
Project: CorkToken Protocol
Website: https://corkscrew.financial
Platform: AVAX
Language: Solidity
Date: April 16th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Corkscrew team to perform the Security audit of the
CorkToken Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 16th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Cork Token Contracts have functions like mint, burn, airdropTo, isBlacklisted,

setBlacklisted, Blacklist, initialize, bailOutMint, claim, swap, skim, sync, _mintFee, etc. The

Cork Token contract inherits the ERC20, Ownable, SafeMath, ERC1155Upgradeable,

OwnableUpgradeable, ReentrancyGuardUpgradeable, SafeMathUpgradeable standard

smart contracts from the OpenZeppelin library. These OpenZeppelin contracts are

considered community-audited and time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
CorkToken Protocol Smart Contracts

Platform AVAX / Solidity

File 1 CorkToken.sol

File 1 MD5 Hash B676FE4D9A7A3EE7A72BE997D0608677

File 2 Node.sol

File 2 MD5 Hash ACFFDECDF4E6FFF628F4E8651F2F63AA

File 3 Pair.sol

File 3 MD5 Hash E6EDED6794F2D9136FA9A99E45ACE3DB

Audit Date April 16th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 CorkToken.sol
● Name: Corkscrew

● Symbole: CORK

● Decimals: 18

● CorkToken contract has functions like: initialize,

mint, burn, balanceOf, etc.

YES, This is valid.

File 2 Node.sol
● Node contract has functions like: initialize,

setBlacklisted, withdraw, nodeInit, etc.

YES, This is valid.

File 3 Pair.sol
● Name: Joe LP Token

● Symbol: JLP

● Decimals: 18

● Minimum Liquidity: 1000

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 2 high, 2 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the CorkToken Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the CorkToken Protocol.

The CorkToken team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a CorkToken Protocol smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://corkscrew.financial which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://corkscrew.financial

AS-IS overview

CorkToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

4 owner read Passed No Issue
5 onlyOwner modifier Passed No Issue
6 renounceOwnership write access only Owner No Issue
7 transferOwnership write access only Owner No Issue
8 __ERC20_init internal access only

Initializing
No Issue

9 __ERC20_init_unchained internal access only
Initializing

No Issue

10 name read Passed No Issue
11 symbol read Passed No Issue
12 decimals read Passed No Issue
13 totalSupply read Passed No Issue
14 balanceOf read Passed No Issue
15 transfer write Passed No Issue
16 allowance read Passed No Issue
17 approve write Passed No Issue
18 transferFrom write Passed No Issue
19 increaseAllowance write Passed No Issue
20 decreaseAllowance write Passed No Issue
21 _transfer internal Passed No Issue
22 _mint internal Passed No Issue
23 _burn internal Passed No Issue
24 _approve internal Passed No Issue
25 _spendAllowance internal Passed No Issue
26 _beforeTokenTransfer internal Passed No Issue
27 _afterTokenTransfer internal Passed No Issue
28 initialize write Anyone can initialize

contract
Refer Audit

Findings
29 mint write Same function logic

with different name
Refer Audit

Findings
30 burn write The owner can burn

anyone’s token
Refer Audit

Findings
31 balanceOf read Passed No Issue
32 _transfer internal Passed No Issue
33 transferFrom write Passed No Issue
34 transfer write Passed No Issue

35 transferTax external Passed No Issue
36 resetContract external access only Owner No Issue
37 setApprove external Ambiguous Error

Message
Refer Audit

Findings
38 setApproveByOwner external access only Owner No Issue
39 airdropTo external Owner can mint

unlimited tokens,
Same function logic
with different name

Refer Audit
Findings

40 setBlacklisted write access only Owner No Issue
41 isBlacklisted read Passed No Issue

Node.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

4 owner read Passed No Issue
5 onlyOwner modifier Passed No Issue
6 renounceOwnership write access only Owner No Issue
7 transferOwnership write access only Owner No Issue
8 _transferOwnership internal Passed No Issue
9 __ReentrancyGuard_init internal access only

Initializing
No Issue

10 __ReentrancyGuard_init_
unchained

internal access only
Initializing

No Issue

11 nonReentrant modifier Passed No Issue
12 __ERC1155_init internal access only

Initializing
No Issue

13 __ERC1155_init_unchain
ed

internal access only
Initializing

No Issue

14 supportsInterface read Passed No Issue
15 uri read Passed No Issue
16 balanceOf read Passed No Issue
17 balanceOfBatch read Passed No Issue
18 setApprovalForAll write Passed No Issue
19 isApprovedForAll read Passed No Issue
20 safeTransferFrom write Passed No Issue
21 safeBatchTransferFrom write Passed No Issue
22 _safeTransferFrom internal Passed No Issue
23 _safeBatchTransferFrom internal Passed No Issue
24 _setURI internal Passed No Issue
25 _mint internal Passed No Issue

