setBurnReturnForwardPercentage: BKD777Token owner can set burn return

forward percentage value.

● operatorBurnReturn: BKD777Token operator can burn return token.

● operatorMint: BKD777Token operator can mint and transfer tokens.

● operatorTransferAnyERC20Token: BKD777Token operator can withdraw any

ERC20 token received by the contract.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have observed 1 medium issue, 2 low issues and

some very low level issues in the smart contracts. All the issues have been fixed /

acknowledged in the revised code. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Backters Protocol

BKD777Token Diagram

RedemptionController Diagram

USDBK777Token Diagram

Slither Results Log
Slither log >> BKD777Token.sol

Slither log >> RedemptionController.sol

Slither log >> USDBK777Token.sol

Solidity Static Analysis

BKD777Token.sol

RedemptionController.sol

USDBK777Token.sol

Solhint Linter

BKD777Token.sol

BKD777Token.sol:83:18: Error: Parse error: missing ';' at '{'
BKD777Token.sol:96:18: Error: Parse error: missing ';' at '{'
BKD777Token.sol:256:18: Error: Parse error: missing ';' at '{'
BKD777Token.sol:282:18: Error: Parse error: missing ';' at '{'
BKD777Token.sol:1300:18: Error: Parse error: missing ';' at '{'
BKD777Token.sol:1321:18: Error: Parse error: missing ';' at '{'
BKD777Token.sol:1414:22: Error: Parse error: missing ';' at '{'

RedemptionController.sol

RedemptionController.sol:2:1: Error: Compiler version >=0.8.2 <0.9.0
does not satisfy the r semver requirement
RedemptionController.sol:330:9: Error: Avoid using inline assembly.
It is acceptable only in rare cases
RedemptionController.sol:403:9: Error: Avoid using inline assembly.
It is acceptable only in rare cases
RedemptionController.sol:1166:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
RedemptionController.sol:1173:57: Error: Avoid to make time-based
decisions in your business logic
decisions in your business logic
RedemptionController.sol:1614:86: Error: Avoid to make time-based
decisions in your business logic

USDBK777Token.sol

USDBK777Token.sol:2:1: Error: Compiler version >=0.8.2 <0.9.0 does
not satisfy the r semver requirement
USDBK777Token.sol:80:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
USDBK777Token.sol:230:9: Error: Check result of "send" call

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

