
Project: BitDrive Protocol
Website: https://bitdrive.finance
Platform: Binance Smart Chain
Language: Solidity
Date: April 20th, 2022

https://bitdrive.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the BitDrive team to perform the Security audit of the
BitDrive Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 20th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The BitDrive Contracts have functions like ownerMint, _baseURI, initialize,

estimategetAmountOut, bitdriveSettings, biswapSettings, pancakeSettings,

changesiteFee, changeAdmin, walletOfOwner, implementation, etc. The BitDrive contract

inherits the ERC1967Proxy, TransparentUpgradeableProxy, ProxyAdmin,

UUPSUpgradeable standard smart contracts from the OpenZeppelin library. These

OpenZeppelin contracts are considered community-audited and time-tested, and hence

are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
BitDrive Protocol Smart Contracts

Platform BSC / Solidity

File 1 BitdriveMiddleware.sol

File 1 MD5 Hash 7F24E1183E118E512063678EAAB93924

File 2 TransparentUpgradeableProxy.sol

File 2 MD5 Hash 4BCD82310C7DE4D23AB8353B46F797B7

File 3 GirlsDemo.sol

File 3 MD5 Hash D8B7D81D500BBBA8FC11ADA59CD8396C

Audit Date April 20th, 2022

Revision Date May 7th, 2022D

https://testnet.bscscan.com/address/0x2a239c1a867a4d5138d0852bcb1767bd16162617#code
https://testnet.bscscan.com/address/0x32bE51E70bfAACceA01a67731A3A45B801E35485#code
https://testnet.bscscan.com/address/0x429baa6578884ca5aa4926661243a33ac1c11251#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BitdriveMiddleware.sol
● BitdriveMiddleware has functions like: initialize,

swapExactTokensForETHMiddleware, etc.

YES, This is valid.

File 2 TransparentUpgradeableProxy.sol
● This proxy contract allows the owner to change the

DEX contract and to change the code logic.

● TransparentUpgradeableProxy has functions like:

implementation, admin, upgradeToAndCall, etc.

YES, This is valid.

File 3 GirlsDemo.sol
● Name: GirlWithSecrets

● Symbol: GWS

● not Revealed URI: https://girlwithsecrets.com

● Presale Cost: 0.1 ETH

● Public Cost: 0.12 ETH

● Maximum Supply: 3333

● Maximum Mint Amount: 5

● Public Mint Amount: unlimited

YES, This is valid.

https://girlwithsecrets.com

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 1 low and some very low level issues.
These issues are fixed / acknowledged in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the BitDrive Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the BitDrive Protocol.

The BitDrive team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a BitDrive Protocol smart contract code in the form of a Testnet BSCScan

web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

BitdriveMiddleware.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal Passed No Issue
3 __Ownable_init_unchain

ed
internal Passed No Issue

4 owner read Passed No Issue
5 onlyOwner modifier Passed No Issue
6 renounceOwnership write access only Owner No Issue
7 transferOwnership write access only Owner No Issue
8 _transferOwnership internal Passed No Issue
9 initialize write Passed No Issue

10 swapExactTokensForET
HMiddleware

write Passed No Issue

11 estimategetAmountOut internal Passed No Issue
12 estimategetAmountIn internal Passed No Issue
13 swapExactETHForToken

sMiddleware
write Passed No Issue

14 swapExactTokensForTok
ensMiddleware

write Passed No Issue

15 swapTokensForExactTok
ensMiddleware

write Passed No Issue

16 bitdriveSettings write Function input
parameters lack of

check

Acknowledged

17 biswapSettings write Function input
parameters lack of

check

Acknowledged

18 pancakeSettings write Function input
parameters lack of

check

Acknowledged

19 changesiteFee write Function input
parameters lack of

check

Acknowledged

20 changeAdmin write Passed No Issue

TransparentUpgradeableProxy.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _implementation internal Passed No Issue
3 ifAdmin modifier Passed No Issue
4 admin external access if Admin No Issue
5 implementation external access if Admin No Issue
6 changeAdmin external access if Admin No Issue
7 upgradeTo external access if Admin No Issue
8 upgradeToAndCall external access if Admin No Issue
9 _admin internal Passed No Issue