26 _mintBatch internal Passed No Issue
27 _burn internal Passed No Issue
28 _burnBatch internal Passed No Issue
29 _setApprovalForAll internal Passed No Issue
30 _beforeTokenTransfer internal Passed No Issue
31 _doSafeTransferAccepta

nceCheck
write Passed No Issue

32 _doSafeBatchTransferAc
ceptanceCheck

write Passed No Issue

33 _asSingletonArray write Passed No Issue
34 Blacklist modifier Passed No Issue
35 setBlacklisted write access only Owner No Issue
36 initialize write Anyone can initialize

contract
Refer Audit

Findings
37 setManager write access only Owner No Issue
38 withdraw write Critical operation

lacks event log
Refer Audit

Findings
39 setClaimFeePercentage write access only Owner No Issue
40 withdrawCork write access only Owner No Issue
41 nodeInit internal Passed No Issue
42 mint write Typing mistake Refer Audit

Findings
43 mintTo write access only Owner No Issue
44 bailOutMint write Critical operation

lacks event log
Refer Audit

Findings
45 setTradeActivate write access only Owner No Issue
46 safeTransferFrom write access only Owner No Issue
47 claim external Critical operation

lacks event log
Refer Audit

Findings
48 claimPartial external Critical operation

lacks event log
Refer Audit

Findings
49 claimById external Critical operation

lacks event log
Refer Audit

Findings
50 getClaimableCork read Passed No Issue
51 calculateClaimableAmou

nt
read Passed No Issue

52 calculateMainAmount write Passed No Issue
53 calculateSnowballAmount read Passed No Issue
54 sellableCork external Passed No Issue
55 getClaimFee read Passed No Issue
56 getClaimableCorkById read Passed No Issue
57 getClaimFeeById read Passed No Issue
58 getClaimFeeByValue read Passed No Issue
59 updateCollection write Critical operation

lacks event log
Refer Audit

Findings
60 addToCollection write Critical operation

lacks event log
Refer Audit

Findings
61 swapTokensForAVAX write Passed No Issue

62 resetContract external access only Owner No Issue
63 setTraderJoeDivideSide write access only Owner No Issue
64 getCorkPrice read Passed No Issue
65 getOwnedNodeCountByT

ype
read Passed No Issue

66 getNodeState read Passed No Issue
67 _getNextTokenID read Passed No Issue
68 _incrementTokenID write Passed No Issue
69 _amount2cork read Passed No Issue
70 setPresaleActive write Unused code Refer Audit

Findings
71 checkPresaleActive read Passed No Issue
72 getNodeROI read Passed No Issue
73 updateRewardInterval write access only Owner No Issue
74 deleteTo write access only Owner No Issue

Pair.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getReserves read Passed No Issue
3 _safeTransfer write Passed No Issue
4 initialize external Passed No Issue
5 _update write Passed No Issue
6 _mintFee write Passed No Issue
7 mint external Passed No Issue
8 burn external Passed No Issue
9 swap external Passed No Issue

10 skim external Passed No Issue
11 sync external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Owner can mint unlimited tokens: CorkToken.sol

There is no limit for minting tokens. Thus the owner can mint unlimited tokens to any

account.

Resolution: There should be a limit for minting or need to confirm, if it is a part of the plan

then disregard this issue.

(2) The owner can burn anyone’s token: CorkToken.sol

The owner can burn any users’ tokens.

Resolution: We suggest changing the code so only token holders can burn their own

tokens and not anyone else. Not even a contract creator.

Medium

(1) Claim Fee Percentage Limit is not set: Node.sol
The owner of the contract can set the individual percentage to any variable.This might

deter investors as they could be wary that these fees might one day be set to 100% to

force transfers to go to the contract owner.

Resolution: Consider adding a limit on fee percentage adjustment function.

Low

(1) Critical operation lacks event log: Node.sol
Missing event log for:

● claim

● claimPartial

● claimById

● withdraw

● bailOutMint

● addToCollection

● updateCollection

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Anyone can initialize contract:

CorkToken.sol

Node.sol

Anyone can initialize() function and make the owner itself.

