
Project: Carbon XYZ Protocol
Platform: Polygon Network
Language: Solidity
Date: April 13th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 23

Our Methodology ………………………………………………………………………………... 24

Disclaimers ………………………………………………………………………………………. 26

Appendix

● Code Flow Diagram ……………………………………………………………………... 27

● Slither Results Log ………………………………………………………………………. 40

● Solidity Static Analysis…………………………………………………………………... 47

● Solhint Linter…….. ………………………………………………………………………. 60

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Carbon XYZ team to perform the Security audit of
the Carbon XYZ Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 13th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Carbon XYZ Contracts have functions like mint, burn, burnNFT, setStakingPool,

mintNewNFT, setMembershipTrader, withdrawGEMS, etc. The Carbon XYZ contract

inherits the AccessControl, ERC721, ERC721URIStorage, Counters, Strings, IERC20,

Address, Pausable, SafeMath, ReentrancyGuard, Ownable standard smart contracts from

the OpenZeppelin library. These OpenZeppelin contracts are considered

community-audited and time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Carbon XYZ Protocol Smart Contracts

Platform Polygon / Solidity

File 1 ETHToken.sol

File 1 MD5 Hash 676697E70A6EDDC5EBAA03BBCA7D4485

File 2 AdminRole.sol

File 2 MD5 Hash C6750B6B82A5EEC557ACCBD0DA2F5143

File 3 GEMSNFTReceipt.sol

File 3 MD5 Hash 61535FA82782A82B460BF994D17703F2

File 4 GEMSStaking.sol

File 4 MD5 Hash 9D291FD0A77297B37E5D07D56F1EB8E2

Updated File 4 MD5 Hash F44B5A5C1C9148E443ABD5730398990F

File 5 GEMSToken.sol

File 5 MD5 Hash 8B8C64C769FCD7DA5C34DB92D7BD67D2

File 6 CarbonMembership.sol

File 6 MD5 Hash 20F74964B3429F940D633BD60F91E0DA

File 7 MembershipTrader.sol

File 7 MD5 Hash 3AE63557743E8F68B9E522A1F6A5B14A

Updated File 7 MD5 Hash C98A22C4830C6A939C548945CDD44A8B

File 8 ERC721NFTContract.sol

File 8 MD5 Hash ED86B14B26BAC3EEA6C09FF16DEB5698

File 9 MintingFactory.sol

File 9 MD5 Hash A5ADA1951E6E32AD46F01CF59E96E300

File 10 ExchangeCore.sol

File 10 MD5 Hash 5768D2999994906DA1C9C1645EBD507F

Updated File 10 MD5 Hash D38BDA19B377DAC76895A034AD10328A

Audit Date April 13th,2022

Revise Audit Date April 16th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 ETHToken.sol
● Name: ETH Token

● Symbol: ETH

● Decimals: 18

YES, This is valid.

File 2 AdminRole.sol
● AdminRole contract has functions like: isAdmin,

addAdmin, leaveRole.

YES, This is valid.

File 3 GEMSNFTReceipt.sol
● BaseURI: https://carbon.xyz

● The GEMSNFTReceipt admin can set a staking pool.

YES, This is valid.

File 4 GEMSStaking.sol
● Decimals: 18

● Tokens To Stake: 1,00,000 tokens for staking

● The GEMSStaking contract has functions like: unstake

YES, This is valid.

File 5 GEMSToken.sol
● Name: GEMS Token

● Symbol: GEMS

● Decimals: 18

● Total Supply: 1 Billion

YES, This is valid.

File 6 CarbonMembership.sol
● Name: Carbon Membership Pass

● Symbol: CMEM

● BaseURI: https://carbon.xyz

YES, This is valid.

File 7 MembershipTrader.sol
● Tokens to Deposit: 1,00,000

● The MembershipTrader contract has functions like:

validate, executeOrder, withdrawGEMS.

YES, This is valid.

https://carbon.xyz
https://carbon.xyz

File 8 ERC721NFTContract.sol
● BaseURI: https://carbon.xyz

● The Factory can mint NFT Tokens.

YES, This is valid.

