@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: CorkToken Protocol
Website: https://corkscrew.financial
Platform: AVAX

Language: Solidity

Date: April 16th, 2022

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 19
(@ 0] 1Y/ =1 1 T To [o] 0T) 20
DISCIAIMEIS ... e 22
Appendix
o Code FIoW Diagramououoiiii s 23
o Shther RESUIS LOGuiiiiii e 26
e Solidity staticanalysis ... 31
® SOININt LiNtEr oo 37

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Corkscrew team to perform the Security audit of the
CorkToken Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 16th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The Cork Token Contracts have functions like mint, burn, airdropTo, isBlacklisted,
setBlacklisted, Blacklist, initialize, bailOutMint, claim, swap, skim, sync, _mintFee, etc. The
Cork Token contract inherits the ERC20, Ownable, SafeMath, ERC1155Upgradeable,
OwnableUpgradeable, ReentrancyGuardUpgradeable, SafeMathUpgradeable standard
smart contracts from the OpenZeppelin library. These OpenZeppelin contracts are

considered community-audited and time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
CorkToken Protocol Smart Contracts

Platform AVAX | Solidity
File 1 CorkToken.sol
File 1 MD5 Hash B676FE4D9A7A3EE7A72BEQ97D0608677
File 2 Node.sol
File 2 MD5 Hash ACFFDECDF4E6GFFF628F4E8651F2F63AA
File 3 Pair.sol
File 3 MD5 Hash E6EDED6794F2D9136FA9A99E45ACE3DB
Audit Date April 16th,2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 CorkToken.sol YES, This is valid.
e Name: Corkscrew
e Symbole: CORK
e Decimals: 18
e CorkToken contract has functions like: initialize,

mint, burn, balanceOf, etc.

File 2 Node.sol YES, This is valid.
e Node contract has functions like: initialize,

setBlacklisted, withdraw, nodelnit, etc.

File 3 Pair.sol YES, This is valid.
e Name: Joe LP Token
e Symbol: JLP
e Decimals: 18
e Minimum Liquidity: 1000

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 2 high, 2 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed

Critical operation lacks event log
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set

“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the CorkToken Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the CorkToken Protocol.

The CorkToken team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a CorkToken Protocol smart contract code in the form of a file. The hash of

that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website htips://corkscrew.financial which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://corkscrew.financial

AS-IS overview

CorkToken.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable init_unchain internal access only No Issue
ed Initializing
4 | owner read Passed No Issue
5 | onlyOwner modifier Passed No Issue
6 | renounceOwnership write access only Owner No Issue
7 | transferOwnership write access only Owner No Issue
8 | __ERC20 init internal access only No Issue
Initializing
9 | _ERC20 _init_unchained internal access only No Issue
Initializing
10 | name read Passed No Issue
11 | symbol read Passed No Issue
12 | decimals read Passed No Issue
13 | totalSupply read Passed No Issue
14 | balanceOf read Passed No Issue
15 | transfer write Passed No Issue
16 | allowance read Passed No Issue
17 | approve write Passed No Issue
18 | transferFrom write Passed No Issue
19 | increaseAllowance write Passed No Issue
20 | decreaseAllowance write Passed No Issue
21 | transfer internal Passed No Issue
22 | mint internal Passed No Issue
23 | burn internal Passed No Issue
24 | approve internal Passed No Issue
25 | spendAllowance internal Passed No Issue
26 | beforeTokenTransfer internal Passed No Issue
27 | afterTokenTransfer internal Passed No Issue
28 | initialize write Anyone can initialize Refer Audit
contract Findings
29 | mint write Same function logic Refer Audit
with different name Findings
30 | burn write The owner can burn Refer Audit
anyone’s token Findings
31 [balanceOf read Passed No Issue
32 | transfer internal Passed No Issue
33 | transferFrom write Passed No Issue
34 | transfer write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

35 | transferTax external Passed No Issue
36 | resetContract external access only Owner No Issue
37 | setApprove external Ambiguous Error Refer Audit
Message Findings
38 [setApproveByOwner external access only Owner No Issue
39 | airdropTo external Owner can mint Refer Audit
unlimited tokens, Findings
Same function logic
with different name
40 | setBlacklisted write access only Owner No Issue
41 | isBlacklisted read Passed No Issue
Node.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchain internal access only No Issue
ed Initializing
4 | owner read Passed No Issue
5 | onlyOwner modifier Passed No Issue
6 | renounceOwnership write access only Owner No Issue
7 | transferOwnership write access only Owner No Issue
8 transferOwnership internal Passed No Issue
9 | _ ReentrancyGuard_init internal access only No Issue
Initializing
10 | _ ReentrancyGuard_init_ | internal access only No Issue
unchained Initializing
11 | nonReentrant modifier Passed No Issue
12 | _ ERC1155 _init internal access only No Issue
Initializing
13 | _ ERC1155_init_unchain | internal access only No Issue
ed Initializing
14 | supportsinterface read Passed No Issue
15 | uri read Passed No Issue
16 | balanceOf read Passed No Issue
17 | balanceOfBatch read Passed No Issue
18 | setApprovalForAll write Passed No Issue
19 | isApprovedForAll read Passed No Issue
20 | safeTransferFrom write Passed No Issue
21 | safeBatchTransferFrom write Passed No Issue
22 | safeTransferFrom internal Passed No Issue
23 | safeBatchTransferFrom internal Passed No Issue
24 | setURI internal Passed No Issue
25 | mint internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