10 _beforeFallback internal Passed No Issue

GirlsDemo.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 supportsInterface read Passed No Issue
3 tokenOfOwnerByIndex read Passed No Issue
4 totalSupply read Passed No Issue
5 tokenByIndex read Passed No Issue
6 _beforeTokenTransfer internal Passed No Issue
7 _addTokenToOwnerEnu

meration
write Passed No Issue

8 _addTokenToAllTokensEn
umeration

write Passed No Issue

9 _removeTokenFromOwn
erEnumeration

write Passed No Issue

10 _removeTokenFromAllTo
kensEnumeration

write Passed No Issue

11 owner read Passed No Issue
12 onlyOwner modifier Passed No Issue
13 renounceOwnership write access only Owner No Issue
14 transferOwnership write access only Owner No Issue
15 _setOwner write Passed No Issue
16 _baseURI internal Passed No Issue
17 ownerMint write Passed No Issue
18 tokenMint write Passed No Issue
19 isWhitelisted read Passed No Issue
20 clearWhitelistedAddresse

s
write access only Owner No Issue

21 addWhitelistedAddresses write access only Owner No Issue
22 addSingleWhitelistedAddr

esse
write access only Owner No Issue

23 removeWhitelistedAddres
ses

write access only Owner No Issue

24 getWhitelistedAddresses write access only Owner No Issue
25 getWhitelistedAddresses

Length
write access only Owner No Issue

26 isOwner read Passed No Issue
27 walletOfOwner read Passed No Issue
28 tokenURI read Passed No Issue
29 totalMintedTokens read Same value return by

2 different view
Removed

30 totalBalance read access only Owner No Issue
31 reveal write access only Owner No Issue
32 unReveal write access only Owner No Issue
33 setPresaleCost write access only Owner No Issue
34 setPublicCost write access only Owner No Issue
35 setPresaleOff write access only Owner No Issue
36 setPresaleOn write access only Owner No Issue
37 setmaxMintAmount write access only Owner No Issue
38 setBaseURI write access only Owner No Issue
39 setNotRevealedURI write access only Owner No Issue
40 setBaseExtension write access only Owner No Issue
41 pause write access only Owner No Issue
42 withdraw write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Function input parameters lack of check: BitdriveMiddleware.sol

The sitefee must have some maximum limit and should be greater than biswapfee,

bitdrivefee, pancakefee.

The biswapfee, bitdrivefee, pancakefee should not be greater than sitefee.

Resolution: We suggest validating the fees.

Status: Acknowledged

Low

(1) Infinite loop possibility: GirlsDemo.sol

If there are so many whitelisted addresses, then this logic will fail, as it might hit the block’s

gas limit.

Resolution: We suggest using mapping for whitelistedAddresses.

Status: Fixed

Very Low / Informational / Best practices:

(1) Same value return from two different view: GirlsDemo.sol

The totalMintedTokens and totalSupply are returning the same value - totalSupply.

Resolution: We suggest removing totalMintedTokens.

Status: Fixed

(2) Missing error message: GirlsDemo.sol

There are no error messages for required statements.

Resolution: We suggest adding relevant error messages to get failure of the transaction.

Status: Fixed

(3) Ignore Payable: GirlsDemo.sol

The withdraw and ownerMint functions should not be payable. As they are only for the

owner and the fund will be transferred to the owner by withdraw function.

Resolution: We suggest removing the payable keyword and define these functions as

simple functions.

Status: Fixed

(4) Make variable constant: GirlsDemo.sol

The maxSupply is unchanged in contract. So, please make it constant. It will save some

gas.

Resolution: We suggest making this variable as constant to save some gas.

Status: Fixed

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● ownerMint: GirlsDemo Owner can mint amount.

● addWhitelistedAddresses: GirlsDemo Owner can add multiple addresses in

whitelist.