File 9 MintingFactory.sol
● The MintingFactory contract creates an NFT contract

and then it can mint NFT for that contract to keep track

of all NFT contracts for the users.

YES, This is valid.

File 10 ExchangeCore.sol
● Base Factor Maximum: 1025

● Buyers premium fees: 25

YES, This is valid.

https://carbon.xyz

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 0 low and some very low level issues.
All these issues have been resolved / acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 10 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Carbon XYZ Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Carbon XYZ Protocol.

The Carbon XYZ Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Carbon XYZ Protocol smart contract code in the form files. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

ETHToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue

AdminRole.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRole modifier Passed No Issue
3 supportsInterface read Passed No Issue
4 hasRole read Passed No Issue
5 _checkRole internal Passed No Issue
6 _checkRole internal Passed No Issue
7 getRoleAdmin read Passed No Issue
8 grantRole write Passed No Issue
9 revokeRole write Passed No Issue

10 renounceRole write Passed No Issue
11 _setupRole internal Passed No Issue
12 _setRoleAdmin internal Passed No Issue
13 _grantRole internal Passed No Issue
14 _revokeRole internal Passed No Issue
15 onlyAdmin modifier Passed No Issue
16 isAdmin internal Passed No Issue
17 addAdmin external access only Admin No Issue

GEMSNFTReceipt.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 supportsInterface write Passed No Issue
3 balanceOf write Passed No Issue
4 ownerOf write Passed No Issue
5 name write Passed No Issue
6 symbol write Passed No Issue
7 tokenURI write Passed No Issue
8 _baseURI internal Passed No Issue
9 approve write Passed No Issue

10 getApproved read Passed No Issue
11 setApprovalForAll write Passed No Issue
12 isApprovedForAll read Passed No Issue
13 transferFrom write Passed No Issue
14 safeTransferFrom write Passed No Issue
15 safeTransferFrom write Passed No Issue
16 _safeTransfer internal Passed No Issue
17 _exists internal Passed No Issue
18 _isApprovedOrOwner internal Passed No Issue
19 _safeMint internal Passed No Issue
20 _safeMint internal Passed No Issue
21 _mint internal Passed No Issue
22 _burn internal Passed No Issue
23 _transfer internal Passed No Issue
24 _approve internal Passed No Issue
25 _setApprovalForAll internal Passed No Issue
26 _checkOnERC721Received write Passed No Issue
27 _beforeTokenTransfer internal Passed No Issue
28 _afterTokenTransfer internal Passed No Issue
29 tokenURI read Passed No Issue
30 _setTokenURI internal Passed No Issue
31 _burn internal Passed No Issue
32 onlyAuthorised modifier Passed No Issue
33 mintNewNFT write access only

Authorized
No Issue

34 getTotalNFTs read Passed No Issue
35 burnNFT write Passed No Issue
36 setStakingPool write access only

Authorized
No Issue

GEMSStaking.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyAuthorised modifier Passed No Issue
3 mintNewNFT write access only

Authorized
No Issue

4 getTotalNFTs read Passed No Issue
5 burnNFT write Passed No Issue
6 setStakingPool write access only

Authorized
No Issue

7 stake write Passed No Issue
8 unstake write Passed No Issue

GEMSToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue

CarbonMembership.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Unused constructor

parameters
Refer Audit

Findings
2 supportsInterface write Passed No Issue
3 balanceOf write Passed No Issue
4 ownerOf write Passed No Issue

5 name write Passed No Issue
6 symbol write Passed No Issue
7 tokenURI write Passed No Issue
8 _baseURI internal Passed No Issue
9 approve write Passed No Issue