26 | mintBatch internal Passed No Issue
27 | burn internal Passed No Issue
28 | burnBatch internal Passed No Issue
29 | setApprovalForAll internal Passed No Issue
30 | beforeTokenTransfer internal Passed No Issue
31 | _doSafeTransferAccepta write Passed No Issue
nceCheck
32 | doSafeBatchTransferAc write Passed No Issue
ceptanceCheck
33 | asSingletonArray write Passed No Issue
34 | Blacklist modifier Passed No Issue
35 | setBlacklisted write access only Owner No Issue
36 | initialize write Anyone can initialize Refer Audit
contract Findings
37 [setManager write access only Owner No Issue
38 | withdraw write Critical operation Refer Audit
lacks event log Findings
39 [setClaimFeePercentage write access only Owner No Issue
40 | withdrawCork write access only Owner No Issue
41 [nodelnit internal Passed No Issue
42 | mint write Typing mistake Refer Audit
Findings
43 | mintTo write access only Owner No Issue
44 | bailOutMint write Critical operation Refer Audit
lacks event log Findings
45 | setTradeActivate write access only Owner No Issue
46 | safeTransferFrom write access only Owner No Issue
47 | claim external Critical operation Refer Audit
lacks event log Findings
48 | claimPartial external Critical operation Refer Audit
lacks event log Findings
49 | claimByld external Critical operation Refer Audit
lacks event log Findings
50 [getClaimableCork read Passed No Issue
51 | calculateClaimableAmou read Passed No Issue
nt
52 | calculateMainAmount write Passed No Issue
53 | calculateSnowballAmount read Passed No Issue
54 | sellableCork external Passed No Issue
55 | getClaimFee read Passed No Issue
56 | getClaimableCorkByld read Passed No Issue
57 | getClaimFeeByld read Passed No Issue
58 | getClaimFeeByValue read Passed No Issue
59 | updateCollection write Critical operation Refer Audit
lacks event log Findings
60 [addToCollection write Critical operation Refer Audit
lacks event log Findings
61 | swapTokensForAVAX write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

62 | resetContract external access only Owner No Issue
63 | setTraderJoeDivideSide write access only Owner No Issue
64 | getCorkPrice read Passed No Issue
65 | getOwnedNodeCountByT read Passed No Issue
ype
66 | getNodeState read Passed No Issue
67 | getNextTokenlID read Passed No Issue
68 | incrementTokenlD write Passed No Issue
69 | amount2cork read Passed No Issue
70 | setPresaleActive write Unused code Refer Audit
Findings
71 | checkPresaleActive read Passed No Issue
72 | getNodeROI read Passed No Issue
73 | updateRewardInterval write access only Owner No Issue
74 | deleteTo write access only Owner No Issue
Pair.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getReserves read Passed No Issue
3 safeTransfer write Passed No Issue
4 | initialize external Passed No Issue
5 update write Passed No Issue
6 mintFee write Passed No Issue
7 | mint external Passed No Issue
8 | burn external Passed No Issue
9 [swap external Passed No Issue
10 | skim external Passed No Issue
11 | sync external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

(1) Owner can mint unlimited tokens: CorkToken.sol

function airdropTo(address to, uint256 amount) external onlyoOwner(){
~mint(to, amount);

h

There is no limit for minting tokens. Thus the owner can mint unlimited tokens to any

account.

Resolution: There should be a limit for minting or need to confirm, if it is a part of the plan

then disregard this issue.

(2) The owner can burn anyone’s token: CorkToken.sol

function burn(address account, uint256 amount) public onlyOwner {
_burn(account, amount);

}

The owner can burn any users’ tokens.

Resolution: We suggest changing the code so only token holders can burn their own

tokens and not anyone else. Not even a contract creator.

Medium

(1) Claim Fee Percentage Limit is not set: Node.sol
The owner of the contract can set the individual percentage to any variable. This might
deter investors as they could be wary that these fees might one day be set to 100% to

force transfers to go to the contract owner.

Resolution: Consider adding a limit on fee percentage adjustment function.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) Critical operation lacks event log: Node.sol
Missing event log for:

e claim

e claimPartial

e claimByld

e withdraw

e bailOutMint

e addToCollection

e updateCollection

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Anyone can initialize contract:

CorkToken.sol

function initialize(uint256 initialSupply) initializer public
__Ownable init();
___ERC20 _init("cCorkscrew”, "CORK");
_mint(msg.sender, initialsupply * 18**decimals());

==

b
Node.sol

function initialize() initializer public {
__Ownable init();
___ERC1155_init("https://example.com/{id}.json™);
nodeInit();
_percentRate = 18%*3g;
_rewardInterval = 1 days;
_periodDays = 38;
claimFeePercentage = 1@;

¥

Anyone can initialize() function and make the owner itself.
Resolution: We suggest executing the initialize() function just after the deploy on mainnet

so that the deployer will be the owner..

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Same function logic with different name: CorkToken.sol

function airdropTo(address to, uint256 amount) external onlyOwner(){
_mint(to, amount);

h

function mint(address to, uint256 amount) public onlyOwner {
_mint(to, amount);

h

There are two functions "mint()" and "airdropTo()", In both functions internal logic is the

same, it's doing a mint token.

Resolution: Deployer has to confirm before deploying the contract to production.

(3) Multiple pragma: Pair.sol

There are multiple pragmas with different compiler versions.

Resolution: We suggest using only one pragma and removing the other.

(4) Unused code: Node.sol

function setPresaleActive(bool isPresaleActive) public onlyOwner {
//require(!isPresaleActive, "Presale was already activated");
isPresaleActive = isPresaleActive;

There is an unused code comment.

Resolution: Remove unused commented code.

(5) Use latest solidity version: Pair.sol

pragma solidity = 0.6.12;

Using the latest solidity will prevent any compiler level bugs.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest using version > 0.8.0.

(6) Ambiguous Error Message: CorkToken.sol

require(from == swapAddress, "hmmm... what doing?");

require(
ISwapCork(swapAddress).getSwapAvailable(),
"hmmm. .. what doing?"

function setlApprove(
address owner,
address spender,
uint256 amount
)} external override {
require{msg.sender == swapAddress, “"hmmm... what doing?"};
_approve(owner, spender, amount);

The mentioned error message does not explain exactly the error of the operation.

Resolution: As error messages are intended to notify users about failing conditions, they

should provide enough information so that appropriate corrections can be made to interact
with the system.

(7) Typing mistake: Node.sol

function mint(uint256 _nodeType, wint256 _amount, string calldata _uri) public Blacklist {
require(
collection[_nodeType].-currentSupply <=
collection[_nodeType].maxSupply,
"all of this ceollection are purchased™

);

require(
collection[_nodeType].currentSupply + _amount <=
collection[_nodeType].maxSupply,
"there is not enought nodes to sell”

) ; T:*“nk

There is a typing mistake in requiring "enought”.