Resolution: We suggest executing the initialize() function just after the deploy on mainnet

so that the deployer will be the owner..

(2) Same function logic with different name: CorkToken.sol

There are two functions "mint()" and "airdropTo()", In both functions internal logic is the

same, it's doing a mint token.

Resolution: Deployer has to confirm before deploying the contract to production.

(3) Multiple pragma: Pair.sol
There are multiple pragmas with different compiler versions.

Resolution: We suggest using only one pragma and removing the other.

(4) Unused code: Node.sol

There is an unused code comment.

Resolution: Remove unused commented code.

(5) Use latest solidity version: Pair.sol

Using the latest solidity will prevent any compiler level bugs.

Resolution: We suggest using version > 0.8.0.

(6) Ambiguous Error Message: CorkToken.sol

The mentioned error message does not explain exactly the error of the operation.

Resolution: As error messages are intended to notify users about failing conditions, they

should provide enough information so that appropriate corrections can be made to interact

with the system.

(7) Typing mistake: Node.sol

There is a typing mistake in requiring "enought".

Resolution: Correct the spelling in the error message.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setBlacklisted: The Node owner can set the address in blacklisted.

● setManager: The Node owner can set the manager address.

● setClaimFeePercentage: The Node owner can set claim fee percentage value.

● withdrawCork: The Node owner can withdraw cork from this contract.

● mintTo: The Node owner can mint cork from wallet.

● setTradeActivate: The Node owner can set trade active status.

● updateCollection: The Node owner can update collection values like: id, title, price,

maxSupply, firstRun, trueYield, snowball, maxSnowball, maxDailySell,

currentSupply, purchaseLimit.

● addToCollection: The Node owner can add a new collection.

● resetContract: The Node owner can reset pair address, cork address, swap

address.

● setTraderJoeDivideSide: The Node owner can update trader joe divideside status.

● setPresaleActive: The Node owner can update presale active status.

● updateRewardInterval: The Node owner can update the reward interval value.

● mint: The CorkToken owner can mint an amount from the address.

● burn: The CorkToken owner can burn an amount from the address.

● resetContract: The CorkToken owner can reset pair address, swap address.

● setApproveByOwner: The CorkToken owner can update approved status by owner.

● airdropTo: The CorkToken owner can airdrop the amount from the address.

● setBlacklisted: The CorkToken owner can update addresses in blacklist.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts. So,
the smart contracts will be ready for the mainnet deployment after fixing or
acknowledging those issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - CorkToken Protocol

CorkToken Diagram

Node Diagram

Pair Diagram

Slither Results Log

Slither log >> CorkToken.sol

Slither log >> Node.sol

Slither log >> Pair.sol

Solidity Static Analysis

CorkToken.sol

Node.sol

Pair.sol

Solhint Linter

CorkToken.sol

CorkToken.sol:128:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:141:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:153:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:170:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:182:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:278:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:301:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:327:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:692:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:725:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:774:18: Error: Parse error: missing ';' at '{'
CorkToken.sol:825:22: Error: Parse error: missing ';' at '{'

Node.sol

Node.sol:137:18: Error: Parse error: missing ';' at '{'
Node.sol:150:18: Error: Parse error: missing ';' at '{'
Node.sol:162:18: Error: Parse error: missing ';' at '{'
Node.sol:179:18: Error: Parse error: missing ';' at '{'
Node.sol:191:18: Error: Parse error: missing ';' at '{'
Node.sol:287:18: Error: Parse error: missing ';' at '{'
Node.sol:310:18: Error: Parse error: missing ';' at '{'
Node.sol:336:18: Error: Parse error: missing ';' at '{'
Node.sol:1132:18: Error: Parse error: missing ';' at '{'
Node.sol:1174:22: Error: Parse error: missing ';' at '{'
Node.sol:1299:18: Error: Parse error: missing ';' at '{'
Node.sol:1333:22: Error: Parse error: missing ';' at '{'

Pair.sol

Pair.sol:4:1: Error: Compiler version =0.6.12 does not satisfy the r
semver requirement
Pair.sol:23:28: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:24:28: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:25:27: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:30:20: Error: Variable name must be in mixedCase
Pair.sol:45:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Pair.sol:125:29: Error: Avoid to make time-based decisions in your
business logic
Pair.sol:172:5: Error: Explicitly mark visibility of state

Pair.sol:314:45: Error: Avoid using low level calls.
Pair.sol:362:40: Error: Avoid to make time-based decisions in your
business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