10 getApproved read Passed No Issue
11 setApprovalForAll write Passed No Issue
12 isApprovedForAll read Passed No Issue
13 transferFrom write Passed No Issue
14 safeTransferFrom write Passed No Issue
15 safeTransferFrom write Passed No Issue
16 _safeTransfer internal Passed No Issue
17 _exists internal Passed No Issue
18 _isApprovedOrOwner internal Passed No Issue
19 _safeMint internal Passed No Issue
20 _safeMint internal Passed No Issue
21 _mint internal Passed No Issue
22 _burn internal Passed No Issue
23 _transfer internal Passed No Issue
24 _approve internal Passed No Issue
25 _setApprovalForAll internal Passed No Issue
26 _checkOnERC721Receiv

ed
write Passed No Issue

27 _beforeTokenTransfer internal Passed No Issue
28 _afterTokenTransfer internal Passed No Issue
29 tokenURI read Passed No Issue
30 _setTokenURI internal Passed No Issue
31 _burn internal Passed No Issue
32 owner read Passed No Issue
33 onlyOwner modifier Passed No Issue
34 renounceOwnership write access only Owner No Issue
35 transferOwnership write access only Owner No Issue
36 _transferOwnership internal Passed No Issue
37 paused read Passed No Issue
38 whenNotPaused modifier Passed No Issue
39 whenPaused modifier Passed No Issue
40 _pause internal Passed No Issue
41 _unpause internal Passed No Issue
42 onlyMembershipTrader modifier Passed No Issue
43 mintNewNFT write access only

Membership Trader
No Issue

44 setMembershipTrader write access only Owner No Issue
45 pause write access only Owner No Issue
46 unpause write access only Owner No Issue
47 updateOwner write access only Owner No Issue

MembershipTrader.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only

Owner
No Issue

5 transferOwnership write access only
Owner

No Issue

6 _transferOwnership internal No Issue
7 validate internal Passed No Issue
8 executeOrder write Passed No Issue
9 withdrawGEMS write access only

Owner
No Issue

10 updateOwner write access only
Owner

No Issue

ERC721NFTContract.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 supportsInterface write Passed No Issue
3 balanceOf write Passed No Issue
4 ownerOf write Passed No Issue
5 name write Passed No Issue
6 symbol write Passed No Issue
7 tokenURI write Passed No Issue
8 _baseURI internal Passed No Issue
9 approve write Passed No Issue

10 getApproved read Passed No Issue
11 setApprovalForAll write Passed No Issue
12 isApprovedForAll read Passed No Issue
13 transferFrom write Passed No Issue
14 safeTransferFrom write Passed No Issue
15 safeTransferFrom write Passed No Issue
16 _safeTransfer internal Passed No Issue
17 _exists internal Passed No Issue
18 _isApprovedOrOwner internal Passed No Issue
19 _safeMint internal Passed No Issue
20 _safeMint internal Passed No Issue
21 _mint internal Passed No Issue
22 _burn internal Passed No Issue
23 _transfer internal Passed No Issue
24 _approve internal Passed No Issue

25 _setApprovalForAll internal Passed No Issue
26 _checkOnERC721Received write Passed No Issue
27 _beforeTokenTransfer internal Passed No Issue
28 _afterTokenTransfer internal Passed No Issue
29 tokenURI read Passed No Issue
30 _setTokenURI internal Passed No Issue
31 _burn internal Passed No Issue
32 onlyFactory modifier Passed No Issue
33 onlyAdmin modifier Passed No Issue
34 mint write access only

Factory
No Issue

35 getTotalNFTs read Passed No Issue
36 changeAdmin write access only

Admin
No Issue

37 updateFactory external access only
Admin

No Issue

MintingFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRole modifier Passed No Issue
3 supportsInterface read Passed No Issue
4 hasRole read Passed No Issue
5 _checkRole internal Passed No Issue
6 _checkRole internal Passed No Issue
7 getRoleAdmin read Passed No Issue
8 grantRole write Passed No Issue
9 revokeRole write Passed No Issue

10 renounceRole write Passed No Issue
11 _setupRole internal Passed No Issue
12 _setRoleAdmin internal Passed No Issue
13 _grantRole internal Passed No Issue
14 _revokeRole internal Passed No Issue
15 onlyAdmin modifier Passed No Issue
16 isAdmin internal Passed No Issue
17 addAdmin external access only Admin No Issue
18 onlyCreatorAdmin modifier Passed No Issue
19 onlyExchange modifier Passed No Issue
20 createNFTContract external access only Admin No Issue
21 mintNFT write access only Creator