Resolution: Correct the spelling in the error message.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e setBlacklisted: The Node owner can set the address in blacklisted.

e setManager: The Node owner can set the manager address.

e setClaimFeePercentage: The Node owner can set claim fee percentage value.

e withdrawCork: The Node owner can withdraw cork from this contract.

e mintTo: The Node owner can mint cork from wallet.

e setTradeActivate: The Node owner can set trade active status.

e updateCollection: The Node owner can update collection values like: id, title, price,
maxSupply, firstRun, trueYield, snowball, maxSnowball, maxDailySell,
currentSupply, purchaseLimit.

e addToCollection: The Node owner can add a new collection.

e resetContract: The Node owner can reset pair address, cork address, swap
address.

e setTraderJoeDivideSide: The Node owner can update trader joe divideside status.

e setPresaleActive: The Node owner can update presale active status.

e updateRewardInterval: The Node owner can update the reward interval value.

e mint: The CorkToken owner can mint an amount from the address.

e burn: The CorkToken owner can burn an amount from the address.

e resetContract: The CorkToken owner can reset pair address, swap address.

e setApproveByOwner: The CorkToken owner can update approved status by owner.

e airdropTo: The CorkToken owner can airdrop the amount from the address.

e setBlacklisted: The CorkToken owner can update addresses in blacklist.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We had observed some issues in the smart contracts. So,
the smart contracts will be ready for the mainnet deployment after fixing or

acknowledging those issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

® ISwapCorik

Code Flow Diagram - CorkToken Protocol

CorkToken Diagram

© CorkToken

ICorkToken
ERC20Upgradeable
CwnableUpgradeable

mSafeMathUpgradeable for uint256

@ swapCorkFor&WAaX()
@ O getSwaplvailable()
@ removeSwapAvailable()

< address==bool _isBlackListed
O address swapAddress

< address pairAddress

@ initialize()

@ mirt()

@ burn()

@ QbalanceOf()

< _transfer()

@ transferFrom()

@ transfer()

@ transferTax()

@ resetContract()

@ sethpprove()

@ setApproveByOwner()
@ airdropTo()

4 @ setBlacklisted()

@ QisBlacklisted()

_,'Iifor uint256

@ OwnahlelUpgradeable

O address _owner
O uint256 _ gap

Initializable
ContextlUpgradeable

]
I
I
I
7 @ SafeMathUpgradeable
@ ICorkToken
© OtryAdd()
@ transferFrom() g E\&ryau?()
L] C\.balanceof() o cu:::DiL\ig
@ mirt() < QiryMod()
@ burn() © Qadd()
@ transfer() © Gysub()
@ setApprovel) < aumulf) @
@ transferTax() i
O Audiv()
< Qumod()

< __ Ownable_init()
< __ Ownable_init_unchained()

@ renouncelwnership()
@ transferOwnership()
< _transferOwnership()

Sowner()

@ ERC20Upgradeable

Initializable
Contextlipgradeable

IER C20Upgradeable

IER C20Metadatalpgradeable

O address==uint256 _balances

O address=>mapping address=>uint256 _allowances
O wirt256 _totalSupply

0O string _name

O string _symbol

O uwirt256 _ gap

< __ERC20_init()

< __ERC20_init_unchained()
@ Qname()

@ Qsymbol()

@ Qeecimals()

@ QtotalSupply()

@ QbalanceOf()

@ transfer()

@ Quallowance()

@ approvel)

@ transferFrom()

@ increasefllowance()

@ decreaselllowance()
< _transfer()

< _mirt()

< _urn()

< _approve()

< _spendAllowancel)

<> _beforeTokenTransfer()
< _afterTokenTransfer()

© ContextUpgradeable

Initializable

O uint256 _ gap

@ _ Cortesxt_init()

© _ Cortext_init_unchained()
< ,_msgSender()

< @_msgData()

7 T

(@ ierc2ovetadataUparadeable

IERC20Upgradeable

@ Qname()
@ Qsymbol()
@ Qelecimals()

(©) nitializable

O uint8 _intialized
O bool _initializing

< _disablelntializers()
B _setinitializedersion()

@ |ERC20Upgradeable

@ QtotalSupply()
@ QhbalanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

© transfer()
© transferFromi)
© QDOMAR,

(@) corkToken

© QUPERMIT_TYPEHASH()
© Qnonces()

® permit()

© QUNIMUN_HOUDITY()
© Qfactory()

© Quokend()

® Qiokenl()

°

@ transferFrom()
© Qpalancedr()
® mint()

® burn()

© transter()

© setApprove()

 transferTax()

© QprceOCumaiveLast)
© Qpricel CumulaiiveLast()
® Qulast()

. ISwapCork

@ swapCorkFor AVAX()
°)

. INOBeERC1155|

)

Node Diagram

@©) modeerc1ss

ERC1155Upgradeable
INodeERC1155
OwnableUpgradeable
ReentrancyGuardUpgradeable

#nSafeMathUpgradeable for uint258

© bool isPresaleActive
© bool isTradeActive

© booltraderdoeDivideSide:

© address manager

© address palrAddress

© address corbAddress

© address swapAddress

O unt256 _percentRate

o currentTokeniD

O unt256 rewardnterval

O uinl255 periodDays

© LI256 clainF eePercertage
© CalleclionStruct collection

setblachisted()

irkialize()

sethlanager()

withcraw()

© setClanFesPercentagel)

withdrawCork()

radeint))

© mint)

© mintTo)

© bailount)

© setTradeactivate()

© safeTransterFrom()
clain

© QealeulateCaimable Amount(y
© QealculsteMainAmount

= QealeulateSnowbalAmount()
© QssllabieCork()

© QgsiClamFes()

© QgetClsmableConkByid()

© QgetClamFesByu)
QgetClainFeByValus()
dateCollection)

5
&

allection)
wapTokensForAVAX()
© resatContract()
© setTraderoeDivideSide()
® QugetCorkPrice()
® QgetOwnedhodeCountByType()
© QgethiodeState()
= Q_gethextTokeniD()
® _incrementTokeniD()

® updateRewardnterval)

'
Jtor uint256 |

@ OwnableUpgradeable

© QuiryAdd()

‘ Iniializable
| Contextlpgradeable

‘ O gddress _owmer
O uini258 _oap

& _Ownable_ink))
© —ownaisie_in2_uinchainecl()
@ Qowner()

@ renaunceQwnership()
 transferOwnership(}

© _iransterOwnership()

@ ReentancyGuardupgradeable | |

O unt2%5_NOT ENTERED
O Uni255_ENTERED

Initializable |

% _ReentrancyGuard_int() (
© —ReenirancyGuard_ini_unchained()

(© erciissupgrageavie

Initializable
Contextipgradeabie.
ERC169Upgradeable
IERC1155Upgradeable

IERC1 155 MetadatalRipgradeable

maddressUpgrageable for aadress

O Lirt258=>mapping address=>uirk255 _balances
o

O string _un
O urt2ss _gap

© __ERCI155_int()