● addSingleWhitelistedAddresse: GirlsDemo Owner can add single address in

whitelist.

● removeWhitelistedAddresses: GirlsDemo Owner can remove multiple addresses

from whitelist.

● getWhitelistedAddresses: GirlsDemo Owner can get list of whitelisted addresses.

● getWhitelistedAddressesLength: GirlsDemo Owner can get length of whitelisted

addresses.

● reveal: GirlsDemo Owner can set true status.

● unReveal: GirlsDemo Owner can set false status.

● setPresaleCost: GirlsDemo Owner can set presale cost.

● setPublicCost: GirlsDemo Owner can set public cost.

● setPresaleOff: GirlsDemo Owner can set presale off status false.

● setPresaleOn: GirlsDemo Owner can set presale on status true.

● setmaxMintAmount: GirlsDemo Owner can set maximum mint amount.

● setBaseURI: GirlsDemo Owner can set baseURI.

● setNotRevealedURI: GirlsDemo Owner can set not revealed URI.

● setBaseExtension: GirlsDemo Owner can set base extension value.

● pause: GirlsDemo Owner can set pause state.

● withdraw: GirlsDemo Owner can withdraw amount.

● admin: TransparentUpgradeableProxy admin can return the current admin.

● implementation: TransparentUpgradeableProxy admin can return the current

implementation.

● changeAdmin: TransparentUpgradeableProxy admin can change the admin of the

proxy.

● upgradeTo: TransparentUpgradeableProxy admin can upgrade the implementation

of the proxy.

● upgradeToAndCall: TransparentUpgradeableProxy admin can upgrade the

implementation of the proxy, and then call a function from the new implementation

as specified by `data`, which should be an encoded function call. This is useful to

initialize new storage variables in the proxied contract.

● biswapSettings: BitdriveMiddleware owner can set fee, router address, changetype.

● pancakeSettings: BitdriveMiddleware owner can set fee, router address,

changetype.

● changesiteFee: BitdriveMiddleware owner can change fee site.

● changeAdmin: BitdriveMiddleware owner can change admin address.

● bitdriveSettings: BitdriveMiddleware owner can set fee, router address, changetype.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts and

those are fixed / acknowledged. So, the smart contracts are ready for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - BitDrive Protocol

BitdriveMiddleware Diagram

TransparentUpgradeableProxy Diagram

GirlsDemo Diagram

Slither Results Log

Slither log >> BitdriveMiddleware.sol
Slither provided the following logs. We carefully checked them, and we confirm that those
logs are either informative or false positive, and do not contain any security problems.
Error line numbers : 226,439,1127,1152,1169,1572,1681,1666,1655,1656,1658,1862,
1672,1678,1696,1702,1787,1863,1898

Error line numbers : 300,302,367,379,473,475,492,510,512,562,588

Error line numbers : 1155,1382,1385,1478,1488,1564,1566,1653,1655,1668,1679,1583,
1585,1698,1786,1763,1785,1708

Slither log >> TransparentUpgradeableProxy.sol
The following slither logs identifies some issues like reentrancy, etc. We carefully checked
those issues and we confirm they are false positives and do not raise any security issues.
Error line numbers : 756,681,683,674,689,583,531,517,523,529,668,586,568,24,28,47,
46,33,37,51,55,52,54,76,85,230,233

Error line numbers : 103,139,164,169,189,195,193,213,219,217,387,383.339,402,408,
419,438,428,440,442

Slither log >> GirlsDemo.sol
The following Slither logs provided some issues. We carefully checked them, and we
confirm that those logs are either informative or false positive, and do not contain any
security problems.
Error line numbers : 1110,1111,1204,844,852,885,426,446,865,1217,257,255,441,
426,859,1229,312,138,320,326,345,338,353,364

Error line numbers : 285,409,418,372,374,382,391,285,280,426,448,227,290,382,
391,489,418,416,1294,1297

Slither provided the following logs. We carefully checked them, and we confirm that those
logs are either informative or false positive, and do not contain any security problems.
Error line numbers : 656,1128,1136,1157,1176,1180,1297,1268,1272,1275,1280,1280,
1288,1278,1284,554,555,560,562,572,1217,1237,586,596,610,615,627,636

Error line numbers : 641,647,926,929,1074,1083,1128,1133,1138,1155,1170,1174,1176,
1180,1187,1193,1195,1204,1215,1239,1242,1244,1246,1248,1258,122,1254

Solidity Static Analysis

The static Analysis tool helps scan the code against hundreds of security vulnerability
patterns. The tool outputs various issues, which we checked manually and confirm they do
not create any negative impact and below results are false positives.