Admin
No Issue

22 updateOwner write access only
Exchange

No Issue

23 updateExchangeAddress write access only Admin No Issue
24 getNFTsForOwner read Passed No Issue

25 getTotalNFTsMinted read Passed No Issue
26 transferFunds external Possibility to transfer

fund to zero address
Refer Audit

Findings
27 setCarbonMintingFactory

FeeVault
external access only Admin No Issue

ExchangeCore.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRole modifier Passed No Issue
3 supportsInterface read Passed No Issue
4 hasRole read Passed No Issue
5 _checkRole internal Passed No Issue
6 _checkRole internal Passed No Issue
7 getRoleAdmin read Passed No Issue
8 grantRole write Passed No Issue
9 revokeRole write Passed No Issue

10 renounceRole write Passed No Issue
11 _setupRole internal Passed No Issue
12 _setRoleAdmin internal Passed No Issue
13 _grantRole internal Passed No Issue
14 _revokeRole internal Passed No Issue
15 onlyAdmin modifier Passed No Issue
16 isAdmin internal Passed No Issue
17 addAdmin external access only Admin No Issue
18 paused read Passed No Issue
19 whenNotPaused modifier Passed No Issue
20 whenPaused modifier Passed No Issue
21 _pause internal Passed No Issue
22 _unpause internal Passed No Issue
23 nonReentrant modifier Passed No Issue
24 validateSeller internal Passed No Issue
25 validateBuyer internal Passed No Issue
26 executeOrder write access only Admin No Issue
27 _executeOrder internal Passed No Issue
28 cancelOrder write access only Admin No Issue
29 uncancelOrder write access only Admin No Issue
30 updateFactory external access only Admin No Issue
31 setCarbonFeeVaultAddre

ss
external Passed No Issue

32 pause write access only Admin No Issue
33 unpause write access only Admin No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) User cannot stake after unstake: GEMSStaking.sol
Once an user unstakes his tokens, he cannot stake the tokens again.

Resolution: We suggest correcting this.

Status: Fixed

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Possibility to transfer fund to zero address: MintingFactory.sol

The transferFunds function is used to transfer ETH tokens to

"carbonMintingFactoryFeeVault" without checking whether it is set to some address or not.

.

Resolution: We suggest validating whether "carbonMintingFactoryFeeVault" has been set

or not before transfer funds.

(2) Unused constructor parameters: CarbonMembership.sol

In the constructor _name and _symbol parameters are defined, but not used in the

functionality.

.

Resolution: We suggest removing unused parameters from the constructor.

(3) Make variables constant: ExchangeCore.sol

These variables will be unchanged. So, please make it constant. It will save some gas.

.

Resolution: Declare those variables as constant. Just put a constant keyword.

(4) Variable should be immutable:

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Variables are:

● GEMSStaking.sol
○ GEMSToken

○ GEMSNFTAddress

● GEMSNFTReceipt.sol
○ admin

● MintingFactory.sol
○ ETH

● ExchangeCore.sol
○ ETH

○ carbonMembership

Resolution: Consider marking this variable as immutable.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● mintNewNFT: The GEMSNFTReceipt Authorise can mint new NFT.

● setStakingPool: The GEMSNFTReceipt Authorise can set a staking pool.

● changeAdmin: The ERC721NFTContract admin can update a new admin address.

● updateFactory: The ERC721NFTContract admin can update factory addresses.

● createNFTContract: The MintingFactory admin can create a new NFT contract.

● mintNFT: The MintingFactory creator admin can mint NFT tokens.

● updateExchangeAddress: The MintingFactory admin can update the exchange

address.

● transferFunds: The MintingFactory admin can transfer funds.

● setCarbonMintingFactoryFeeVault: The MintingFactory admin can set carbon

minting factory fee vault address.

● setMembershipTrader: The CarbonMembership owner can set membership trader

address.

● pause: The CarbonMembership owner can trigger a stopped state.

● unpause: The CarbonMembership owner can return to normal state.

● updateOwner: The CarbonMembership owner can update the new owner address.

● withdrawGEMS: The MembershipTrader owner can withdraw GEMS.

● updateOwner: The MembershipTrader owner can update the new owner address.