© __ERC1155_int_unchained()
® Qsupportsinterface()

g
]
s
)
Fi

oy
© _setApprovalFora)

© ToeforeTokenTransfer()
© ZamerTokenTranster()

B _cloSateTransfer Acceptance Check()
B _coSateBatchTransferAcceptanceChech()

B Q_assingletonArray()

| for address \
) \
) \ \
\ / 1 \ \
\ | / . \
@r ntextL V / ©ERC|E§Upgmd-xh\s
Intializable / Intializable
= Qstomac) (@) ierct
o g g ::n:z:::z; / IERC1155Upgradeable
& _context_intg) © functionCalvinValue() / =P ® QuQ
© ~Context_jnk_unchained) QunctionStaticCall) © _ERC1ES_ni()
© QmsgSenderl) © QuerifyCalFesul() / © ERC165_nk_unchained()
© Q_msgData() / © Qupportartertace()
\ B y, ‘

ivd

EAN © Initializable

O uints_itilized
O bool_intiaizing

© _disavientaizers()
B _setinitialized\Version()

S N VA
(@ 1zre1155Upgraceane

@ erct

IERC165Upgradeable

© Qalance0f()

NERCY 1SR celved()
ct

‘setApprovalFor Al)
)

. IERC165Upgradeable|

© Qsupportsinterface()

°
© safeBatchTransferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Math

< auming)
< Qusgrti)

Pair Diagram

@ JERC20.J0e

@ IJoeFactory

@ Qname()

@ Qsymbol()

@ Qelecimals()
@ StotalSupply()
@ QhalanceOfi)
@ Qallowance()
@ approvel)

@ transfer()

@ transferFrom()

@ QfeeTo()

@ O feeToSetter()
@ Qmigrator()

@ QuetPair()

@ QallPairs()

@ QallPairsLengthi)
@ createPair()

@ setFeeTol)

@ getFeeToSetter()
@ setMigrator()

@ lJoeCalles

@ IMigrator

@ joeCall()

© QdesiredLiguidity()

@ JoePair

JoeERC20

inSafeMathdoe for wint256
Q1123112 for wint224

© uint256 MINIMUN_LIQUIDITY
O hytesd4 SELECTOR

O address factory

2 address tokenO

< address token

O uirt112 reserved

O uint112 reserved

O uirt32 block TimestamplLast
O uint256 price0Cumulativelast
O uirnt256 price] Cumulativelast
© uint256 kLast

O uint256 unlocked

@ QgetReserves()
_safeTransfer()

_ constructor__()
initializer)

_update()
_mintFee()

i
\
Y
3

]
L]
L]
]
]
L]
L]
L]
L]
L]

* for uint224

© JOIDIEERCEU

! for wint256

inSafeMathJoe for wint256

string name

string symbol
uintd decimals

uirnt256 tetalSupply

address=>uint256 balanceOf
address=>mapping address=>uint256 allowance
bytes32 DOMAIN_SEPARATOR

bytes32 PERMIT_TYPEHASH

address=>uint258 nonces

3

@UOH?XH?

O uint224 @112

]
]
L]
L]
L]
L]

_approvel()
_transfer()
approve()
transfer()
transferFrom()
permit()

< Qencode()
< Quodiv()

q P

-
i

F
¢ for wint256

@ SafeMathJoe

< Qadd()
< Qsub()
< amulp)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

CorkToken.setAppr
Ownab Lel . : (
CorkToken.sethy s 255, U1 6 (Cork = #987) shadows:
- Ownable el (#4683 -4 _' >
Refer e: https: i b. C f ither/wik i/Detec on#local -variable-sha
INFO:Detectors:
Reentrancy in CorkToken._ nsfer(address, ress,uint256) (CorkToken.sol#921-945):
External calls:
- ISwapC -|k|S\GL 255) . removeSwapAvailable() (CorkToken.sol#943)
vent e = z (
'rarsfer(T|ur,tu,ar6Lrt‘ 1 1
- super._transf i . m) «Token.sol#944)
Reference: 3 i o crytic ither/wiki/Detector cumentation#ree cy-vulnerabilities-3
INFO:Detectors:
_ Context_init() (CorkT

SafeMathUp
SafeMathUp
SafeMathUp
SafeMathUp
SafeMathup
safeMathup
safe FatFLr
Refere
INFO: Detectors
8. essitates a version too recent to be trusted. Consider deploying with 8.6.12
ment
/slither/wik i/Detector-Documentation#incorrect-versions-of-solidity

dCase
is not in mixedCase

Function
Function

TT)

w

mixedCase
is not in mixedCase

W W
i e
Mmoo o

is not in mixedCase
) is not in mixedCase

(is not in CapWo
.resetCo |tra-tl =) 1 dress (CorkToken. #0969) is not in mixedCa
.resetContract(255, 255) 1 dress (CorkT . #969) is not in mixedCa
lsBlc-kLlst (T .) ot in mixedCase
/ etector- Documentation#conformance-to-solidity-naming
INFO: Detectors
u\rall elpgradeabl gap (CorkToken.sol#515) is never used in CorkToken (Cork
ence: Itt|s i h.C y /slither/wiki/Detector-Documentat ion#unuse
INFD Detectors
renounc
rkToken.sol#48
transfero
»|s|1placcr‘ss (CorkToken.sol#495-
name() SF-LI. be a
- ERC208Up eab = IC“|k oken.sol#549-551)
symbol{) shoul cla
IC“|k oken.sol#
totalsuppl
- ERC20Up
approve(address, Lllt
- ERC2
increaseAllos cef , C =d exte :
- ERC ble.1 2 A ance ess,uint256) (CorkToken
owance) axte :
- ERC2¢ eable. 2aseh ance({address,uint256) (CorkToken
initialize(uin ould be declsa »/t~|ra

) should be declared
1|1t1=112clL1|t 56)

] ared ~/t»|ra
en. isBlacklisted(ess)
Itt 5: ithub.com/cryt ither/wi cumenta tl-r#LL|11-—TLF tion-that-could-be-declared-external
INFO:SLither: CorkToken sol analyzed (19 contracts thh ?5 detectors), 53 result(s) found
INFO:Slither: h Lt ctor b 1integ

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> Node.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:
NodeERC1155.mint{uint256 ,uint256,string)._uri fNDje.sol#lE%S) shadows