BitdriveMiddleware.sol

The following issues identified by the tool, are checked manually and confirmed that they
do not create any negative impact and thus below results are false positives.

The following issues identified by the tool, are checked manually and confirmed that they
do not create any negative impact and thus below results are false positives.

TransparentUpgradeableProxy.sol

The following issues identified by the tool, are checked manually and confirmed that they
do not create any negative impact and thus below results are false positives.

GirlsDemo.sol

The following issues identified by the tool, are checked manually and confirmed that they
do not create any negative impact and thus below results are false positives.

Solhint Linter

Solhint Linter tool allows the code to be scanned by many different attack patterns, and
logical vulnerabilities. From the code below, we can say that that tool also did not highlight
any major issues.

BitdriveMiddleware.sol

BitdriveMiddleware.sol:3:1: Error: Compiler version >=0.6.4 does not
satisfy the r semver requirement
BitdriveMiddleware.sol:300:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:304:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:304:62: Error: Code contains empty blocks
BitdriveMiddleware.sol:505:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:510:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:628:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:630:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:661:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:707:5: Error: Function name must be in
mixedCase
BitdriveMiddleware.sol:1104:5: Error: Explicitly mark visibility of
state
BitdriveMiddleware.sol:1449:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
BitdriveMiddleware.sol:1456:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
BitdriveMiddleware.sol:1460:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
BitdriveMiddleware.sol:1463:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
BitdriveMiddleware.sol:1464:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
BitdriveMiddleware.sol:1465:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
BitdriveMiddleware.sol:1397:9: Error: Variable "_tokenContract" is
unused

From the below Solhint logs, we can say that that tool also did not highlight any major
issues. And thus below points are false positives and can be safely ignored.

TransparentUpgradeableProxy.sol

TransparentUpgradeableProxy.sol:2:1: Error: Compiler version ^0.8.0
does not satisfy the r semver requirement
TransparentUpgradeableProxy.sol:52:9: Error: Avoid using inline
assembly. It is acceptable only in rare cases
TransparentUpgradeableProxy.sol:266:5: Error: Explicitly mark
visibility in function (Set ignoreConstructors to true if using
solidity >=0.7.0)
TransparentUpgradeableProxy.sol:375:49: Error: Code contains empty
blocks
TransparentUpgradeableProxy.sol:640:82: Error: Code contains empty
blocks
TransparentUpgradeableProxy.sol:649:5: Error: Explicitly mark
visibility in function (Set ignoreConstructors to true if using
solidity >=0.7.0)
TransparentUpgradeableProxy.sol:666:5: Error: Explicitly mark
visibility in function (Set ignoreConstructors to true if using
solidity >=0.7.0)
TransparentUpgradeableProxy.sol:756:5: Error: Explicitly mark
visibility in function (Set ignoreConstructors to true if using
solidity >=0.7.0)
TransparentUpgradeableProxy.sol:756:122: Error: Code contains empty
blocks

GirlsDemo.sol

GirlsDemo.sol:4:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
GirlsDemo.sol:263:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
GirlsDemo.sol:416:51: Error: Avoid using low level calls.
GirlsDemo.sol:438:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
GirlsDemo.sol:518:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
GirlsDemo.sol:857:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
GirlsDemo.sol:885:24: Error: Code contains empty blocks
GirlsDemo.sol:1046:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
GirlsDemo.sol:1109:2: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
GirlsDemo.sol:1294:19: Error: Avoid using low level calls.

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