● executeOrder: The Exchange core owner can execute orders.

● cancelOrder: The Exchange core owner can cancel orders.

● uncancelOrder: The Exchange core owner can uncancel orders.

● updateFactory: The Exchange core owner can update the factory address.

● setCarbonFeeVaultAddress: The Exchange core owner can set a carbon fee vault

address.

● pause: The ExchangeCore owner can trigger a stopped state.

● unpause: The ExchangeCore owner can return to normal state.

● createNFTContract: The MintingFactory admin can create NFT contracts.

● mintNFT: The MintingFactory admin can mint NFT tokens.

● updateExchangeAddress: The MintingFactory admin can update the exchange

address.

● transferFunds: The MintingFactory admin can transfer funds.

● setCarbonMintingFactoryFeeVault: The MintingFactory admin can set carbon

minting factory fee vault address.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Carbon XYZ Protocol

ETHToken Diagram

AdminRole Diagram

GEMSNFTReceipt Diagram

GEMSStaking Diagram

GEMSToken Diagram

CarbonMembership Diagram

MembershipTrader Diagram

ERC721NFTContract Diagram

MintingFactory Diagram

ExchangeCore Diagram

Slither Results Log

Slither log >> ETHToken.sol

Slither log >> AdminRole.sol

Slither log >> GEMSNFTReceipt.sol

Slither log >> GEMSStaking.sol

Slither log >> GEMSToken.sol

Slither log >> CarbonMembership.sol

Slither log >> MembershipTrader.sol

Slither log >> ERC721NFTContract.sol

Slither log >> MintingFactory.sol

Slither log >> ExchangeCore.sol

Solidity Static Analysis
ETHToken.sol

AdminRole.sol

GEMSNFTReceipt.sol

GEMSStaking.sol

GEMSToken.sol

CarbonMembership.sol

MembershipTrader.sol

ERC721NFTContract.sol

MintingFactory.sol

ExchangeCore.sol

Solhint Linter

ETHToken.sol

ETHToken.sol:141:18: Error: Parse error: missing ';' at '{'
ETHToken.sol:161:18: Error: Parse error: missing ';' at '{'
ETHToken.sol:182:18: Error: Parse error: missing ';' at '{'
ETHToken.sol:213:22: Error: Parse error: missing ';' at '{'

AdminRole.sol

AdminRole.sol:3:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
AdminRole.sol:368:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

GEMSNFTReceipt.sol

GEMSNFTReceipt.sol:18:18: Error: Parse error: missing ';' at '{'
GEMSNFTReceipt.sol:26:18: Error: Parse error: missing ';' at '{'

GEMSStaking.sol

GEMSStaking.sol:49:18: Error: Parse error: missing ';' at '{'
GEMSStaking.sol:57:18: Error: Parse error: missing ';' at '{'

GEMSToken.sol

GEMSToken.sol:140:18: Error: Parse error: missing ';' at '{'
GEMSToken.sol:160:18: Error: Parse error: missing ';' at '{'
GEMSToken.sol:181:18: Error: Parse error: missing ';' at '{'
GEMSToken.sol:212:22: Error: Parse error: missing ';' at '{'

CarbonMembership.sol

CarbonMembership.sol:49:18: Error: Parse error: missing ';' at '{'
CarbonMembership.sol:57:18: Error: Parse error: missing ';' at '{'

MembershipTrader.sol

MembershipTrader.sol:48:18: Error: Parse error: missing ';' at '{'
MembershipTrader.sol:56:18: Error: Parse error: missing ';' at '{'

ERC721NFTContract.sol

ERC721NFTContract.sol:48:18: Error: Parse error: missing ';' at '{'
ERC721NFTContract.sol:56:18: Error: Parse error: missing ';' at '{'

MintingFactory.sol

MintingFactory.sol:120:18: Error: Parse error: missing ';' at '{'
MintingFactory.sol:128:18: Error: Parse error: missing ';' at '{'

ExchangeCore.sol

ExchangeCore.sol:142:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:155:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:167:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:184:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:196:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:292:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:315:18: Error: Parse error: missing ';' at '{'
ExchangeCore.sol:341:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