- ERC1155Upgradeable. uri (Node.sol#981) (state variable)
NDdeERCllES.wint'o[address[],uintEEE[],uint;EC[] wint256[],string[])._uri {Node.sol#1709) shadows

- ERC1155Upgradeable._uri (Node.sol#981) (state variable)
NodeERC1155.bailoutMint{uint256,uint256 ,uint256,string)._uri (Node.sol#1745) shadows

- ERC1155Upgradeable._uri (Node.sol#981) (state variable)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
NodeERC1155.setManager(address)._manager (Node.sol#1545) lacks a zero-check on

- manager = address(_manager) (Node.sol#1546)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
NodeERC1155.safeTransferFrom(address,address,uint256,uint256,bytes) (Node.sol#1806-1834) has external calls inside a loop:
orkToken.transfer(from,claimableCork) iNDde.sol#loZ%‘
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-1inside-a-loop
INFO:Detectors:
Variable 'ERCllSELpgrajAabln dosafeTransferAcceptanceCheck(address,address,address,uint256,uint256,bytes).response (Node.so
1#1425)' 1in ERC1155Upgradeable. dosaf e'ransferﬂcceptancecheckiaddress,address,address,uintzSE,uint 56,bytes) (Node.sol#14
1435) thQHtlallv used before declaration: response != IERC1155ReceiverUpgradeable.onERC1155Received.selector (Node.sol#1426

Variable 'ERC1155Upgradeable. _doSafeTransferAcceptanceCheck({address,address,address,uint256,uint256,bytes).reason (Node.sol#
1428)' 1in ERC1155Upgradeable._doSafeTransferAcceptanceCheck({address,address,address,uint256,uint256,bytes) (Node.sol#1416-14

35) potentially used before declaration: revert{string)(reason) (Node.sol#1438)

Variable 'ERC1155Upgradeable._doSafeBatchTransferAcceptanceCheck(address,address,address,uint256[],uint256[],bytes). response
{Node.sol#1447)' in ERC1155Upgradeable. doSafeBatchTransferAcceptanceCheck({address,address,address,uint256[],uint256[],byte

s) {Node.sol#1437-1458) potentially used before declaration: response != IERC1155ReceiverUpgradeable.onERC1155BatchReceived.

selector (Node.sol#1449)

Variable 'ERC1155Upgradeable._doSafeBatchTransferAcceptanceCheck(address,address,address,uint256[],uint256[],bytes). reason |

Node.sol#1452)' in ERC1155Upgradeable._doSafeBatchTransferAcceptanceCheck(dress,address,address,uintEEE[],uintzEE[],bytes}
(Node.sol#1437-1458) potentially used before declaration: revert(string)(reason) (Node.sol#1453)

Variable 'NodeERC1155.getCorkPrice().Re {Node.sol#2132)' 1in NodeERC1155.getCorkPrice() (Mode.sol#21308-2140) potentially us

ed before declaration: {Res8,Resi) IJoePair(pairAddress).getReserves() ode.sol#2136)

Variable 'NodeERC1155.getCorkPrice().Resl (Node.sol#2132)' in NDjAERC11==.gntCD|kP|ical} (Node.sol#2130-2148) potentially us

ed before declaration: (Res®,Resl) = IJoePair{pairAddress).getReserves() (Node.sol#2136)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pre-declaration-usage-of-local-variables

INFO:Detectors:
Reentrancy in NodeERC1155.bailOutMint{uint256,uint256,uint256,string) (Node.sol#1741-1796
External calls:
- _mint(_msgSender(),nodeType,amount,) (Node.sol#1778)
- IERC1155Receiv QILpglanabIQ' 3nERC1155RQc¢ivediDperator,frow,id,awount,data} {Node.sol#1425-1433)
State wvariables written after th=
- _incrementTokenID() (Node.sol#1722)
- _currentTokenID ++ [NDde.sol#ElﬁT)
Reentrancy in NodeERC1155.mint{uint256,uint256,string) (Node.sol#1638-1707):
External calls:
- corkTeken.transferFrom(_msgSender(),address(this),cellection[_nodeType].price * _amount / 2) (Node.sol#1677
- corkToken.transferFrom(_msgSender(),address({this),collection[_nodeType].price * _amount) (Node.sol#1633-16
State variables written after the call(s):
- _incrementTekenID() (Node.sol#1692)
- currentTokenID ++ (Node.sol#2167)
Reentrancy in NodeERC1155.mintTo{address[],uint256[],uint256[],uint256[],string[]) (Node.sol#1789-1739):
External calls:
- _mint{to[i1].,_nodeType[1],1.) (Node.sol#1711)
- IERC1155ReceiverUpgradeable{to).on ived(operator,from, id,amount.data) (Node.sol#1425-1433
State variables written after the call(s):
- _incrementTokenID() (Node.sol#1714)
- _currentTokenID ++ (Node.sol#2167)
collection[nodeT ypel[il]. culléntfuppl' ++ (Node.
nodestate[_id].purchaser = to[i] (Node.sol#1715)
nodeState[_id].nodeType = _nodeType[i] (Node.sol#1716)
nodestate[_id].purchasedat = i
nodeState[id].purchasedAt = mintDate[1] {(MNode.sol#1721)
nodeState[_id].snowl At = block.timestamp (Node.sol#1725)
nodeState[_id].snowballAt = claimDate[1] (Node.sol#1727)
nodeState[_id].uri = _uri[i] (Node.sol#1)
- ownedModes[to[i]].push(_id) (Node.sol#17
Reentrancy in NodeERC1155.safeTransferFrom{address,address,uint256,u1nt256,bytes) (Node.sol#1306-1334):
External calls:
- super.safeTransferFrom{ from,to, id,amount,data) (Mode.sol#1289)
- IERC1155Receive Lpglajéablélt)-)nER(llEERACA1 red(operator, from, id, amount,data) (Node.sol#1425-
State wvariables written after the call(
- h)jéctaté[)\héjN)jés[Tl)w][1]] Sh)\ballut = block.timestamp (Node.sol#1828)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in NodeERC1155.bailOutMint{uint256,uint256,uint256,string) (Node.sol#1741-1796
External calls:
- _mint({_msgSender(),nodeType,amount,) (Node.sol#1778)
- IERC1155ReceiverUpgradeable(to).onERC1155Rece1ved{operator,from, id,amount,data) (Node.sol#1425-1433)
Event emitted after the call(s
- URI{_uri,_1id) (Node.sol#1l
Reentrancy 1in NodeERC1155.mint{uint 6,uint256,string) {Node.sol#16328-1707) :
External calls:
- corkToken.transferFrom{_msgSender(),address(this),collection[_nodeType].price * _amount / 2) (Node.sol#1677
- corkToken.transferFrom{_msgSender(),address{this),collection[_nodeType].price * _amount) {Node.sol#1683-168
Event emitted after the call(s
- URI{_uri,_id) (Node.sol#1l
Reentrancy in NodeERC1155.mint{uint256,uint256,string) (Node.sol#1638-17087):
External calls:
- corkToken. transfélFl)Wl _msgSender(),address{this),collection[_nodeType].price * _amount / 2) (Node.sol#167
-t Te n.transferFrom{_msgSender(), addressithls),c llection[_nodeType].price * _amount) (Node.sol#1633-1637)
- _mint{_msgSender(),_n b amount,) (Node.sol#17
- IERC1155Recei C éablélt)-.onERC1155Rec ed(operator,from, id,amount,data) (Node.sol#1425-1433)
Event emitted after the callis):
- TransferSingle(operator,address(8),to,id, amount) (Node.sol#12
- _mint{_msgSender odeType, amount,
Reentrancy in NodeERC1155.mintTo(adc |=ss[] uint256([], ulnt‘.;[],ulntEEG[],strlng[]) (Node.sol#1789-1739):
External calls:
- _mint{to[1],_ nodeType[i],1.,) (Node.sol#1711)
- IERC1155ReceiverUpgradeable(to).onERC1155Received({operator, from, id,amount,data) (Node.sol#1425-1433)
Event emitted after the call(s
- URI{ _uri[i],_1id) (Node.sol#1733)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
NodeERC1155.bailoutMint{uint256,uint256,uint256,5tring) (Node.sol#1741-1796) uses timestamp for comparisons
Dangerous comparison
- require(bool,string)(claimableCork == wastedCork,claimable cork is less than price) (Mode.sol#1754-1757)
- wastedCork = ClalﬁaleC)lk {Node .sol#1773)
ModeERC1155.claim() (Node.sol#1840-1862) uses timestamp for comparisons
Dangerous cCoOmMparisons:

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ModeERC11 calculateMainAmount(uint256,uint256,uint256,uint256,uint256) (Node.sol#1969-1995) uses timestamp for comparisons
Dangerous comparisons:
- _lastedMainDays = _roiTime (Node.sol#1972)
- {_lastedMainDays - _neClaimDa) _roiTime INDjé sol#
NodeERC1155.calculatesSr alla nt{uint256 nt256]] iNDde.sol#lQQ?—EDZl) uses timestamp for comparisons
Dangerous comparisons:
- _lastedSnowballDays = _roiTime (Node.sol#
- 1 == lastedSnowballDays (Node.sol#
Reference: https://github. CDWfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#block-timestamp
INFO:Detectors:
AddressUpgradeable.verifyCallResult(bool.bytes.string) (Node.sol#507-527) uses assembly
- INLINE ASM (Node.sol#519-522)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
MNodeERC1155.safeTransferFrom{address,address,uint256,uint256,bytes) (Node.sol#18086-1834) compares to a boolean constant:
-require{bool,string)(isTradeActive == true,Node: Transfer is disabled) (Node.sol#1287)
ModeERC1155.Blacklist() (Node.sol#1525-1528) compares to a boolean constant:
-require{bool,string)(blacklist[_msgSender()] == false,you're blacklisted) (Node.sol#1526)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
INFO:Detectors:
AddressUpgradeable. functionCall(address,bytes) (Node.sol#418-420) is never used and should be removed
AddressUpgradeable. functionCall{address,bytes,string) {Node.sol#428-434) is n - used and should be removed
AddressUpgradeable. functionCallwithvalue(address,bytes,uint256) (Node.sol#447-453) is never used and should be removed
AddressUpgradeable. functionCallWithvalue{address,bytes,uint256,string) (Node.sol#461-4 is never used and should be remove
d
AddressUpgradeable. functionStaticCall{address,bytes) (Node.sol#480-482) is never used and should be removed
AddressUpgr .functionstaticCall({address,bytes,string) (Node.sol#498-499) is never used and should be removed
AddressUpgr a sendValue{address ,uint256) (Nede.sol#393-398) is n ed and should be removed
AddressUpgr CallRasultlbool bthS string) INDjQ sol#50) is used and should be removed
ContextUpgr a ._ Context_init() INojn sol# 07 should be removed
ContextUpgradeable. _ Context _init unchained() fNDde.sol#SDQ—Sl.] is never used and should be removed
ContextUpgradeable. msgData() (Node. SDl«cl“—cla' is never used and should be removed
ERC1155Upgradeable. burn{address,uint256,uint256) (Node.sol#1284-1306) is never used and should be removed
ERCllESLpgra-eable._burnBatchiaddress,uintE‘E[],uint 6[]) (Node.sol#1215-1241) is never used and should be remov
ERC1155Upgradeable. mintBatch({address,uint256[],uint256[],bytes) (Node.sol#1252-1274) is never used and should be removed
ERC165Upgradeable._ ERC165_init() INojn sol#828-829) is never used and should be removed
ERC165Upgradeable. ERC165 init unchained() (Node.sol#831-832) is never used and should be removed

- collection.push(CollectionStruct(Blue,4 g 3, 36 {Node.so
1#1572-1585)
NodeERC1155.nodeInit() (Node.sol#1571-1628) uses litera Y g

- collection.push(CollectionStruct(Red, 18000 2] ,8,38)) (Node.s
ol#1586-1599)
NodeERC1155.nedeInit() (Node.sol#1571-1628) uses litera

- collection. pushl(ollnctlonctluctlBlack 10 : 3,58 0,8,30)) (Node
sol# -1613)
NDdeERCllEE.nDjAInltI} (Mode.sol#1571-1628) uses literals with too m

- collection pusthollnctiol_tructhoublnBlack 1 0,22 B, 16 4167,12 ,8,18)
) (Node.sol#1614-1627)
Reference: https: //glthub com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
ReentrancyGuardUpgradeable. gap (MNode.sol#968) is never used in NodeERC1155 (Node.sol#1475-22
Reference: https://github. CDNKC|vt1c/sllth9|f\lklfDntnctDr Documentation#unused-state-variables
INFO:Detectors:
renounceOwnership() should be declared external:

- OwnableUpgradeable. renounceOwnership() (Node.sol#886-
transferOwnership(address) should be declared external:

ableUpgradeable.transferOwnership(address) (Node.sol#894-897

urif{uint256) should be declared external:

- ERC1155Upgradeable.uri{uint256) (Node.sol#16814-1616)
balance0fBatch{address[],uint256[]) should be declared external:

- ERC1155Upgradeable.balanced0fBatch(address[].uint256[]) (Node.sol#1037-1053
setApprovalForAll(address,bool) should be declared external:

- ERCll“Lpglajéablé setApprovalForAll{address.bool) (Node.sol#1058-1060)
safeBatchTransferFrom(address,address,uint256[], u1nt25t[] bytes) should bé jéclaléj external:

- ERC1155Upgradeable. SGTéBatch |ansfé|F|Dw1ajd|éss,ajj|éss uint256[], uint256[].bytes) (Node.sol#1088-1101)
setBlacklisted(address,bool) should be declared external:

- NodeERC1155. SetBlaCkllStej[ajjleSS,bDDl} (Node.sol#15308-1532)
initialize() should be declared external:

- NodeERC1155.1initialize() (Node.sol#1535-1543)
setManager(address) should be declared external:

- NodeERC1155.setManager(address) (Node.sol#1545-1547)
withdraw() should be declared external

- NodeERC115 w() {Node.sol#15508-1559)

should be declared external:

withdraw() should be declared exter

- NodeERC115 ithdr IND:iQ sol# F155
setClaimFeePercentage{uint2 Q|||a1

- NDdeERCll““.satclaleaapalcantagalulnt“ {Node.sol#15
withdrawCork{uint2 should be declared ex ern

- NodeERC1155.withdrawCerk{uint) oja sol#1567-1569)
mint{uint256,uint256,string) should be -nclalnd external:

- NodeERC1155.mint{uint256,uint ,string) (Node.sol#1638-1707)
mintTo{address[],uint256[],uint [],uint‘ 6[1], stllng[]- sloulj |>Q declared externa

- NodeERC1155.mintTo{address[],uint [],uint2 6[]1,string[]) (Mode.
bailOutMint{uint256,uint256,u1nt256,string) should be

- NodeERC1155.bailOutMint{uint256,uint256,uint256,string) (Node.sol#1741-179
setTradeActivate({bool) should be declared external:

- NodeERC1155.setTradeActivate({bool) (Mode.sol#128
updateCollection{uint256,string,uint256,uint256,uint256,uint256,uint256,uint256,uint256,uint256,uint256) should be declared
externa

- Nod upjatQCDllnctlonlulnt‘EC,stllng uilnt256,uint256,uint256,uint256,uint256 ,uint256,uint256 ,uint256,uint25

) (Node.sol#)]
ddT i ,uint256,uint256,uint256,uint256,uint256,uint256,uiNt256,uint256,uint256) should be declared external:
.ajj oCollection{string. u1nt‘-_,u1nt‘5_,u1nt‘5c,u1nt‘5_,u1nt‘5c,u1nt‘-;,u1nt‘5_,u1nt‘5c,u1nt‘5cg {Node.

6
a

swap okéhsFoluauhlulht should be declared externa

- NodeERC1155.swapTokensForAVAX(uint256) (Node.sol#2118-2113)
setTraderJoeDivideSide(bool) should be declared external:

- NodeERC1155.setTraderJoeDivid Sldeiboolﬁ (Node.sol#2125-2127)
getNodeState({uint2 should be decla B

- ModeERC1155.getNodeState{uint256) (oja sol#2158-2160)
setPresaleActlveibooln should be daclalad external:

- NodeERC1155.setPresaleActive({bool) (Node.sol#2178-2181)
checkPresaleActive() should be declal externa

- NedeERC1155.checkPresaleActi (Mode.sol#2183-2185)
updateRewardInterval(uint256) should be lared external:

- NodeERC1155.updateRewardInter (ui {Node .sol#2196-2198)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-externa
INFO:Slither:Node.sol analyzed (17 contracts with 75 detectors), 166 result(s) found
INFO:Slither:Use https: ytic.io/ to ge cce o additional detectors and Github integration

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> Pair.sol

INFO:Detectors:
JoePair.initiali

https
INFD.Detectors:
Reentrancy in
Externa

INFO:Detectors:
Reentrancy in

(success
'rarsT»rf_t

afe https
INFO: Detectors
JoeERC28.permit(

B L1|t_SE ,uint112,

I'"|3é| is

INFD.Detectors:
constructor()
- IILIIE ACV IPclr

JoeERC20

= ILLILE

: https
etectors:
el call in
[success,
2 https:
INFD Detectors
variable JoeERC20.DOMAIN_SEPAR
Parameter Pair.initialize(s
Parameter ePair. 1|1t1=114»

f https:// /
INFD.Detectors
Variable

INFO:D)
Low r._sateTr

INFO:5lither: Palr
INFO:5lither:

i
be disc

Pair.burn{address)

(Pair.sol#443-47

* timeElapsed (Pair.sol#366-

* timeElapsed (Pair.sol#369-

,uint256,addr bytes) (Pair.sol#475-

BOut) (Pair

11l{abi.en

ntl0ut) (Patir)
call{abi. hSelector(SELECTOR, to

t, cF-LItl“Lt .data) (Pair.sol#501-

* timeElapsed (Pair

* timeElapsed (Pair.so

ities-2

air.sol#443-472):

o

,amount (Pair.sol#464)
token.call{abi.er th
,amountl) (Pair.s I*JF

n.call{abi.e

Selector{SELECTOR,to,v

o |l

WithSelector(SELECTOR, to,va

(Pair.sol#471)

LFti“Lt {Patir.

1) (Pair.sol#5
umenta tlrrzr“rt|cr',—lererahilities—E

256,uint256,uint8 {Pair.sol#116-148) uses timestamp for comparisons

= block.timestamp

(Pair.sol#125)
(Pair.sol# i

EXPIRED)

) uses assembly

/slither/wiki/Detector-Documentation#assembly-usar
ansfer|(
all(abi.

ticy rs1ithe

not in
_tokenl {Pair.sol#345) is not in
iki/Detector-Documentation#con

mixedCase
mixedCase

formance-to-solidity-naming-conventions

balancefAdjusted (Pair.sol#522) is too similar to air.swap{uint256,

is tcc 28

sirilcl to 284

ePair.pricelCumulat iy
riable-names-are-to

Last (Pair.sol#
o-similar

a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

CorkToken.sol

Gas & Economy

Gas costs:

Gas requirement of function CorkToken.name is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)
Pos: 549:4:

Gas costs:) 4

Gas requirement of function CorkToken.transferTax is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify

large areas of storage (this includes clearing or copying arrays in storage)
Pos: 962:4:

Miscellaneous

Constant/View/Pure functions:)¢

ISwapCork.swapCorkForAVAX(address,uint256) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered

by this static analysis.
more
Pos: 6:4:

Constant/View/Pure functions:)~ 4

CorkToken.transferFrom(address,address,uint256) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered
by this static analysis.

more

Pos: 947:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names: ¥

CorkToken.burn(address,uint256) : Variables have very similar names
"account” and "amount". Note: Modifiers are currently not considered by
this static analysis.

Pos: 908:23:

Guard conditions:) 4

Use "assert(x)" if you never ever want x to be false, notin any
circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.

more
Pos: 982:8:

Guard conditions:) 4

Use "assert(x)" If you never ever want x to be false, not in any
circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.

more

Pos: 998:8:

Node.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

AddressUpgradeable functionCallWithValue(address,bytes,uint256,string): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered
by this static analysis.

more

Pos: 461:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
NodeERC1155.safeTransferFrom(address,address,uint256,uint256,bytes): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered
by this static analysis.

more

Pos: 1806:4:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Block timestamp: ¥

Use of "block.timestamp": "block.timestamp™ can be influenced by miners to a certain
degree. That means that a miner can "choose" the block timestamp, to a certain degree, to
change the outcome of a transaction in the mined block.

more
Pos: 1695:41:

Low level calls:) 4

Use of "call™ should be avoided whenever possible. It can lead to unexpected behavior if
return value is not handled properly. Please use Direct Calls via specifying the called
contract's interface.

more

Pos: 1557:27:

Gas & Economy

Gas costs: X

Gas requirement of function NodeERC1 155.withdraw is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid loops in
your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 1550:4:

Gas costs: ¥

Gas requirement of function NodeERC1155.withdrawCork is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please
avoid loops in your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 1567:4:

For loop over dynamic array:) 4

Loops that do not have a fixed number of iterations, for example, loops that depend on
storage values, have to be used carefully. Due to the block gas limit, transactions can only
consume a certain amount of gas. The number of iterations in a loop can grow beyond the
block gas limit which can cause the complete contract to be stalled at a certain point.
Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully test
how many items at maximum you can pass to such functions to make it successful.

more

Pos: 1812:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 12:4:

Miscellaneous

Constant/View/Pure functions:) ¢

NodeERC1155.calculateClaimableAmount(uint256) : Is constant but potentially should
not be. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 1935:4:

Similar variable names: X

NodeERC115b5.safeTransferFrom(address,address,uint256,uint256,bytes) : Variables have
very similar names "to" and "id". Note: Modifiers are currently not considered by this static
analysis.

Pos: 1813:59:

Guard conditions: 4

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a
bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing
external component.

more

Pos: 1917:8:

Data truncated: X

Division of integer values yields an integer value again. That means e.g. 10/100=10
instead of 0.1 since the result is an integer again. This does not hold for division of (only)
literal values since those yield rational constants.

Pos: 2188:24:

Data truncated: X

Division of integer values yields an integer value again. That means e.g. 10/ 100=0
instead of 0.1 since the result is an integer again. This does not hold for division of (only)
literal values since those yield rational constants.

Pos: 2193:15:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pair.sol
Security

Check-effects-interaction:) 4

Potential violation of Checks-Effects-Interaction pattern in
JoePair._mintFee(uint112,uint112): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 380:4:

Block timestamp:) 4

Use of "block.timestamp”: "block.timestamp” can be influenced by miners
to a certain degree. That means that a miner can "choose" the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 362:39:

Low level calls:) ¢

Use of "call": should be avoided whenever possible. It can lead to
unexpected behavior if return value is not handled properly. Please use
Direct Calls via specifying the called contract’'s interface.

more

Pos: 314:44:

Gas & Economy

Gas costs:) 4

Gas requirement of function JoePair.swap is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)
Pos: 475b:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ERC
ERC20: %

ERC20 contract's "decimals” function should have "uint8" as return type

more
Pos: 197:4:

Miscellaneous

Similar variable names: ¥

JoePair.getReserves() : Variables have very similar names "reserveQ" and
"_reservel”. Note: Modifiers are currently not considered by this static

analysis.
Pos: 304:20:

Similar variable names:) 4

JoePair.swap(uint256,uint256,address,bytes) : Variables have very
similar names "tokenQ" and "_tokenl". Note: Modifiers are currently not
considered by this static analysis.

Pos: 499:46:

Guard conditions: ¥

Use "assert(x)" if you never ever want x to be false, not in any

circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.

more

Pos: 486:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g.
10 /100 = 0 instead of 0.1 since the result is an integer again. This does
not hold for division of (only) literal values since those yield rational
constants.

Pos: 458:18:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

CorkToken.sol

missing

missing

missing
CorkToken. : : : : missing
CorkToken. : : : : : missing
CorkToken. : : : : missing
CorkToken. : : : : missing
CorkToken. : : : : missing
CorkToken. : : : : : missing
CorkToken. : : : : missing
CorkToken. : : : : missing
CorkToken. : : : : : missing

missing
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing

Pair.sol

Pair.sol:4:1: Error: Compiller version =0.6.12 does not satisfy the r

semver requirement

Pair.so0l:23:28: Error: Constant name must be in capitalized

SNAKE CASE

Pair.so0l:24:28: Error: Constant name must be in capitalized

SNAKE CASE

Pair.so0l:25:27: Error: Constant name must be in capitalized

SNAKE CASE

ir.so0l:30:20: Error: Variable name must be in mixedCase

.501:45:9: Error: Avoid using inline assembly. It is acceptable
in rare cases

Pair.so0l:125:29: Error: Avoid to make time-based decisions in your

business logic

Pair.sol:172:5: Error: Explicitly mark visibility of state

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

:314:45: Error: Avoid using low level calls.
Pair.so0l:362:40: Error: Avoid to make time-based decisions in your

business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

